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PHYSICO-MECHANICAL AND PHYSICO-CHEMICAL HARDENING PROCESS 
CHANGING RESEARCH IN GYPSUM BINDER AND TRANSITION IN GYPSUM-CEMENT 
BINDER AND THEN TO GYPSUM-CEMENT-POZZOLANIC USING WITH MECHANICAL 

TESTS AND X-RAY SPECTROSCOPY

Abstract
Gypsum-Cement-Pozzolanic binder (GCPB) has been invented in 60-s of last century in USSR by group of scientists 
under Mr. A. Volzhenskiy leadership. In that time in USSR and actually in US construction technological processes of 
civil and industrial buildings increasing a lot. So demand of cement for heavy concretes as a main component high up day 
to day, year to year. But realisation of that idea in practical way wasn’t easy thing because as we know from «Material 
science» course – cement is hydraulic binder which hardening in moisture condition or in must cases in water and if 
we sae about gypsum is an air binder. That means gypsum is hardening and gets its high compression strength in air 
condition and loosing that strength in moisture condition or under influence of water. After analysing knowledge that 
have been written above about GCPB we may stay some problems in front of us: 1) First problem connect with modern 
theoretical physical-mechanical and physical-chemical researches absence, when GCPB hardening process have been 
described by modern X-Ray spectroscopy and mineralogical analysis. All what we have found in internet resources is 
basic and theoretical issue with some mechanical tests. 2) Also the main problem when we start see on that researches 
and mechanical tests, there are some conflicting things as links for technical requirements of GCPB through ages, storage 
conditions before tests. So according by what we have said above we choose some targets of our research: a) How gypsum 
binder’s physical-mechanical characteristics going to change as it would be main stuff for GCPB preparing. And also 
transition process gypsum binder(GB) in gypsum-cement binder (GCB) and then in gypsum-cement-pozzolanic binder 
(GCPB); b) How gypsum binder’s physical-chemical characteristics going to change during transition process in GCB 
and then into GCPB with X-Ray spectroscopy analysis.

Key words: gypsum binder, gypsum-cement binder, gypsum-cement-pozzolanic binder, creep factor, softening factor (Ks).
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ГИПС-ЦЕМЕНТТІ ТҰТҚЫРЛЫҚҚА, АЛ ОДАН ГИПС-ЦЕМЕНТТІ-
ПОЗЦОЛАНДЫ ТҰТҚЫРЛЫҚҚА  АУЫСА ОТЫРЫП, ГИПСТІ 

ТҰТҚЫРЛЫҚ ҚАТАЮЫНЫҢ ФИЗИКА-МЕХАНИКАЛЫҚ ЖӘНЕ 
ФИЗИКА-ХИМИЯЛЫҚ ПРОЦЕСТЕРІНІҢ ӨЗГЕРУІН ФИЗИКА-МЕХАНИКАЛЫҚ 

СЫНАҚТАР МЕН РЕНТГЕНОФАЗАЛЫҚ ТАЛДАУ АРҚЫЛЫ АЛЫНҒАН ДЕРЕКТЕР 
НЕГІЗІНДЕ ЗЕРТТЕУ

Аңдатпа 
Гипсоцемент-поззолан байланыстырғышының (ГЦПБ) пайда болуы өткен ғасырдың 60-жылдарында КСРО-да 
А.В. Волженский басқарған ғалымдар тобының жұмысы нәтижесінде пайда болды. Куйбышева (қазіргі кезде 
МГСУ им. Куйбышева). Айта кету керек, сол жылдары КСРО – да қарқынды өнеркәсіптік және азаматтық құрылыс 
жүрді. Ол портландцементке өте қажет бетон өндірісінің байланыстырушы негізі, ол көбінесе жеткіліксіз болды. 
Алайда, бұл қызықты идеяны іс жүзінде жүзеге асыру портландцемент гидравликалық байланыстырғыш, яғни 
тұтқыр, ылғалды жағдайда және тіпті суда қатайып, гипс байланыстырғыш (құрылыс гипсі немесе алебастр деп 
аталады) әуе байланыстырғышымен шектелді. Яғни, тұтқыр, тек құрғақ ауа жағдайында максималды беріктікке 
ие бола алады және ылғалды пайдалану жағдайында осы беріктігін жоғалтады.
Жоғарыда келтірілген мәліметтерді талдай отырып, сіз осы байланыстырғышты зерттеумен байланысты қазіргі 
зерттеушілердің алдында туындайтын бірқатар мәселелерді анықтай аласыз: 1) Бірінші мәселе қазіргі заманғы 
рентгенофазалық және минералогиялық талдаулармен расталған ГЦПБ-да қатаю кезінде пайда болатын физика-
химиялық және физика-механикалық процестерді қазіргі заманғы теориялық зерттеулердің жоқтығымен 
байланысты. Табуға болатын барлық нәрсе-бұл негізінен әртүрлі дәрежеде Сығылған жалпы ақпарат немесе 
белгілі бір жергілікті ГЦПБ-ның бірқатар физикалық-механикалық сипаттамалары туралы кейбір мәліметтер 
келтірілген қолданбалы сипаттағы жұмыстар. 2) Сонымен қатар, соңғы жағдайда да, яғни қолданбалы сипаттағы 
жұмыстарда авторлар бірқатар мәселелер бойынша өте қарама-қайшы мәліметтер келтіреді. Мысалы: әр 
түрлі жылдардағы ГЦПБ-ға қойылатын техникалық талаптарға сілтемелер, сынақ алдында үлгілерді сақтау 
шарттары мен мерзімдері және т. б. Жоғарыда айтылғандарға сәйкес, жоғарыда аталған олқылықтардың орнын 
толтыру мақсатында осы жұмыстың алдына келесі міндеттер қойылды: а) гипсцементтік тұтқырлыққа (ГЦБ) 
және гипсцементтік-позцоландық тұтқырлыққа (ГЦПБ)ауыса отырып, ГЦПБ негізі болып табылатын гипстік 
тұтқырлықтың (ГБ) келесі физикалық-механикалық сипаттамалары қалай өзгеретінін қадағалау; б) гипсцементті 
тұтқырлыққа (ГЦБ), ал одан гипсцементті-позцоланды тұтқырлыққа (ГЦПБ) ауыса отырып, қатаятын тасты 
рентгенофазалық, химиялық және минералогиялық талдау арқылы алынған деректер негізінде гипсцементті-
позцоланды тұтқырлыққа (ГЦПБ) қатаюдың физика-химиялық процестері қалай өзгеретінін қадағалау.

Тірек сөздер: гипс байланыстырғыш, гипс цемент байланыстырғыш, гипс цемент-позцолан байланыстырғыш, 
сығылу (creep factor), жұмсарту коэффициенті (Кж).
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ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ И 
ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕССОВ ТВЕРДЕНИЯ ГИПСОВОГО ВЯЖУЩЕГО  

С ПЕРЕХОДОМ К ГИПСОЦЕМЕНТНОМУ ВЯЖУЩЕМУ, А ОТ НЕГО К 
ГИПСОЦЕМЕНТНО-ПУЦЦОЛАНОВОМУ ВЯЖУЩЕМУ  НА ОСНОВЕ ДАННЫХ, 
ПОЛУЧЕННЫХ ПОСРЕДСТВОМ ФИЗИКО-МЕХАНИЧЕСКИХ ИСПЫТАНИЙ И 

