MEASUREMENT OF THE VELOCITY OF PULSED PLASMA FLOW AT THE PW-7 INSTALLATION
https://doi.org/10.55452/1998-6688-2024-21-3-273-280
Abstract
The paper considers two independent methods for measuring the velocity of the plasma flow generated in the PV-7 pulsed plasma accelerator: a method based on observation and evaluation of the Doppler shift of spectral lines, and a method of high-speed visualization of plasma motion. To record the plasma flow radiation spectrum, a monochromator M833 was used. High-speed video recording was carried out at 640,000 fps using a Phantom VEO710S CMOS camera. The results of measurements of the average flow velocity obtained at a working gas pressure of 2⋅10-2 Torr, capacitance and voltage of the capacitor bank of 400 μF and 4 kV are presented. The results obtained by two independent methods were compared with each other. Argon was used as the working gas in the experiments. It is shown that the value of the plasma flow velocity estimated by the first method is 12.5 m/s, and the value of the plasma flow velocity estimated by the second method is 16.7 m/s. From these data the measured flow velocity values have a small discrepancy. Thus, it has been established that high-speed video recording and Doppler shift methods make it possible to obtain comparable estimates of flow velocity within the measurement errors. Determining the magnitude of the plasma flow velocity is of great practical importance.
About the Authors
A. B. TazhenKazakhstan
PhD
050040, Almaty
M. K. Dosbolayev
Kazakhstan
Candidate of Physical and Mathematical Sciences, Associate Professor
050040, Almaty
M. I. Pshikov
Kazakhstan
Candidate of Physical and Mathematical Sciences, Acting Associate Professor
050040, Almaty
E. A. Usenov
United States
PhD
08540, NJ
T. S. Ramazanov
Kazakhstan
Doctor of Physical and Mathematical Sciences, Professor
050040, Almaty
References
1. Linsmeier Ch., Unterberg B., Coenen J.W., Doerner R.P., Greuner H., Kreter A., Linke J. Maier H. Nucl. Fusion, 2017, vol. 57, p. 092012. https://doi.org/10.1088/1741-4326/aa4feb.
2. Kartasheva A.A., Gutorov K.M., Podkovyrov V.L., Muravyeva E.A., Lukyanov K.S., Klimov N.S. Phys. Plasmas, 2024, vol. 31, p. 043107. https://doi.org/10.1063/5.0198341.
3. Ling W.Y.L., Zhang S., Fu H., Huang M., Quansah J., Liu X., Wang N. Chinese Journal of Aeronautics, 2020, vol. 33, pp. 2999–3010. https://doi.org/10.1016/j.cja.2020.03.024.
4. Ou Y., Wu J., Cheng Y., Zhang Y., Che B. Advances in Space Research, 2024, vol. 74, pp. 1741–1750. https://doi.org/10.1016/j.asr.2024.05.039.
5. Lerner E.J., Hassan S.M., Karamitsos-Zivkovic I., Fritsch R. Journal of Fusion Energy, 2023, vol. 42, pp. 1–18. https://doi.org/10.1007/s10894-023-00345-z.
6. Ladygina M.S., Petrov Yu.V., Yeliseev D.V., Makhlai V.A., Kulik N.V., Staltsov V.V. Problems of atomic science and technology, 2021, no. 1, pp. 61–64. https://doi.org/10.46813/2021-131-061.
7. Borthakur S., Ahmed A., Singha S., Neog N.K., Borthakur T.K. Fusion Engineering and Design, 2021, vol. 168, p. 112400. https://doi.org/10.1016/j.fusengdes.2021.112400.
8. Zhukeshov A.M., Amrenova A.U., Gabdullina A.T., Moldabekov Zh.M., Useinova B.M. Technical Physics, 2019, vol. 64, pp. 342–347. https://doi.org/10.1134/S1063784219030277.
9. Talukdar N., Ahmed A., Borthakur S., Neog N.K., Borthakur T.K., Ghosh J. Phys. Plasmas, 2019, vol. 26, p. 062711. https://doi.org/10.1063/1.5092267.
10. Dosbolayev M.K., Igibayev Zh.B., Tazhen A.B., Ramazanov T.S. Plasma Physics Reports, 2022, vol. 48, pp. 263–270. https://doi.org/10.1134/S1063780X22030047.
11. Al-Hawat S. IEEE Transactions on Plasma Science, 2004, vol. 32, pp. 764–769. https://doi.org/10.1109/TPS.2004.826119.
12. Yaroshevskaya A.D., Gutorov K.M., Podkovyrov V.L., Litvinenko Yu.I. Plasma Physics Reports, 2024, vol. 50, pp. 689–696.
13. Yaroshevskaya A.D., Malyutin A.Yu., Podkovyrov V.L., Gutorov K.M., Kartasheva A.A. XLIX International Zvenigorod Conference on Plasma Physics and Controlled Fusion (Moscow, 14–18 March, 2022), p. 164. [in Russian].
14. Losada U., Manzanares A., Balboa I., Silburn S., Karhunen J., Carvalho P.J., Huber A., Huber V., Solano E.R., de la Cal E. Nuclear Materials and Energy, 2020, vol. 25, p.100837. https://doi.org/10.1016/j.nme.2020.100837.
15. Ananyev S.S., Krauz V.I., Myalton V.V., Kharrasov A.M. VANT. Ser. Termoyadernyi sintez, 2017, vol. 40, pp. 21–35. [in Russian]. https://doi.org/10.21517/0202-3822-2017-40-1-21-35.
16. Nawaz A., Lau M. 32nd Int. Electric Propulsion Conf (Wiesbaden, 11–15 September, 2011), pp. 1–13.
17. Tazhen A.B., Rayimkhanov Zh.R., Dosbolayev M.K., Ramazanov T.S. Plasma Physics Reports, 2020, vol. 46, pp. 465–471. https://doi.org/10.1134/S1063780X20040121.
18. Dosbolayev M.K., Tazhen A.B., Ramazanov T.S., Ussenov Ye.A. Nuclear Materials and Energy, 2022, vol. 33, p. 101300. https://doi.org/10.1016/j.nme.2022.101300.
19. Dosbolayev M.K., Tazhen A.B., Kholmirzayev A.N., Ussenov Ye.A. Ramazanov T.S., Nuclear Materials and Energy, 2023, vol. 37, p. 101540. https://doi.org/10.1016/j.nme.2023.101540.
20. Tazhen A.B., Dosbolayev M.K., Ramazanov T.S. Recent Contributions to Physics, 2022, vol. 81, pp. 35–39. https://doi.org/10.26577/RCPh.2022.v81.i2.05.
Review
For citations:
Tazhen A.B., Dosbolayev M.K., Pshikov M.I., Usenov E.A., Ramazanov T.S. MEASUREMENT OF THE VELOCITY OF PULSED PLASMA FLOW AT THE PW-7 INSTALLATION. Herald of the Kazakh-British technical university. 2024;21(3):273-280. (In Russ.) https://doi.org/10.55452/1998-6688-2024-21-3-273-280