NUMERICAL MODELING OF TWO-PHASE HEAT TRANSFER DURING EVAPORATION AND CONDENSATION INSIDE A SOLAR STILL
https://doi.org/10.55452/1998-6688-2024-21-3-281-301
Abstract
This research presents a comparative analysis of two solar still configurations utilizing the ANSYS 2023R2 software package for computational fluid dynamics (CFD) simulations. The study employs the Volume of Fluid (VoF) model to simulate phase transitions between liquid and vapor, specifically focusing on vaporization processes. It is important to note that the VoF model used in this study primarily serves to visualize vaporization, with its numerical results aligning with theoretical expectations rather than providing practical applications. The relevance of this research is underscored by the global drinking water crisis, which drives the need to enhance the efficiency of desalination systems. Solar distillation is recognized as one of the most environmentally sustainable methods for producing clean water, making it an appropriate focus for this investigation. The primary objective of this work is to conduct a numerical analysis of the solar still, compare the performance of two different configurations, and evaluate potential modifications to improve the system's efficiency. The study simulates heat transfer processes within the distiller, the distribution of vapor volume fractions, and temperature variations over time. The findings indicate that the dual-slope configuration outperforms the single-slope configuration in terms of efficiency and productivity. Additionally, the research provides insights into the physical processes occurring within the distiller and identifies potential areas for further refinement of the system's modeling in ANSYS.
About the Authors
Ye. KarlinaKazakhstan
Master student
050040, Almaty
Ye. Yerdesh
Kazakhstan
Master of Natural Sciences
050040, Almaty
D. Baimbetov
Kazakhstan
Master of Natural Sciences
050040, Almaty;
130000, Aktau
I. Jamakeyev
Kazakhstan
Master student
050040, Almaty
M. Mohanraj
India
Professor
641 032, Coimbatore
Ye. Belyayev
Kazakhstan
Associate Professor
050040, Almaty;
050013, Almaty
References
1. Peter H. Gleick. Water in crisis: a guide to the world's freshwater resources, (Oxford University Press, 1993), 473 p.
2. Global Solar Atlas. URL: https://globalsolaratlas.info/ (date of access 29.04.2024)
3. Abhay Agrawal, R.S. Rana and Pankaj K. Srivastava (2017) Resource-Efficient Technologies, vol. 3, pp. 466–482. https://doi.org/10.1016/j.reffit.2017.05.003
4. Mohammad Abd Al Amir Khadim, Wisam A. Abd AL-Awahid and Dhafer M. Hachim (2020) IOP Conference Series: Materials Science and Engineering, vol. 928, no. 022046. https://doi.org/10.1088/1757-899X/928/2/022046.
5. Sampathkumar K., Arjunan T.V. and Pitchandi P. (2010) Renew. Sustain. Energy Rev., vol. 14, no. 6, pp. 1503–1526. https://doi.org/10.1016/j.rser.2010.01.023.
6. Rahul Dev and Tiwari G.N. (2009) Desalination, vol. 245, pp. 246–265. https://doi.org/10.1016/j.desal.2008.07.011.
7. Al-Karaghoulia A.A. and Alnaserb W.E. (2004) Applied Energy, vol. 78, pp. 347–354. https://doi.org/10.1016/S0306-2619(03)00005-9.
8. Boubekria M. and Chakerb A. (2011) Energy Procedia, vol. 6, pp. 610–617. https://doi.org/10.1016/j.egypro.2011.05.070.
9. Mohamed Elashmawy (2017) Desalination, vol. 411, pp. 1–8. https://doi.org/10.1016/j.desal.2017.02.003.
10. Al-Doori G.F.L., Moosa I.S., Saleh A.A.M. (2019) Enhanced productivity of double-slope solar still using local rocks, Int. J. Smart Grid Clean Energy, vol. 8 (3), pp. 307–312. https://doi.org/10.12720/sgce.8.3.307-312.
11. Belyayev Ye., Mohanraj M., Jayaraj S. and Kaltayev A. (2018) Heat Transfer Engineering, vol. 40(12), pp. 1060–1072. https://doi.org/10.1080/01457632.2018.1451246
12. Elango C., Gunasekaran N. and Sampathkumar K. (2015) Renewable and Sustainable Energy Reviews, vol. 47, pp. 856–911. https://doi.org/10.1016/j.rser.2015.03.054.
13. Vassilis B., Soteris K., Emmy D. Thermal Solar Desalination: Methods and Systems, (Academic Press, 2016), 382 p.
14. Dunkle R.V. (1961) International Developments in Heat Transfer, ASME, Proceedings of International Heat Transfer Conference, University of Colorado, vol. 5, pp. 895–902.
15. Shukla S.K. and Sorayan V.P.S. (2005) Renewable Energy, vol. 30, pp. 683–699. https://doi.org/10.1016/j.renene.2004.03.009.
16. Savel'ev I.V. Kurs obshhej fiziki, vol. 1. Mehanika. Molekuljarnaja fizika: Uchebnoe posobie (Moscow: Nauka. Glavnaja redakcija fiziko-matematicheskoj literatury, 1982), P. 432. [in Russian]
17. Peter William Atkins, Julio De Paula, James Keeler Atkins, Physical Chemistry, (Oxford University Press, 2018), P. 908.
18. Richard C.T. The Principles of Statistical Mechanics (Courier Corporation, 1979), Р. 660.
19. Yakubov S. & Cankurt B. & Maquil T. & Schiller P. & Abdel-Maksoud M. & Rung T. IV International Conference on Computational Methods in Marine Engineering (MARINE, 2011), p. 544–555.
20. Yu Liu, Mikael Ersson, Heping Liu, Pär Jönsson, and Yong Gan. Steel Research International, vol. 90(5), no. 1800494 (2019). https://doi.org/10.1002/srin.201800494
21. Amit Kumar (2015) CFD Modeling and Validation of a single slope Solar Still: Submitted in Partial Fulfillment of the Requirements for the Award of Degree of Master of Technology in Energy Engineering. Department of mechanical engineering, Malaviya national institute of technology, Jaipur, 69 p.
22. ANSYS. Available online: https://ansyshelp.ansys.com/public/account/secured?returnurl=////Views/Secured/corp/v242/en/flu_th/flu_th.html
23. ANSYS Fluent software license, 23R2, ANSYS, Inc., Satbayev University, Almaty, Kazakhstan.
Review
For citations:
Karlina Ye., Yerdesh Ye., Baimbetov D., Jamakeyev I., Mohanraj M., Belyayev Ye. NUMERICAL MODELING OF TWO-PHASE HEAT TRANSFER DURING EVAPORATION AND CONDENSATION INSIDE A SOLAR STILL. Herald of the Kazakh-British technical university. 2024;21(3):281-301. (In Kazakh) https://doi.org/10.55452/1998-6688-2024-21-3-281-301