РЕНТГЕНОФАЗОВОГО АНАЛИЗА 

Аннотация
Появление гипсоцементно-пуццоланового вяжущего (ГЦПВ) произошло в 60-х годах прошлого столетия 
в СССР в результате работы группы ученых, возглавляемых А.В. Волженским в МИСИ им. Куйбышева (в 
настоящее время – МГСУ им. Куйбышева). Необходимо отметить, что в те годы в СССР шло интенсивное 
промышленное и гражданское строительство, которое остро нуждалось в портландцементе – вяжущей основе для 
производства бетонов, которого часто попросту не хватало. Однако реализация этой заманчивой идеи на практике 
ограничивалась тем, что портландцемент является гидравлическим вяжущим, то есть вяжущим, твердеющим во 
влажных условиях и даже в воде, а гипсовое вяжущее (так называемый строительный гипс, или алебастр, как 
его тогда называли) – воздушным вяжущим. Анализируя вышеприведенные сведения по ГЦПВ, можно наметить 
ряд проблем, связанных с исследованием этого вяжущего, возникающих перед современными исследователями:                                                                                         
1) Первая проблема связана с практически полным отсутствием современных теоретических исследований 
физико-химических и физико-механических процессов, протекающих в ГЦПВ во время его твердения, 
подтвержденных современными рентгенофазовым и минералогическим анализами. Все, что удалось найти, – это 
преимущественно общая сжатая в разной степени информация или работы прикладного характера с приведением 
некоторых данных по ряду физико-механических характеристик того или иного местного ГЦПВ. 2) При этом 
даже в последнем случае, то есть в работах прикладного характера, авторы приводят очень противоречивые 
данные по ряду вопросов, например, таких как ссылки на технические требования к ГЦПВ разных годов, условия 
и сроки хранения образцов перед испытаниями и др. В соответствии с вышесказанным с целью некоторого 
восполнения вышеуказанных пробелов в исследовании ГЦПВ  перед данной работой ставились следующие 
задачи: а) проследить, как меняются следующие физико-механические характеристики гипсового вяжущего (ГВ), 
являющегося основой ГЦПВ с переходом в гипсоцементное вяжущее (ГЦВ) и гипсоцементно-пуццолановое 
вяжущее; б) проследить, как меняются физико-химические процессы твердения гипсового вяжущего с переходом 
к гипсоцементному вяжущему, а от него к гипсоцементно-пуццолановому вяжущему на основе данных, 
полученных посредством рентгенофазового, химического и минералогического анализов твердеющего камня.

Ключевые слова: гипсовое вяжущее, гипсоцементное вяжущее, гипсоцементно-пуццолановое вяжущее, 
ползучесть (creep factor), коэффициент размягчения (Кс).

Introduction
Gypsum-Cement-Pozzolanic binder (GCPB) has been invented in 60-s of last century in USSR by 

group of scientists under Mr. A. Volzhenskiy leadership. In that time in USSR and actually in US 
construction technological processes of civil and industrial buildings increasing a lot. So demand of 
cement for heavy concretes as a main component high up day to day, year to year. According to that there 
were lots of deficiency of many construction materials and cement has been stayed on 1-st place. Being 
truth many countries have tried find decision of reducing role of cement in construction industry, and 
USSR was one of them and as an idea for some low-floor buildings, which contain one or two floors, was 
replace to use cement binder for gypsum binder instead. All the more so that prime cost gypsum stuff is 
cheaper at least 5 times comparing with cement. But realisation of that idea in practical way wasn’t easy 
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thing because as we know from «Material science» course – cement is hydraulic binder which hardening 
in moisture condition or in most cases in water and if we sae about gypsum is an air binder. That means 
gypsum is hardening and gets its high compression strength in air condition and loosing that strength in 
moisture condition or under influence of water. That negative side of gypsum binder may be explained in 
high level of creeping (creep factor) and low range of softening factor in gypsum binder comparing with 
cement binders and concretes. For our readers we may remind that creeping (creep factor) is an effect 
when hardened binder display high plastic deformations under influence of loading and moisture makes 
that process get more fast[1 P.2]. Creeping (creep factor) has private connection with softening as creep 
factor also may be explained as loosing strength properties of hardened and dry binder after moisture 
influence. Level of softening may be described as softening factor(Ks), which may be calculate as strength 
of water-saturated binder samples dividing on strength of dry binder samples[1 P.2-3]. Using easy 
explanation – ratio of strength sample in high wet condition to strength sample in dry condition. According 
softening factor(Ks) we may estimate that factor as water resistance. Water resistance or softening 
factor(Ks) gypsum binder stay in range 0,3 – 0,45 and cement binder – 0,6 – 0,8 [2 P.6]. So to find some 
decision of that problems as creeping and softening factor(Ks) of gypsum binder Mr. A Volzhenskiy’s 
researches and his followers has been dedicated at last century. During 20 years since 60-s to end of 80-s 
some scientists have made some researches as Mr. A. Palagin, and Mr. M. Kurotsapov[3] has described 
influencing 3-10% of cement by gypsum mass. Also water resistance, softening factor(Ks) and compression 
strength has been determined. Increasing water resistance also have been noticed by Mr. P. Budnikov, and 
Mrs. L. Gulinova and S. Torchinskaya[4], when 10% of cement have been added in dihydrate gypsum. 
Positive side of influence on water resistance after adding cement in gypsum binder may be explained by 
low water resistance level in hardening gypsum and its high water-solubility level which stay in range 
2g/l[5 P.3]. During hydration process in two-component binder – gypsum-cement binder(GCB) we have 
two hydration ways: gypsum hydration from hemihydrate gypsum to dihydrate gypsum; and hydration 
cement minerals. That two process comes hand in hand and during that low-soluble compounds start 
appear in solution as calcium hydrosilicate and on gypsum dehydrate surface low-soluble film appearing 
in same time which prevent gypsum molecules by high solubility. After some researches gypsum-cement 
binder’s(GCB) stuff, real results have been taken which shows two things. The water resistance has been 
grown up but not so much. The second one – after some time samples of gypsum-cement binder(GCB) 
start being under internal deformation, which leads to strength loosing on 1-3 months later after hardening[6 
P.462]. In some cases there are crush of samples. And that negative side of GCB may be explained because 
a special mineral start appear inside the structure or if we may say like this inside solid body of GCB 
sample. According to chemistry is three-sulphate form of calcium hydro-sulphoaluminate but according 
to mineralogy that mine calls ettringite. That ettringite appear from calcium hydroaluminate with gypsum 
dehydrate reaction. By easy words it may be explained three calcium aluminate from cement plus calcium 
sulphate from gypsum equal ettringite in whole hardening system during 1-3 months after hardening[6 
P.462]. Here we must remind that we have two types of ettringite: first and secondary. The first one appear 
fast in solution after water addition. The secondary start appear in system after hardening, inside of solid 
sample. Also the most important thing is concentrations of ions as Ca+2 and SO4 

-2. In two-component 
binder GCB there are high concentration and many of them comes by gypsum side reacting with three 
calcium aluminate from cement side and moisture, or extra moisture from atmosphere increase speed of 
that process, start from pores of solid sample where ettringite start its way. Appearing ettringite is a 
process of crystallization in pores, which comes with volume increasing, and that means increasing of 
tension. When that tension inside pores high up day to day cracks start appear in solid body and in the end 
of case sample has crushed by tension and cracks. Only that may be explained why we have compression 
strength loosing during the time and It’s negative side of ettringite appearing. So to demolish that negative 
ettringite side in two-component binder three-component – Gypsum-Cement-Pozzolanic binder(GCPB) 
have been invented by Mr. A. Volzhenskiy and his group of scientists. Under Mr. A. Volzhenskiy leadership 
some researchers have been made that shows, if we put some pozzolan additives in two-component binder 
we would achieve kind of stability of system with strength increasing in air and water conditions without 
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any plastic(crush) deformations[6 P.462]. According by Mr. A. Volzhenskiy’s proposal in three-component 
binder(GCPB) hardening role of pozzo-lana explained as reducing Ca(OH)2 concentration in water 
conditions to that level when system hasn’t got any circumstances of calcium hydroaluminate existence 
as 4CaO*Al2O3*13H2O and 3CaO*Al2O3*6H2O; which qualify as highly-basic, and start redistribution 
process in low-basic consistence. During cement minerals hydration Ca(OH)2, or lime, start appearing and 
then react with pozzolana additive (SiO2) and in the end of case calcium hydrosilicate forms in system as 
CSH(B). By other words low-basic calcium hydrosilicate start appear, which works as protective film for 
dehydrate gypsum, covering its, during his hydration from hemihydrate, and prevent his high solubility, 
increasing water resistance in whole three-component system. According by Mr. A. Volzhenskiy’s opinion 
that kind of processes, which we have described above, demolish circumstances calcium three-sulphate 
hydroaluminate form, by easy words ettringite 3CaO*Al2O3*3CaSO4*31H2O, appearing in first and 
secondary time. Instead of that one-sulphate hydroaluminate form start appear - 3CaO*Al2O3*CaSO4*12H2O, 
hydro grenades - 3CaO*Al2O3*nSiO2(6-2n)H2O, gypsum CaSO4*2H2O, hydrosilicoaluminate 
3CaO*Al2O3*CaSiO3*12H2O and theur hard solutions. Transition three-sulphate hydroaluminate form in 
one-sulphate form comes with volume decreasing in 1,5 times of original stuff. That situation decrease 
critical tension by ettringite appearing. That process comes by reaction: 3CaO*Al2O3*3CaSO4*31H2O→ 
3CaO*Al2O3*CaSO4*12H2O + 2CaSO4*2H2O + 15H2O. By other words when we demolish any 
circumstances of ettringite appearing(cement bacillus) in three-component binder (GCPB) we may 
achieve system stability in long-time hardening. Water resistance and hydro-hardening(hardening in 
water) may be explained as low-solubility compounds appearance in must cases, calcium hydrosilicate 
which protect dehydrate by water soluble action. According by Mr. A. Volzhenskiy’s view that protection 
action start with 15-20% cement consistence in three-component binder[6 P.465]. 

