Preview

Herald of the Kazakh-British technical university

Advanced search

MEASUREMENT OF THE VELOCITY OF PULSED PLASMA FLOW AT THE PW-7 INSTALLATION

https://doi.org/10.55452/1998-6688-2024-21-3-273-280

Abstract

The paper considers two independent methods for measuring the velocity of the plasma flow generated in the PV-7 pulsed plasma accelerator: a method based on observation and evaluation of the Doppler shift of spectral lines, and a method of high-speed visualization of plasma motion. To record the plasma flow radiation spectrum, a monochromator M833 was used. High-speed video recording was carried out at 640,000 fps using a Phantom VEO710S CMOS camera. The results of measurements of the average flow velocity obtained at a working gas pressure of 2⋅10-2 Torr, capacitance and voltage of the capacitor bank of 400 μF and 4 kV are presented. The results obtained by two independent methods were compared with each other. Argon was used as the working gas in the experiments. It is shown that the value of the plasma flow velocity estimated by the first method is 12.5 m/s, and the value of the plasma flow velocity estimated by the second method is 16.7 m/s. From these data the measured flow velocity values have a small discrepancy. Thus, it has been established that high-speed video recording and Doppler shift methods make it possible to obtain comparable estimates of flow velocity within the measurement errors. Determining the magnitude of the plasma flow velocity is of great practical importance.

About the Authors

A. B. Tazhen
Al-Farabi Kazakh National University
Kazakhstan

PhD 

050040, Almaty



M. K. Dosbolayev
Al-Farabi Kazakh National University
Kazakhstan

Candidate of Physical and Mathematical Sciences, Associate Professor 

050040, Almaty



M. I. Pshikov
Al-Farabi Kazakh National University
Kazakhstan

Candidate of Physical and Mathematical Sciences, Acting Associate Professor 

050040, Almaty



E. A. Usenov
Department of Mechanical and Aerospace Engineering, Princeton University
United States

PhD 

08540, NJ



T. S. Ramazanov
Al-Farabi Kazakh National University
Kazakhstan

Doctor of Physical and Mathematical Sciences, Professor 

050040, Almaty



References

1. Linsmeier Ch., Unterberg B., Coenen J.W., Doerner R.P., Greuner H., Kreter A., Linke J. Maier H. Nucl. Fusion, 2017, vol. 57, p. 092012. https://doi.org/10.1088/1741-4326/aa4feb.

2. Kartasheva A.A., Gutorov K.M., Podkovyrov V.L., Muravyeva E.A., Lukyanov K.S., Klimov N.S. Phys. Plasmas, 2024, vol. 31, p. 043107. https://doi.org/10.1063/5.0198341.

3. Ling W.Y.L., Zhang S., Fu H., Huang M., Quansah J., Liu X., Wang N. Chinese Journal of Aeronautics, 2020, vol. 33, pp. 2999–3010. https://doi.org/10.1016/j.cja.2020.03.024.

4. Ou Y., Wu J., Cheng Y., Zhang Y., Che B. Advances in Space Research, 2024, vol. 74, pp. 1741–1750. https://doi.org/10.1016/j.asr.2024.05.039.

5. Lerner E.J., Hassan S.M., Karamitsos-Zivkovic I., Fritsch R. Journal of Fusion Energy, 2023, vol. 42, pp. 1–18. https://doi.org/10.1007/s10894-023-00345-z.

6. Ladygina M.S., Petrov Yu.V., Yeliseev D.V., Makhlai V.A., Kulik N.V., Staltsov V.V. Problems of atomic science and technology, 2021, no. 1, pp. 61–64. https://doi.org/10.46813/2021-131-061.

7. Borthakur S., Ahmed A., Singha S., Neog N.K., Borthakur T.K. Fusion Engineering and Design, 2021, vol. 168, p. 112400. https://doi.org/10.1016/j.fusengdes.2021.112400.

8. Zhukeshov A.M., Amrenova A.U., Gabdullina A.T., Moldabekov Zh.M., Useinova B.M. Technical Physics, 2019, vol. 64, pp. 342–347. https://doi.org/10.1134/S1063784219030277.

9. Talukdar N., Ahmed A., Borthakur S., Neog N.K., Borthakur T.K., Ghosh J. Phys. Plasmas, 2019, vol. 26, p. 062711. https://doi.org/10.1063/1.5092267.

10. Dosbolayev M.K., Igibayev Zh.B., Tazhen A.B., Ramazanov T.S. Plasma Physics Reports, 2022, vol. 48, pp. 263–270. https://doi.org/10.1134/S1063780X22030047.

11. Al-Hawat S. IEEE Transactions on Plasma Science, 2004, vol. 32, pp. 764–769. https://doi.org/10.1109/TPS.2004.826119.

12. Yaroshevskaya A.D., Gutorov K.M., Podkovyrov V.L., Litvinenko Yu.I. Plasma Physics Reports, 2024, vol. 50, pp. 689–696.

13. Yaroshevskaya A.D., Malyutin A.Yu., Podkovyrov V.L., Gutorov K.M., Kartasheva A.A. XLIX International Zvenigorod Conference on Plasma Physics and Controlled Fusion (Moscow, 14–18 March, 2022), p. 164. [in Russian].

14. Losada U., Manzanares A., Balboa I., Silburn S., Karhunen J., Carvalho P.J., Huber A., Huber V., Solano E.R., de la Cal E. Nuclear Materials and Energy, 2020, vol. 25, p.100837. https://doi.org/10.1016/j.nme.2020.100837.

15. Ananyev S.S., Krauz V.I., Myalton V.V., Kharrasov A.M. VANT. Ser. Termoyadernyi sintez, 2017, vol. 40, pp. 21–35. [in Russian]. https://doi.org/10.21517/0202-3822-2017-40-1-21-35.

16. Nawaz A., Lau M. 32nd Int. Electric Propulsion Conf (Wiesbaden, 11–15 September, 2011), pp. 1–13.

17. Tazhen A.B., Rayimkhanov Zh.R., Dosbolayev M.K., Ramazanov T.S. Plasma Physics Reports, 2020, vol. 46, pp. 465–471. https://doi.org/10.1134/S1063780X20040121.

18. Dosbolayev M.K., Tazhen A.B., Ramazanov T.S., Ussenov Ye.A. Nuclear Materials and Energy, 2022, vol. 33, p. 101300. https://doi.org/10.1016/j.nme.2022.101300.

19. Dosbolayev M.K., Tazhen A.B., Kholmirzayev A.N., Ussenov Ye.A. Ramazanov T.S., Nuclear Materials and Energy, 2023, vol. 37, p. 101540. https://doi.org/10.1016/j.nme.2023.101540.

20. Tazhen A.B., Dosbolayev M.K., Ramazanov T.S. Recent Contributions to Physics, 2022, vol. 81, pp. 35–39. https://doi.org/10.26577/RCPh.2022.v81.i2.05.


Review

For citations:


Tazhen A.B., Dosbolayev M.K., Pshikov M.I., Usenov E.A., Ramazanov T.S. MEASUREMENT OF THE VELOCITY OF PULSED PLASMA FLOW AT THE PW-7 INSTALLATION. Herald of the Kazakh-British technical university. 2024;21(3):273-280. (In Russ.) https://doi.org/10.55452/1998-6688-2024-21-3-273-280

Views: 318


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)