Preview

Herald of the Kazakh-British technical university

Advanced search

STUDY OF THE STRUCTURAL AND ELECTROMAGNETIC CHARACTERISTICS OF FERROMAGNETIC-DIAMAGNETIC COMPOSITES OBTAINED BY THE METHOD OF MODIFIED CHEMICAL CO PRECIPITATION

https://doi.org/10.55452/1998-6688-2024-21-3-210-223

Abstract

The microwave electromagnetic properties of ferromagnetic-paramagnetic and ferromagnetic-diamagnetic composites can be changed by varying the concentration of diamagnetic (paramagnetic) and ferromagnetic components. To implement the task of introducing such composites into production, research is required to find effective and simple synthesis technologies that make it possible to vary the content of components with different magnetic characteristics. This work demonstrates a simple method for the synthesis of ferromagnetic ((NiZn)Fe2 O4 )- diamagnetic (ZnO) composites by modified chemical deposition followed by annealing. Also, a comprehensive study of the structural and electromagnetic characteristics of experimental samples was carried out. Using the powder X-ray diffraction method, it was revealed that the phase composition of the final samples is represented exclusively by diamagnetic and ferromagnetic phases. Using scanning electron microscopy, it was found that after thermal annealing the powders have submicron sizes with an average size of 100–137 nm. Using vibration magnetometry, magnetic hysteresis loops were measured, the analysis of which showed that an increase in the concentration of the diamagnetic phase leads to an increase in the coercive force of the composites. The measured microwave spectra of complex magnetic permeability show that by changing the ratio between the ferromagnetic and paramagnetic phases, it is possible to realize a frequency shift of natural ferromagnetic resonance. Also, through the calculation of the reflection coefficient on a metal plate, it is shown that the resulting composites can be used as the basis for new radio-absorbing materials. In addition, the synthesized powders can also be used to create microwave devices and microwave antennas.

About the Authors

R. I. Shakirzyanov
L.N. Gumilev Eurasian National University
Kazakhstan

Candidate of Phys.-Math.Sc., PhD 

010000, Astana



A. V. Trukhanov
SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”
Belarus

Dr.Phys.-Math.Sc., Associate Professor 

220004, Minsk



D. I. Shlimas
L.N. Gumilev Eurasian National University; Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan
Kazakhstan

PhD

010000, Astana;
050032, Almaty



T. I. Zubar
SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”
Belarus

Candidate of Technical Sciences, Senior Researcher 

220004, Minsk



K. K. Kadyrzhanov
L.N. Gumilev Eurasian National University; Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan
Kazakhstan

Dr.Phys.-Math.Sc., Professor 

010000, Astana;
050032, Almaty



References

1. Bondaletova L.I., Bondaletov V.G. (2013) Polymernie compositsionye materialy (chast’ 1), 118 p. [in Russian].

2. Michailin Yu. A. Special’nye polymernie compositsionye materialy (2009).

3. Lagarkov A.N. and Rozanov K.N. (2009) Journal of Magnetism and Magnetic Materials, no. 321, pp. 2082–2092. https://doi.org/10.1016/j.jmmm.2008.08.099.

4. Chairi M., El Bahaoui J., Hanafi I., Mata Cabrera F. and Di Bella G. (2023) Composite Materials: A Review of Polymer and Metal Matrix Composites, Their Mechanical Characterization, and Mechanical Properties (Intechopen).

5. Tang D.D. and Lee Y.J. (2010) Magnetic memory: fundamentals and technology (Cambridge University Press).

6. Liang X., Matyushov A., Hayes P., Schell V., Dong C., Chen H., He Y., Will-Cole A., Quandt E., Martins P. et al. (2021) Roadmap on magnetoelectric materials and devices. IEEE Transactions on Magnetics, vol. 57, pp. 1–57. https://doi.org/10.1109/TMAG.2021.3086635.

7. Cohades A. and Michaud V. (2018) Advanced Industrial and Engineering Polymer Research, no.1, pp. 66–81. https://doi.org/10.1016/j.aiepr.2018.07.001.

8. Ghidini M., Asti G., Pellicelli R., Pernechele C. and Solzi M. (2007) Hard–soft composite magnets. Journal of Magnetism and Magnetic Materials, vol. 316, pp. 159–165. https://doi.org/10.1016/j.jmmm.2007.02.040.