By that author’s work and their researches consistence of gypsum-cement-pozzolanic binder may 
consist by percentage of mass(%): 

- Hemihydrate gypsum : 75 – 50
- Cement: 15-25
- Pozzolanic additives(with 200mg/g activity): 10-25
Main provisions
Target of research we may see in title and meaning of that is to catch connection physical-mechanical 

properties changing as water requirement, setting time, compression strength in 2 hours age, compression 
strength after whole natural drying system(7 days, 14 days – depend of ratio actually), compression 
strength after steaming chamber, water resistance(Softening factor Ks); during transition gypsum binder 
to gypsum-cement binder and then to gypsum-cement-pozzolanic binder. Not seeing at this extra target 
of research have been X-Ray spectroscopy results examinating by gypsum-cement binder and gypsum-
cement-pozzolanic binder for three-sulphate and one-sulphate calcium hydrosulfoaluminate form which 
have been described by Mr. A. Volzhenskiy.

Materials and methods
In that work some materials have been used for ratios preparing: 
- Gypsum binder – construction gypsum by “Alinex” KZ company, G-5 according to GOST 125-

2018[7].
- Cement binder – white portlandcement M500-A0 by “ChemTrade”
- Pozzolanic additive – microsilica mark “MKH - 95” by “Tau-Ken Temir” with 100 mgCaO/g 

activity.
Gypsum-cement binder(GCB) compound was consist: hemihydrate gypsum – 75%; white cement – 

25% as we see here is proportion 3:1. In same proportion have been kept in gypsum-cement-pozzolanic 
binder(GCPB) but after pozzolana addition by whole mass percentage: hemihydrate – 62%; white 
cement – 20%; pozzolana – 18%. Increasing pozzolana percentage comparing with Mr. Volzhenskiy’s 
compound may be explained by its activity 100 mgCaO/g which is half according by Mr. Volzhenskiy’s 
compound(200 mg CaO/g). Phisico-mechanical tests of gypsum binder, GCB, GCPB have been based on 
GOST 23789 – 2018 «Gypsum binder. Test methods» with changing with few cases. According by GOST 
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23789 – 2018 some characteristics have been determined as standard consistence, using with Sutard’s 
cylinder, setting time, for strength checking beams 160x160x40 mm have been prepared. After 15± 5 
minutes hardening samples have been leaving in air conditions t = 22±2°C. Some pieces have been tested 
in 2 hours age, other pieces have been tested after steaming chamber keeping – 2 hours increasing to 75° C 
and then 6 hours steaming. Third group of beams have been leaving for 7 days strength tests. Half of piece 
have been tested in 7 days, second piece have been put in water for softening factor(softening coefficient 
Ks) determination, after 2 days keeping in water. Softening factor(Ks) have been calculated as proportion 
– compression strength 7 days drying plus 2 days lying in water divided by compression strength in 7 
days age. That kind of methods have been used in every rations: gypsum binder(GB), gypsum-cement 
binder(GCB), and gypsum-cement-pozzolanic binder(GCPB). One turning in GCB and GCPB, we use 
two methods of sample keeping – water conditions(moisture 100%) and hydro-both, during 7 days and 
then air conditions as in gypsum binder. That kind of methods described in TС 21-31-62-89 «Gypsum-
cement-pozzolanic binder. Technical conditions». After tests experiment few grams have been taken for 
X-Ray spectroscopy with using «Drone - III» machine, for sulphate forms checking. 

Results and discussion
Results of research have been shown in table 1 by three rations GB, GCB, GCPB. 
As we may see from table 1 results water requirement was the same at each ratio, 52% by mass of 

compound. Flow test by Suttard’s cylinder also same for GB and GCB but have been decrease for GCPB, 
which may be explained microsilica presence – 18% by mass of ratio. Here we have dependence – if we 
increased water we would keep mixture flow and vice versa if we kept water proportion our flow would 
change. Comparing setting time of three rations we may see that there weren’t any changings, that ability 
have been inherited by gypsum binder.

The second point is setting time in GCB and GCPB totally the same as beginning and ending. For 
explaining that effect we must remember that in hemihydrate – CaSO4*0,5H2O we also have impurities, 
as dehydrate - CaSO4*2H2O and anhydrite - CaSO4.

Table 1 – Mechanical tests
Type of 
binder

Water requirement Setting time Compression strength N/mm2 Ks

Flow begining
ending

2 hours age After drying After water 
inf.

Steaming 
chamber

1 2 3 4 5 6 7 8

GB 52 % 12 min.
5,08 14,5 4,75 4,2 0,327188 – 190 mm. 22 min. 

GCB 52 % 9 min.
5,02

13,21
5,91 6,21 0,447

185 mm. 14 min. 11,75

GCPB 52 % 9 min. 
4,00

16,04
12,84 7,87 0,8

120 mm. 13 min. 12,59

NOTE: According to column 5 for GCB and GCPB rations in numerator have shown results that’s we take after 
hydro-both keeping during 7 days and then drying in air conditions. In denominator have shown results which have been 
taken after 7 days water keeping(moisture 100%) and then drying in air conditions. 

