CONTROL OF THE SIZES OF LEAD SULFIDE (PBS) NANOPARTICLES BY PLASMA TREATMENT METHOD
https://doi.org/10.55452/1998-6688-2024-21-2-266-272
Abstract
In this work, the optimal parameters for the production of lead sulfide nanoparticles (PbS) were determined. Lead sulfide nanoparticles were obtained by chemical precipitation in an aqueous solution of lead nitrate (Pb(NO3 )2 ) 25 ml 0.18 M (1.524 g), sodium hydroxide (NaOH) 75 ml 0.38 M (1.172 g), thiourea (CH4 N2 S) 50 ml 0.11 M (0.399 g), at a reaction temperature of 100 °C, the duration of the synthesis reaction was 120 minutes. The particles were deposited on a pre-purified silicon (Si) substrate. After synthesis, the particles were processed in a glow discharge plasma in an argon atmosphere at a pressure of the order of Ð=1 Pa, for t1 =1min and U = 2 min, at a voltage ofU = 2 kV and a current strength of I =1,5 mA. The morphology of the obtained structures was studied using a scanning electron microscope (SEM), the elemental composition of the particles was determined by energy dispersion analysis (EDX). Plasma treatment reduces the average particle size from the submicron to the nanometer range.
About the Authors
G. S. AmirbekovaKazakhstan
doctoral student
050040, Almaty
Zh. K. Tolepov
Kazakhstan
PhD
050040, Almaty
N. Guseinov
Kazakhstan
050040, Almaty
M. A. Tulegenova
Kazakhstan
PhD
050040, Almaty
B. G. Orynbai
Kazakhstan
050040, Almaty
T. Koshtybayev
Kazakhstan
Candidate of Physical and Mathematical Sciences
050040, Almaty
Zh. Otarbay
United States
Los Angeles, CA, 91106
References
1. El Madani A., Daoudi1 O., Benyousse S., Qachaou A., Fahoume M., Lharch M. (2021) Experimental and Ab Initio Investigation of the Physical Properties of PbS Thin Films Prepared by Chemical Bath Deposition (CBD), Brazilian Journal of Physics, no 51, pp. 1166–1174.
2. Gunes S., Fritz K.P., Neugebauer H., Sariciftci N.S., Kumar S., Scholes G.D. (2007) Hybrid solar cells using PbS nanoparticles. Sol. Energy Mater. Sol. Cells 91, pp. 420–423.
3. Preetha K.C., Murali K.V., Regina A.J., Deepa K., Remadevi T.L. (2012) Efect of cationic precursor pH on optical and transport properties of silar deposited nanocrystalline PbS thin flms. Curr. Appl. Phys., no. 12, pp. 53–59.
4. Yu H., Liu S., Baek S., Kim D.Y., Dong C., So F. (2016) Solution-Processed Copper Oxide Interlayers for Broadband PbS Quantum- Dot Photodiodes., no. 4, pp. 11205−11211.
5. Patel M., Kim H.S., Kim J., Yun J.H., Kim S.J., Choi E.H., Park H.H. (2017) Excitonic Metal Oxide Heterojunction (NiO/ZnO) Solar Cells for All-Transparent Module Integration. Sol. Energy Mater. Sol.Cells, no. 170, pp. 246−253.
6. Barrios-Salgado E., Rodríguez-Lazcano Y., Pérez-Orozco J.P., Colin J., Altuzar P., Campos J., Quesada D. Effect of Deposition Time on the Optoelectronics Properties of PbS Thin Films Obtained by Microwave-Assisted Chemical Bath Deposition, Hindawi Advances in Condensed Matter Physics, vol. 2019, p. 8.
7. Chattarki A.N., Kamble S.S., Deshmukh L.P., Mater. Lett., 67(1), 39 (2012).
8. Akhmedov O.R., Huseynaliev M.G., Abdullaev N.A., Abdullaev N.M., Babaev S.S., Kasumov N.A. (2016) Optical properties of PbS thin films, Physics and Technology of Semiconductors, vol. 50, issue 1, pp. 51–54.
9. Gao F., Lu Q., Liu X., Yan Y., Zhao D. (2001) Controlled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase, Nano Letters , vol. 1, no. 12, pp. 743–748.
10. Rodríguez C.A., Mera A.C., Pizarro-Castillo L., Ashfaq M., Sandoval-Paz M.G., Burgos M.J.C., Suárez S. (2021) Materials Science in Semiconductor Processing, no. 131, p. 105839.
11. Gunes S. et al. (2007) Solar Energy Mater. Solar Cells, 91, 420.
12. Abe S., Mochizukt K., Masumoto K., Nippon Kinroku. J. Jpn., ˙Inst. Met., 56, 1479.
13. Akhmetov N.S. (2001) General and Inorganic Chemistry. Higher. School, Ed. center Academy, Moscow, 743 p.
14. Liu Y.-C., Xiong Y., Lu D.-N. Appl. Surface Sci., 252, 8, 2960–2966, 2006
15. Yildirim A.K., Altiokka B. (2020) Emerg. Mater. Res., 9(1), 47.
16. Alekseeva G., et al., Semiconductors, 30 , p. 1125 View in Scopus Fiz Tverd Tela, 23 p. 2888
17. Crisp R.W., Kroupa D.M., Marshall A.R., Miller E.M., Zhang J., Beard M. C. Luther, J.M. Sci. Rep. 2015, 5, 9945.
18. Ekimov A., Efros A.L. and Onushchenko A. (2018) Solid state communications 88 947 5. Carroll G. M, Limpens R . and Neale N. R. Nano letters, 18 3118.
19. Huo N., Gupta, S., Konstantatos G. (2017) MoS2−HgTe Quantum Dot Hybrid Photodetectors beyond 2 μm. Adv. Mater., 29
20. Abdallah B., Hussein R., Al-Kafri N., Zetoun W. (2020) Iranian Journal of Science and Technology, vol. 6, issue 2, pp. 94–98.
Review
For citations:
Amirbekova G.S., Tolepov Zh.K., Guseinov N., Tulegenova M.A., Orynbai B.G., Koshtybayev T., Otarbay Zh. CONTROL OF THE SIZES OF LEAD SULFIDE (PBS) NANOPARTICLES BY PLASMA TREATMENT METHOD. Herald of the Kazakh-British technical university. 2024;21(2):266-272. https://doi.org/10.55452/1998-6688-2024-21-2-266-272