9. Fang M., Volotinen T.T., Kulkarni S.K., Belova L. and Rao K.V. (2010) Effect of embedding Fe3O4 nanoparticles in silica spheres on the optical transmission properties of three-dimensional magnetic photonic crystals. Journal of Applied Physics, vol. 108, p. 103501.

10. Ávila-Crisóstomo C.E., Sánchez-Mora E., Garcia-Vazquez V., Pérez-Rodríguez F. (2018) Magnetic response of Fe nanoparticles embedded in artificial SiO2 opals. Journal of Magnetism and Magnetic Materials, vol. 465, pp. 252–259. https://doi.org/10.1016/j.jmmm.2018.05.087

11. Ávila-Crisóstomo C.E., Pal U., Pérez-Rodríguez F., Shelyapina M.G., Shmyreva A.A. (2020) Localfield effect on the hybrid ferromagnetic-diamagnetic response of opals with Ni nanoparticles. Journal of Magnetism and Magnetic Materials, vol. 514, p.167102. https://doi.org/10.1016/j.jmmm.2020.167102

12. Gray M.T., Emori S., Gray B.A., Jeon H., van ’t Erve O.M.J., Jonker B.T., Kim S., Suzuki M., Ono T., Howe B.M. et al. (2018) Spin-current generation in low-damping Ni0.65Zn0.35Al 0.8Fe1.2O4 spinel ferrite. Physical Review Applied, vol. 9, p. 064039. https://doi.org/10.1103/PhysRevApplied.9.064039.

13. Thakur P., Chahar D., Taneja S., Bhalla N. (2020) A review on MnZn ferrites: Synthesis, characterization and applications. Ceramics international, vol. 46, pp. 15740–15763. https://doi.org/10.1016/j.ceramint.2020.03.287.

14. Narang S.B., Pubby K. (2021) Nickel spinel ferrites: a review. Journal of Magnetism and Magnetic Materials, vol. 519, p. 167163. https://doi.org/10.1016/j.jmmm.2020.167163.

15. Chakradhary V.K., Akhtar M.J. (2020) Highly coercive strontium hexaferrite nanodisks for microwave absorption and other industrial applications. Composites Part B: Engineering, vol. 183, p. 107667. https://doi.org/10.1016/j.compositesb.2019.107667.

16. Smit J. and Wijn H.P.J. Ferrites. Physical properties of ferrimagnetic oxides in relation to their technical applications (Philips’ Technical Library, Eindhoven, 1959).

17. Doebelin N., Kleeberg R. (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of applied crystallography, vol. 48, pp. 1573–1580. https://doi.org/10.1107/S1600576715014685.

18. Hargreaves J. S. J. (2016) Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catalysis, Structure & Reactivity, vol. 2, pp. 33–37. https://doi.org/10.1080/2055074X.2016.1252548.

19. Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T. Eliceiri K.W. (2017) ImageJ2: ImageJ for the next generation of scientific image data. Eliceiri. BMC bioinformatics, vol.18, pp.1–26. https://doi.org/10.1186/s12859-017-1934-z.

20. Tsutaoka T., Kasagi T., Nakamura T., Hatakeyama K. (1997) High frequency permeability of Mn-Zn ferrite and its composite materials. Le Journal de Physique IV, vol. 7, pp. 557–558. https://doi.org/10.1051/jp4:19971230.

21. Lopatin A.V., Kazantseva N.E., Kazantsev Y.N. et al. (2008) The efficiency of application of magnetic polymer composites as radio-absorbing materials. Journal of Communications Technology and Electronics, vol. 53, pp. 487–496. https://doi.org/10.1134/S106422690805001X.

22. Wang B., Wei J., Qiao L., Wang T., Li F. (2012) Influence of the interface reflections on the microwave reflection loss for carbonyl iron/paraffin composite backed by a perfect conduction plate. Journal of magnetism and magnetic materials, vol. 324, pp. 761–765.


Review

For citations:


Shakirzyanov R.I., Trukhanov A.V., Shlimas D.I., Zubar T.I., Kadyrzhanov K.K. STUDY OF THE STRUCTURAL AND ELECTROMAGNETIC CHARACTERISTICS OF FERROMAGNETIC-DIAMAGNETIC COMPOSITES OBTAINED BY THE METHOD OF MODIFIED CHEMICAL CO PRECIPITATION. Herald of the Kazakh-British technical university. 2024;21(3):210-223. (In Russ.) https://doi.org/10.55452/1998-6688-2024-21-3-210-223

Views: 325


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)