According to this dehydrate phase in that involves for setting time, organise kind of dotes which work 
as central of crystallization hemihydrate to dehydrate transformation. So as much dehydrate impurities 
in hemihydrate as many crystallization centres would be and as fast setting time would be. In our case 
dehydrate quantity have been increased also by dehydrate from cement. As a result of that addition was 
central crystallization increasing and setting time of GCB and GCPB became faster than GB. The same 
beginning time may be explained as proportion keeping between cement and gypsum. According by 
compression strength in 2 hours age we may see gypsum binder influence in every rations. As an example 
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GB – 5,02 N/mm2, GCB – 5,08 N/mm2. Not so big difference, as from cement minerals in that time 
only three-calcium aluminate being in reaction with dehydrate. But if we see on GCPB we may notice 
4,00 N/mm2 strength in 2 hours age which had fallen down and may be explained that mineral additive 
– microsilica hasn’t started to work yet. Compression strength which have been shown in 5-th column 
almost the same GB – 14,5 N/mm2, GCB – 13,2 N/mm2, and GCPB – 16,04 N/mm2. And that kind of 
results may prove theory that properties of GCB and GCPB more close by gypsum which share was 75% 
and 62% respectively. According to above paragraphs we may conclude that during application GCB and 
GCPB where gypsum and cement stay in 3:1 proportion physico-mechanical properties would’t change so 
much as compression strength increasing and others as water requirement, setting time, strength in 2 hours 
age also would be inheriting by gypsum binder. Now let’s try to understand differences between GCB and 
GCPB according to table 1 results. At first one is storage conditions. As we may know by material science 
gypsum is an air binder – a binder which after water addition and hardening increase and keeps its strength 
in air conditions – moisture 55±5 % and loose strength in water. But in our research work when we have 
prepared GCB and GCPP samples we have combined storage conditions: 1) some samples have been kept 
in hydro-both; 2) others have been kept in water conditions – moisture 95±5%(for one sample at each 
condition). After 7 days keeping samples was took out and here we have change conditions still keep its 
in air condition drying until constant mass(7 days or 14 days – depend to ratio). At conclusion of this we 
may notice that GCB and GCPB are not air binders they are hydraulic binders as they may be leaving and 
increasing its strength in water. The second point, which may prove that theory, is experiments in steaming 
chamber – table 1, column 7-th. Gypsum binder in that case have been shown 4,2 N/mm2 which proves 
creping factor of that material – after water influence it start loose strength. And here wasn’t only water 
influence, it was boiling water – steam and temperature 85±5° C. With GCB and GCPB was vice versa, as 
we may see from table 1, 7-th column – GCB – 6,21 N/mm2, comparing with 2 hours age – 5,02 N/mm2. 
Gypsum-cement-pozzolanic binder after steaming chamber – 7,87 N/mm2 comparing with 2 hours age 
4,00 N/mm2. Here we have second evidence which describe them(GCB and GCPB) as hydraulic binders. 
The third point of differences between GB on one side and GCB, GCPB on the other side was softening 
factor(softening coefficient - Ks) – 8-th column. According to gypsum binder(air binder) Ks = 0,327; to 
gypsum-cement binder – Ks = 0,447 which may qualified as middle water resistance material (Ks = 0,45-
0,6). Comparing results GCPB where Ks = 0,8 and may qualified as water resistance material and also 
we may notice here that Ks of cement stay in rang 0,6-0,8. Also we may add some observations when our 
beams have drying until constant mass, as an example for GB and GCB that process was coming 7 days(7 
days in water + 7 days in air conditions for GCB) there weren’t internal moisture at all. Beams from GCPB 
which have been half for pieces after 7 dry-days was in 2/3 of internal moisture and drying process have 
been finished in 1/3 area of sample only on edges. The others 2/3 have been dried extra 10 days. That mean 
for GCPB binder 7 days in water + 17 days in air conditions – t 20±2°C, moisture 55 – 60. That effect 
may be explained as – lime Ca(OH)2, which appearing from cement hardening start react with pozzolana 
additive(SiO2) and organizing calcium hydrosilicates – CSH(I). That element form kind of film which 
cover gypsum dehydrate molecules, increase water resistance, decrease diffusion and water molecules 
evaporation outside of sample. Also we need notice here some important moments. At first one is that 
samples GB, GCB and GCPB as in 2 hours age and as after steaming chamber was in moisture condition 
that’s explain numbers of compression strength. During drying process until constant mass, which we 
still keep after steaming chamber(steaming chamber process + drying until constant mass) that results 
have changed: GB – 10,34 N/mm2; GCB – 13,41 N/mm2; GCPB – 13,83 N/mm2. Comparing with 5-th 
column results, which also have been prepared and drying, but without steaming process, we may see one 
thing: GB – 14,5 N/mm2; GCB 13,21 N/mm2; GCPB – 16,04 N/mm2, so according to this gypsum binder 
loose its strength – 28,7 %. Meanwhile GCB and GCPB after steaming chamber + drying was the same 
as normal hardening. According to this we may conclude that hardening process of GCB and GCPB may 
come with two ways: 1) normal hardening – moisture 95±5 %, t = 20±2°C; 2) fast hardening – steaming 
chamber t = 85±5° C for 6 hours. The secondary are differences between GCB and GCPB in storage 
conditions. As an example 7 days in hydro-both and 7 days in water may explain our results difference 
in compression strength. Everything have shown in 5-th column from what we may conclude – the most 
effective circumstances of storage conditions wasn’t in water it was in hydro-both as it has shown better 
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compression strength. That effect may be explained by one thing – when we keep our samples in water 
there is lime Ca(OH)2 leaching in water, as we may see that our water had became with white powder 
around. According to this calcium hydrosilicates in water samples were weaker than in hydro both. The 
most noticeable it was in GCPB hardening. By this we may conclude that extra calcium hydrosilicates, 
which appearing after Ca(OH)2 and pozzolana(SiO2) reaction, make a positive effect for GCPB strength.

X-Ray spectroscopy results in gypsum-cement binder and gypsum-cement-pozzolanic binder 
compounds. After hardening some samples have been taken for X-Ray analysis. GCB results have 
been shown on «GCB 7 + 7» X-Ray Graph (Figure 1) and GCPB results have been shown on «GCPB 
steaming» X-Ray Graph. Here we must say that GCPB on X-Ray analysis have been tests after steaming 
chamber + 7 days dry process. As we said later the main goal of X-Ray spectroscopy was – calcium 
hydroaluminate(ettringite) – 3CaO*Al2O3*3CaSO4*31H2O availability. And that’s for GCB but if we say 
about GCPB, we have searched for one-sulphate form - 3CaO*Al2O3*CaSO4*12H2O, which have been 
described by Mr. A. Volzhenskiy in middle of 60-x. 

Figure 1 – “GCB 7 + 7” X-Ray Graph

 
 Figure 2 – “GCPB steaming” X-Ray Graph
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Comparing thet graphs we may see same high diffraction maximums with high intensity d, Ä: 
7,65(7,68); 4,29(4,30); 3,071(3,075) and more weaker as 3,80(3,81); 2,87(2,88); 2,68(2,68) which explains 
dehydrate CaSO4*2H2O availability(GCPB – number in brackets, GCB number outside of brackets). Our 
qualification that mine the same as in resource[10 P.196]. The others diffraction maximums have low 
intensity line and may be qualified as cement mines. That low intensity may be explain by concentration 
of cement in any compound – GCB(25%)? GCPB(20%). On GCB X-Ray graph (Figure 2) we may 
notice low-lines which may be qualify as ettringite(three-sulphate form 3CaO*Al2O3*3CaSO4*31H2O) 
d, Ä: 5,67(5,61); 4,93(4,98); 2,79(2,733); 2,627(2,616); 2,288 (2,230) (ettringite – number in brackets, 
GCB graph number outside of brackets) [10 P.285]. GCPB X-Ray graph have shown on picture 2, where 
we haven’t see any low-lines intensity which may prove ettringite availability. But here we may see 
one-sulphate form (3CaO*Al2O3*CaSO4*12H2O) low-lines as d, Ä: 2,88(2,87); 2,79(2,73); 2,409(2,41); 
1,815(1,82); 1,648 (1,66) – one-sulphate form – number in brackets, GCPB graph number outside of 
brackets [10 P.284]. According by this Mr. A Volzhenskiy’s theory, one-sulphate form of calcium 
hydrosulphoaluminate appearing in GCPB instead of ettringite(three-sulphate form), have been proved in 
our research. And also we may highlight one difference between GCB and GCPB graphs. In GCB there 
are Ca(OH)2 low-lines availability d, Ä: 4,93(4,93); 2,627(2,63); 1,95(1,93) and there aren’t in GCPB 
X-Ray graph (Ca(OH)2 – number in brackets according to[10 P.292], GCB X-Ray graph with Ca(OH)2 
lines – number outside of brackets) [10 P.292]. According to this we may conclude that we haven’t got 
any “galos” by amorphous microsilica as mineral additive and that means there were reaction between 
Ca(OH)2 and SiO2 in GCPB, but in GCB Ca(OH)2 has still stay in three way.

Conclusion
In conclusion we may say in that work we have proved Mr. A. Volzhenskiy’s two theories about 

gypsum-cement-pozzolanic binder.
1) Gypsum-cement-pozzolanic binder compound – hemihydrate – 62%; cement(white cement) – 

20%; mineral additive with 10 mg CaO/g activity – 18%. Every properties have been inherited by gypsum 
binder but it’s not air binder as they increase its strength in water, in steaming process and in air-moisture 
conditions – hydro both. That kind of hydro-binder, which hardening process comes in water and in 
steaming conditions, have higher softening factor(Ks) which same as cement. 

2) In GCPB there isn’t any circumstances for ettringite appearing, internal tensile and future system 
damage during water and sulphate influence as it comes for gypsum binder. 
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КАДМИЙ  НЕГІЗІНДЕГІ ГАЛЬВАНИКАЛЫҚ ҚАПТАМАЛАРДЫ ЕНГІЗУ 
ЕРЕКШЕЛІКТЕРІ

	
Аңдатпа. Қазіргі заманғы технологиялық даму деңгейіне қол жеткізу үшін Қазақстан Республикасының 
экономикалық, ғылыми-техникалық қарқынды дамуы техника-экономикалық жағынан тиімді әдістерді қолданып, 
металл бұйымдары мен құрылғыларын кеңінен өндіруді қажет етеді. Сол мақсатта тотығуға төзімді, әрі тиімді 
металл бұйымдары мен бөлшектерін өндірудің негізгі жолдарының бірі – кадмийлеу болып табылады. Кадмий 
қаптамасы икемді, жаншып қаптауға, штамптауға, бүгілуге жеңіл ұшырап, жаңадан түзілген қаптамалары 
мырышқа қарағанда қышқылсыз флюстарда жақсы дәнекерленеді. 2Х18Н10Т маркалы болаттан жасалған 
тотықпайтын таспаны кадмийлеудің технологиясына зерттеу жүргізілді. Кадмий электролиттерінің түрлері мен 
құрамына салыстырмалы талдау жасалды. Алынатын қаптаманың сапасына әсер ететін факторлар зерттеліп, 
бұйымдардың электролизден кейінгі байқалатын негізгі көрсеткіштеріне есептеу жүргізілді. Қаптаманың сапасы 
электролиттің құрамына, оның температурасына және ток тығыздығына байланысты өзгеріске ұшырайтыны 
анықталды. Беттік-белсенді заттарды пайдалану барысында потенциал арту мүмкіндігіне ие болып, берік қаптама 
қабатын алуға септігін тигізді. Соның ішінде декстрин, желатин, столяр желімі сияқты беттік-белсенді заттармен 
жұмыс жасалды. Беттік-белсенді зат қолданылмаған жағдайда кадмиймен қапталған таспаның жылтырлығының 
болмайтыны көрінді. Ток шамадан тыс берілген кезде таспа майда түйіршіктермен қапталып, қарайып кететіндігі 
анықталды. Таспаны кадмийлеу барысында уақыттың мәні артқан сайын таспа бетіне шөгілген кадмий қабаты 
арта түскені байқалды.

Тірек сөздер: гальваникалық қаптамалар, кадмийлеу, металл бұйымдар, электролит, БАЗ. 
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FEATURES OF THE IMPLEMENT OF CADMIUM-BASED 
ELECTROPLATING COATINGS

Abstract. The rapid economic, scientific and technical development of the Republic of Kazakhstan in order to achieve the 
modern level of technological development requires a wide production of metal products and equipment using technically 
and economically effective methods. For this purpose, one of the main ways of producing corrosion-resistant and efficient 
metal products and parts is cadmium plating. Cadmium plating is flexible, easily amenable to rolling, stamping, bending, 
freshly prepared sheathing is better welded on acid-free fluxes than zinc. A study of the technology of cadmium tape made 
of stainless steel grade 2X18Н10T. A comparative analysis of the types and composition of cadmium electrolytes was 
carried out. The factors affecting the quality of the resulting packaging are investigated, the calculation of the observed 
main indicators of products after electrolysis is carried out. It is established that the quality of the coating undergoes 
changes depending on the composition of the electrolyte, its temperature and current density. The surfactant contributed 
to the production of a durable packaging layer with the possibility of increasing potency during use. Including work 
with such surfactants as dextrin, gelatin, carpentry glue. It was seen that the cadmium-coated tape has no gloss unless a 
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surfactant is used. It was found that when the current is overvoltage, the tape is covered with fine-grained granules and 
darkens. When the tape was cadmated, the cadmium layer deposited on the surface of the tape increased with increasing 
time.
Key words: electroplating coatings, cadmium plating, metal structures, electrolyte, surfactants.
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ОСОБЕННОСТИ НАНЕСЕНИЯ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ 
НА ОСНОВЕ КАДМИЯ

Аннотация. Для достижения современного технологического уровня, стремительного экономического и научно-
технического развития Республики Казахстан требуется широкое производство металлических изделий и 
оборудования с применением эффективных с технико-экономической точки зрения методов. Для этого одним из 
основных способов получения коррозионностойких и эффективных металлических изделий и деталей является 
кадмирование. Кадмированное покрытие гибкое, легко поддается смятию, штамповке, изгибу, лучше паяется в 
некислотных флюсах, чем покрытия на основе цинка. Проведены исследования по технологии кадмирования детали 
из нержавеющей стали 2Х18Н10Т. Проведен сравнительный анализ типов и состава кадмиевых электролитов. 
Изучены факторы, влияющие на качество получаемого покрытия, рассчитаны основные показатели, наблюдаемые 
после электролиза. Установлено, что качество покрытия меняется в зависимости от состава электролита, 
температуры и плотности тока. Во время использования ПАВ потенциал увеличился, что способствовало 
получению  прочного слоя покрытия. В качестве поверхностно-активных веществ были использованы декстрин, 
желатин, столярный клей. Было обнаружено, что пластинка с кадмиевым покрытием не имеет блеска в отсутствие 
поверхностно-активного вещества. Было обнаружено, что при чрезмерном употреблении тока металлическая 
пластинка покрывается мелкими вкраплениями и чернеет. При нанесении гальванического покрытия на основе 
кадмия отмечено, что слой кадмия, осажденный на поверхности пластинки, увеличился по истечении времени.

Ключевые слова: гальванические покрытия, кадмирование, металлоизделия, электролит, ПАВ. 

Кіріспе 
Қазақстан Республикасы гальваникалық өндірісі дамыған елдің бірі болып табылады. 

Гальваникалық өндірістердің дамуы жоғары, өйткені металл бұйымдарын тотығудан қорғау 
мақсатында әр түрлі қаптамалар қолданылады. Болаттан жасалған бөлшектерді тотығудан қорғау 
үшін кадмий қаптамалары көп сұранысқа ие. Себебі кадмий атмосфералық және теңіздік жағдайда 
тотығуға тұрақты болып табылады. Кадмий қаптамалары тұрақты (әсіресе сілтілік ортада) және 
түрлі түсті, сонымен қатар қорғаныш қабатының иілгіштігі жоғары болып келеді. Гальваникалық 
қаптауға арналған бұйымдар әдетте механикалық өңдеу нәтижесінде майлау материалдарымен 
ластанып, термиялық өңдеуден кейін немесе атмосфералық әсер ету нәтижесінде оксидтермен 
жабылады. 

Кадмиймен қаптау - бұйымдарды кадмий металының жұқа қорғаныс қабатымен қаптайтын 
материалды тұндыру процесі. Жабындар бірнеше тәсілдермен қапталады. Соның ішінде электр 
тогы өтетін кадмий тұзы ерітіндісінің құтыларына қабылдаушы заттарды батыру. Кадмиймен 
қаптау процестері кішірек заттарға арналған механикалық және вакуумдық әдістерді және жоғары 
біркелкі жабындарды беруді қамтиды. Кадмий танымал қаптау материалы болып табылады. 
Өйткені ол бұйымдарға тотығуға  жоғары төзімділік, төмен үйкеліс коэффициенттері және 
жоғары дәрежелі электр өткізгіштік береді. Кадмийді қаптау материалы пайдалануы экологиялық 
мәселелерге байланысты қатаң бақылауға алынды [1, 2].

Негізгі қағидалар 
Кадмийленген жабын - берік және әмбебап металлдық жабын. Кадмий – жұмсақ ақ металл. Ол 
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болатқа, шойынға, иілгіш темірге, мыс және ұнтақ металға жабылған кезде субстрат материалының 
алдында коррозияға ұшырайтын «құрбандық жабын» қызметін атқарады. Кадмий жабынының 
коррозияға қарсы қорғанысын арттыру үшін алтын түс беретін хроматты түрлендіру жабындары 
жалатылған металдың үстіне жағылуы мүмкін. Зәйтүн түсі сияқты басқа түстер де қол жетімді [3].

Кадмиймен қаптау композициялары мен процестерінің бірнеше түрлері белгілі. Бірақ олардың 
көпшілігі бар құнына немесе өңдеудің күрделілігіне, өнімнің біркелкілігін сақтау қиындығына 
байланысты коммерциялық пайдалануға бейімделмеген. Гальваникалық қаптау әрқашан барлық 
процестің ажырамас бөлігі болып табылатын бетті дайындау. Яғни қапталған өнімдердің бетінен 
май мен оксидтерден тазартудан бастау алады [4, 5]. Бетті мұқият тазалау одан әрі гальваникалық 
операциялардың таптырмас шарты болып табылады.    

Дайындық операциялары механикалық немесе химиялық жолмен жүзеге асырылады. 
Механикалық әдістерге абразивті ұнтақтармен өңдеу, бұрау, тегістеу, жылтырату және щеткамен 
өңдеу сияқты процестер, ал химиялық әдістерге майсыздандыру, ою, белсендіру (декапирлеу), 
жуу, сондай-ақ жабуға болмайтын беттік аймақтарды оқшаулау жатады. Абразивті ұнтақтармен 
өңдеу және жұмырлау - өндірістік жағдайда қолданылатын әдістер. Абразивті ұнтақпен өңдеу 
қондырғысы араластырғышпен немесе орталықтан тепкіш сорғымен жабдықталған және құрғақ 
ұнтақпен немесе абразивті ұнтақтың сумен суспензиясымен толтырылған болат резервуардан 
тұрады [6]. Қажетті қысым сығылған ауамен қамтамасыз етіледі. 

Бөлшектерді тазалауға арналған ауа қысымы бөліктер қабырғасының қалыңдығына 
байланысты 50 және 500 кПа аралығында болуы керек. Абразивті суспензиямен өңделген 
бөлшектер ыстық немесе суық сумен ванналарда жуылады және кептіру шкафтарында 85-100 °C 
температурада кептіріледі немесе сығылған ауамен үрленеді.

Электр жабыны алдында заттарды тазалаудың арзан әрі оңай жолы - оларды құрамында 
гидроксидтер, карбонаттар, фосфаттар, полифосфаттар, метасиликаттар, беттік-белсенді заттар 
және жуғыш заттар бар сілтілі ванналарда жуу. Кадмиймен қаптаудың көп бөлігі еріту арқылы 
дайындалған сілтілі цианид ванналарында жүзеге асырылады (натрий цианидінің ерітіндісіндегі 
кадмий оксиді). Натрий гидроксиді және натрий карбонаты құрамындағы реакциялар нәтижесінде 
түзіледі және олардың құрамына кіреді [7]. Болат сым торларында ілінген кадмий шарлары қаптау 
анодтары ретінде қызмет етеді. Натрий гидроксиді жоғары жууға қабілеттіне ие, бірақ мыс, 
мырыш және алюминий қорытпаларына агрессивті келеді. Сонымен қатар, оны жуу қиын. Натрий 
карбонаты жан-жақты және аз агрессивті майсыздандыру ваннасының компоненті болып табылады, 
сондықтан түсті металдар үшін жарамды. Тринатрийфосфаты судың кермектігін төмендетеді және 
металл беттерінен оңай жуылады. Тазаланатын бөліктерде кремний диоксиді түзілу мүмкіндігіне 
байланысты оны анодты электролиттік майсыздандыруға арналған қоспа ретінде қолдануға 
болмайды [8]. Жуу ерітінділерін сілтілік дәрежесіне қарай үш топқа бөлуге болады: 

а) болат бұйымдарды алдын ала тазалау күшті сілтілі (рН = 12–14);
б) электролиттік майсыздандыру алдында болат бұйымдарды тазалауға арналған орташа 

сілтілі (рН = 10–12);
в) түсті металдарды майсыздандыру үшін аздап сілтілі (рН = 8–10). 
Химиялық майсыздандыруға арналған сілтілі ерітінділердің құрамы 1 кестеде келтірілген. 

Кесте 1 –  Электрохимиялық майсыздандыруға арналған ерітінді
Компонент, г/л Ерітінді түрі

№1 №2 №3

Натрий гидроксиді 200 - 35

Сұйық шыны 500 35 -

Натрий фосфаты 280 15 14

Сусыз көмір қышқылы - - 62

Ылғалдандырғыш 30 2 6
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№1 ерітінді болаттан және шойыннан жасалған бұйымдарға қолданылады. Барлық 
компоненттерді 0,6 л суда ерітіп, 1 л көлемге су қосылады. Алынған концентрлі ерітіндіні 
тәжірибелік қолдануда 1:10-нан 1:30-ға дейінгі арақатынаста сұйылту керек. №2 ерітінді барлық 
компоненттерді 0,6 л суда ерітіп, 1 л көлемінде қосымша су құяды. №3 ерітінді мыс бөліктері 
мен оның қорытпалары үшін қолданылады. Барлық компоненттерді аз мөлшерде суда ерітіп, 1 л 
көлемінде су қосылады. Электрохимиялық майсыздандыру химиялық майсыздандыруға қарағанда 
бетті тазалаудың тиімдірек әдісі болып табылады. Өйткені бөлшектердің бетінде бөлінетін сутегі 
немесе оттегі көпіршіктері май бөлшектері мен басқа ластаушы заттардың бөлінуіне ықпал етеді. 
Электрохимиялық майсыздандыру катодтық және анодтық болуы мүмкін. Электрохимиялық 
майсыздандыруға арналған ванналар көбінесе катодтық және анодтық майсыздандыру үшін 
бір ваннаны пайдалануға мүмкіндік беретін полюсті ауыстырғышпен жабдықталған. Катодты 
майсыздандыру кезінде ваннадағы қоспалар түріндегі металдар бөлшектердің бетіне шөгеді. Ол 
күңгірт, қиын еритін жабын түрінде көрінеді. Кейде майсыздандырудан кейін бетті белсендіру 
үшін қолданылатын қышқыл ерітінділерде толық ерімейді. Анодтық майсыздандыру бетіндегі 
оттегіні босатып, беттік тотығуды тудырады. Бұл өте ұзақ процесс және тым жоғары температура 
мен жоғары ток тығыздығы бар мыс пен жездің қараюына әкелуі мүмкін. Бұл қараю тіпті өте 
сұйылтылған қышқылдарда да оңай жойылады. 

Электролиттік майсыздандыруда жақсы нәтижелерге жету үшін келесі ережелерді сақтау 
қажет: 

1) Ұсынылған майсыздандыру уақытын асырмау. Себебі бұл бөлшектердің сутегімен 
қанығуына, бетінің қараюына және серіппелі бөлшектердің сынғыштығына әкеледі;

2) Серіппелер мен жұқа қабырғалы болат бөлшектерді (1мм-ге дейін) тек анодпен өңдеу керек; 
3) Мыс пен оның қорытпаларынан жасалған бөлшектерді тек катодта майсыздандыру керек, 

өйткені анодтық процесс кезінде бұйымдар тотығып, күңгірттенеді; 
4) Бұйым мырыш, қалайы, қорғасын және хром сияқты қабаттан тұрмауы керек, олар еруі 

нәтижесінде электролиттерді ластайды [9, 10].
Материалдар мен әдістер 
Эксперименттік жұмыс барысында электролизердің өлшемдеріне сәйкес тотықпайтын 

болаттан жасалған таспа қолданылды (12Х18Н10Т маркалы таспа). Жұмыс жасалудағы ең 
бірінші қадам - түйіршіктері әртүрлі өлшемді (ірі немесе майда) келетін егеуқұм қағазымен 
тазарту. Алдымен бұйымдарды ірі түйіршікті егеуқұм қағазымен өңдеу жұмысы жүргізілді. 
Бұйымның аудан бетіндегі ірі сызаттарды толықтай жою үшін бөлшектер дистилденген сумен 
әбден жуылып, натрий гидроксидімен майсыздандырылды. Кейін күкірт немесе тұз қышқылының 
әлсіз ерітіндісімен тазартылды. Өңдеуден кейін таспа эксикаторда кептірілген соң, ақ таза қағазға 
оралды. Майсыздандыру процесі натрий гидроксиді қатысында, 0,36А/дм2 тогымен 10 мин уақыт 
ішінде жүзеге асырылды. Электрохимиялық тазарту күкірт қышқылымен (H2SO4) 0,36 А/дм2 ток 
жіберіп, 20 мин қатысында жүргізілді.

Электрохимиялық кадмийлеу кезінде катод ретінде маркасы 12Х18Н10Т тотықпайтын 
болаттан жасалған таспалар қолданылды (таспа жалпы ауданы – 8 см2). Ерімейтін анод ретінде 
графит алынды. Құрамында кадмий тұзы, аммоний тұзы және әртүрлі қоспалар, мысалы, НФ 
диспергаторы, ұста желімі, ундецилфосфин қышқылының диэтаноламин тұзы бар кадмий 
электролиті белгілі. Берілген электролиттің кемшілігі – сілтілі аккумуляторлардың электродтық 
пластиналарының қалыптасу сатысында тығыз тегіс жылтыр тұнбаға байланысты белсенді 
материалдар қабыршақтанады. Сонымен қатар белсендіргіш қоспаны (ундецилфосфин 
қышқылының диэтаноламин тұзы) өнеркәсіп дамымағандықтан және құны жоғары болғандықтан 
жаппай өндірісте қолдануға болмайды. №3 электролиттің кемшілігі электродтық пластиналарының 
қалыптасу сатысында тегіс жылтыр тұнбаға байланысты активті заттардың қабыршасы алынып 
қалады. 

Нәтижелер мен талқылау  
Қарапайым қышқыл электролиттерді дайындау үшін барлық компоненттерді жылы суда 
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бөлек ерітіп, гальваникалық ванналарды жартысына дейін сумен толтырады. Кейін оған алдымен 
күкірт қышқылын мұқият құйған соң, тұз ерітінділерін біртіндеп қосады. Ұсынылған электролитті 
пайдалану өнімнің бетіне нақты физикалық және химиялық қасиеттерді  береді. Қысқа экспозиция 
уақытында тұнбаның және оның бос (кеуекті) құрылымының жақсы адгезиясын алу. Бұл никель-
кадмий ламелсіз сілтілі аккумуляторларда кадмий электродтарын жасау технологиясында қолдану 
үшін дамыған беті бар гальваникалық ірі түйіршікті қаптамаларды алуға мүмкіндік береді [11, 12]. 
Айтылған электролиттермен жұмыс режимі 2 кестеде көрсетілген.

Кесте 2 – Кадмий электролиттерінің  құрамы мен жұмыс режимі
Ерітінді құрамы, г/л №1 №2 №3 №4

CdSO4·8/3H2O - - - 7,5

CdO 5 - - -

CdCl2 - - 6 -

 (CH3COO)2Cd - 5 - -

H2SO4 - - - 7,5

H3BO3 8 8 - -

NH4Cl - - 34,5 -

(NH4)2SO4 10 10 - -

этиленгликоль - - 4,5 -

тиомочевина 4 4 - -

декстрин 1,5 - - -

Столяр желімі - 2 - -

желатин - - 1 -

t, °C 15 - 20 25 - 30 бөлме темп 15 - 20

i, А/дм2 1

Бұйым мен қандай да бір бөлшектердің беттік ауданын металмен қаптар алдында жұмыс 
режимін орнату барысында ток тығыздығын және қажетті ток күшін дұрыс таңдап алу үшін 
қапталатын бұйымның беттік ауданы есептелінді. Бөлшектердің ауданы алдымен бөлек есептеліп, 
кейін жиынтықталады. Бұйым немесе бөлшектерді қаптау техникалық шарттармен қарастырылған 
белгілі бір қалыңдықтағы металдың қорғау қабатын алу тапсырмасын орындайды. Сонымен қатар 
оған сол белгілі бір қалыңдықтағы тұнба алу үшін қажетті уақытты немесе электролиздің белгілі 
уақытында алынған тұнбаның қалыңдығын анықтау керек болады. Қапталатын бұйымның түгел 
бетін есептеу қажет. Геометриялық есептеу формулалары мен мәндері 3 кестеде келтірілген.

Кесте 3 – Бұйым бетінің геометриялық есептеу формулалары мен мәндері
№ формуласы Мәндері

1 Тік төртбұрыш 
бетінің ауданы 

F = ab F - аудан, см2

a - таспаның ұзындығы, см;
b - таспаның ені, см

8 см2

2 Тік төртбұрыш беті S = 20P(a+b)/ab S - бұйымның беттік ауданы, см2;
P - бұйымның салмағы, г;
a - таспаның ұзындығы, мм; 
b - таспаның ені, мм

23,968 см2
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3 Қаптауға тиісті 
металдың салмағы

G = 10Saγ G - тұндырылған металдың салмағы, г;
S - қапталуға тиісті бет, дм2; 
а - тұндырылған металл қабығының қалыңдығы, мм; 
γ - тұндырылған металдың үлес салмағы, гр/см3

6,183г

4 Катодта 
тұндырылған 
металдың салмағы

P = CItη/100 P - катодта тұнған металдың салмағы, г;
I - жіберілген ток күші, А; 
t - электролиз уақыты, сағ; 
η - ток бойынша шығымы

0,64 г

5 Тұнған металл 
көлемі

V = P/γ  P - катодта тұнған металдың салмағы, г;
γ - тұндырылған металдың үлес салмағы, гр/см3

0,074 см3

6 жабынның 
қалыңдығы

h = V/S S - бұйымның беттік ауданы, см2 31мк

7 Ток тығыздығы ί = I/S ί - ток тығыздығы, А/дм2 
I - жіберілген ток күші, А

0,36 A

Кадмий қаптамасына беттік-белсенді заттардың әсерін анықтау үшін электролиттердің 
электрөткізгіштігін арттыру үшін катодтық процеске қатыспайтын, бірақ электрөткігіштігі жақсы 
қосымшалар қосады. Қышқыл электролиттерге қышқылдың аттас иондарының тұздары, ал сілтілі 
электролиттерге NaOH, KOH қосуға болады. Әлсіз қышқылды, нейтралды және әлсіз негізді 
электролиттерге сілтілік немесе сілтілік жер металдардың тұздарын қосады. Сонда электрөткізіш 
қосымшалар электролиттің қышқылдығын өзгертпей тұру керек. Көптеген электролиттер белгілі 
рН интервалында жұмыс істегендіктен, бақылап отыру үшін буферлі қосымшалар енгізеді. 
Көбінесе бор қышқылы, натрий ацетаты, сірке қышқылы және т. б. қолданады [13, 14]. Кадмийлеу 
процесі кезінде электролитке беттік-белсенді заттарды қосу арқылы сапасы жоғары, тегіс бұйым 
алуға болады. Өндірістік жағдайда синтанол ДС-10, желатин, желім, ДЦУ бекіткіші, крахмал, 
ОП-10, диспергатор НФ-5, тиокарбамид сияқты беттік-белсенді  заттар электролит ерітінділеріне 
қосылады. Бұл тәжірибе барысында  желатин, декстрин және столяр желімі қолданылды.

Барлық электролиттерде кадмий екі валентті түрде болады. Ал оның электрохимиялық 
эквиваленті 2,2 г/А сағатқа тең. Кадмийдің шөгу жылдамдығы пайдалынылатын катодтың ток 
тығыздығына және токтың шығымына байланысты әр түрлі болады [15]. Бұдан әрі ток тығыздығы 
өзгерген кездегі кадмий тұнбалары құрылымының өзгеруі қадағаланады.

3 тамшы декстрин ерітіндісі қосылған электролит ерітіндісінде ток тығыздығының өзгеруі:
1А/дм2: таспа бетінде сұр түсті қабықша түзілді. Метал негізіне жақсы тұтасқан ірі түйіршікті 

қабықша түзілді. 
1,5А/дм2: таспа бетінде ақшыл-сұр түсті қабықша түзілді. Таспаның беті біркелкі дерлік 

қапталған.
2А/дм2: таспа бетінде сұр түсті қабықша түзілді. Түзілген қабықша таспаның бетіне нашар 

біріккен және пластина беті қабыршақтанған. Қолданылатын токтың катодты тығыздығына және 
әр түрлі ток шығымы кезіндегі тәуелділігіне байланысты кадмийдің тұну жылдамдығы 4 кестеде 
көрсетілген.

Кесте 4 – Токтың шығымына байланысты кадмийдің шөгу жылдамдығы (мкм/сағ) 
Тоқтың тығыздығы, 

Dк, А/дм2
Тоқтың шығымы, %

75 80 85 90 95 100

0,5 9,1 9,7 10,3 10,9 11,5 12,1

1,0 18,2 19,4 20,6 21,8 23,1 24,2

2,0 36,4 38,8 41,2 43,6 46,2 48,4

3,0 54,6 58,3 61,8 65,4 69,3 72,6
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4,0 72,8 77,6 82,5 87,2 92,4 98,8

5,0 91,0 97,0 103 109 115 121

6,0 109,2 116,6 124,0 130,8 138,6 145,2

7,0 127,4 136,0 144,6 152,6 161,7 169,4

8,0 145,6 155,2 165,0 174,4 184,8 197,6

10,0 182,0 194,0 206,0 218,0 231,0 242,0

Электролиттің құрамына, температурасына, араластыру қарқындылығына байланысты 
ток тығыздығын 0,5–5 А/дм2 интервал аралығында қолдануға болады. Орташа шамамен кадмий 
концентрациясы 20 г/л болған кезде ток тығыздығы – 1,5–2 А/дм2, кадмий концентрациясы 40 г/л 
болған кезде ток тығыздығы – 3–4 А/дм2 болады. Әдеттегі жай режимде электролиттің тұрақты 
құрамын қамтамасыз ететін анодты ток тығыздығы 2 А/дм2 – тан аспауы тиіс. Жиі температураны 
20–35 °С аралығында ұстайды, бірақ қажет болған жағдайда оны арттыруға болады. Ток бойынша 
шығымы 85-98% аралығында өзгеріп тұрады, ол жиі 90- 95%-ға сәйкес келеді. Электролиттегі 
кадмийдің концентрациясы, температурасын, араластыру қарқындылығын арттырған жағдайда ток 
бойынша шығымы артады. Температураның жоғарылауымен концентрлі электролитті қолданады. 
Себебі бастапқы компоненттердің ерігіштігі жоғарылайды. Сонымен қатар, электролиттің электр 
өткізгіштігі өседі және анодтың пассивациясы төмендейді. Осы факторлардың барлығы жоғары 
ток тығыздығын қолдануды қажет етеді. Бірақ, температураның жоғарылауынан диссоциация 
және диффузия процестері өсіп, тұнбаның катодтық потенциалының төмендеуіне әкеледі. Ток 
тығыздығының жоғарылауымен бірге температураның әсері майда кристалды қаптамалардың 
түзілуіне әкеледі. Сондықтан көптеген электролиттерде температураның жоғарылауы тұну 
процесін қарқынды жүргізуге мүмкіндік береді. Тығыз ауада цианидті және сілтілі электролиттерді 
араластыруға болмайды. Себебі ерітінді компонентерімен көмірқышқылының әрекеттесуінен 
карбонаттар түзіледі. Кадмийдің тұну процесін одан әрі жақсарту үшін араластырып жатқанда 
бір уақыт аралығында температура мен ток тығыздығының әсерін ұлғайту керек. Бұл тәжірибеде 
жоғарыда көрсетілген 3 тамшы декстрин ерітіндісі қосылған электролит ерітіндісінде температура 
өзгерген кездегі тұнба құрылымының өзгерісі қадағаланады. 30 ºС температурада таспа бетінде 
металдық жылтыры бар сұр түсті қабықша түзілді. Бұл қабықша металл негізімен жақсы бірікпеген 
және таспаның тек бір бөлігін ғана қаптап тұр. 45 ºС температура таспа бетінде металдық жылтыры 
бар сұр түсті түзілді. Қабықша біркелкі қапталмаған. Металл негізімен жақсы біріккен. Тығыз, 
ұсақ кристалды тұнбаны жоғары температурамен ток тығыздығында және үздіксіз араластыру 
арқылы алуға болады. Араластыруды үздіксіз немесе периодты фильтрациямен қоса жүргізеді. 
Себебі ерімеген бөлшектер конвекционды ағынмен катодта тұнып, сапасыз қаптаманың түзілуіне 
әкеліп соғады.

Қаптаманың сапасын бақылау үшін ең бірінші баға беру сыртқы түріне қарай отырып, күндізгі 
немесе жасанды жарықтың көмегімен жүргізіледі. Жарықтандыру 300 лк төмен болмауы қажет. 
Сыртқы түрін бағалау нәтижелері бойынша жарамды,  ақаулы, жарамсыз топтардың біреуіне 
жатқызуға болады. Егерде сапасыз қаптаманы алып тастап, қайталама отырғызуды қажет болса 
және де қаптаманы алмай-ақ толық өңдеуді қажет ететін бөлшектерде жоғарыда айтылғандар 
қатарына енсе бөлшек кеміс болып саналады. Кеміс бөлшектерге коррозия ошақтары, механикалық 
және басқа да ақаулар жатады. 1 суретте таспалардың сыртқы түрі бағаланады.
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Сурет 1 – Кадмиймен қапталған таспалар

Металдың тотығуға тұрақтылығы оның тасымалдануына байланысты қоршаған ортаның 
әсерінен туындайтын химиялық немесе электрохимиялық бұзылуларға төтеп беру қабілетіне 
байланысты болады. Бөлшектердің тотығуға тұрақтылығы жөніндегі неғұрлым дұрысырақ пікірді 
табиғи эксплуатациялық жағдайда сынау арқылы алады. Бірақ мұндай сынаманы жүргізу ұзақ 
болғандықтан оны өндірістік жағдайда қолдануға келмейді. Себебі өндірістік жағдайда жылдам 
орындалатын сынақ түрлері қолданылады. Сынауды жылдамдату үшін еріткішті араластыру, 
сонымен қатар үлгіні ерітіндіге бір алып, бір салып тұру қажет. Үлгіні ерітіндіге қайталама 
алып-салу принципі кейбір қондырғыларда автоматты түрде орындалады. Электролиттердегі 
металдардың тотығуға төзімділігін анықтаудың ең қарапайым және қол жетімді әдісі – тотығу 
көрсеткіштерінің көпшілігін пайдалануға мүмкіндік беретін ашық ыдыста сынау. Үлгілер шыны 
ілмекке немесе нейлон жіпке ілінеді және ауа, оттегі, азот немесе басқа газ өтетін стационарлық 
немесе араластырылған тотыққан ерітіндіге толық, ішінара немесе ауыспалы батыру арқылы 
сыналады. Сынау кезінде сыналатын әрбір металдың үлгілері бөлек ыдысқа салынады. Үлгіні 
кейде шыны немесе пластик тұғырды пайдаланып орнатылады.

Алынған гальваникалық қаптаманың қалыңдығын тамшы әдісімен анықтайды. Ол үшін 
металмен қапталған бұйымға ерітінділерді біртіндеп тамшылатып, белгілі бір уақыт аралығында 
оны ұстау арқылы ерітеді. Операция тамшы тамған аймақтарды сүзгіш қағазымен негізгі 
металдың тұтас аумағы көрінгенге дейін сүрту арқылы жүргізіледі. Тамшы әдісінің кетіру әдісінен 
айырмашылығы тамшы әдісі арқылы бөлшектің белгілі бір аймағындағы қаптаманың қалыңдығын 
анықтауға болады. Бұл әдістің кемшілігі қалың қабатты қаптамалар үшін мұндай сынақ ұзақ уақыт 
аралығында жүргізіледі. Тамшы әдісі күрделі пішінді және ұсақ бөлшектердің бетіндегі қаптама 
қалыңдығын өлшеуге жарамсыз. Себебі ерітінді тамшы таматын уақыт аралығында ұсталып 
тұрмай, ағып кетеді. Бұл әдіс техникалық орындалуы жағынан қарапайым болғанымен, тек жұқа 
қаптаманың қалыңдығын анықтағанда қателіктер береді. Қабат қалыңдығы 2 мм қаптама үшін бұл 
әдістің нақтылығы ±30% аумағында ауытқымалы түрде болады. 

Кадмий қабатымен қапталған таспаға 30 с сайын калий иодиді ерітіндісі тамызылды. 
Тамшылату әдісінің нәтижесі бойынша қаптаманың қалыңдығы  31 мкм болды.

МемСТ 9.303-84 сәйкес тәжірибе барысында кадмиймен қапталған бұйым қорғаныштық 
мақсатта қолданылуға рұқсат етіледі

Қорытынды 
2Х18Н10Т маркалы тотықпайтын болаттан жасалған таспаны кадмийлеудің технологиясына 

зерттеу жүргізілді. Кадмийлеу процесіне және кадмий қаптамасымен қапталған металл 
бұйымдарына сипаттама толықтай беріліп, оның технологиялық ерекшеліктері аталып көрсетілді. 
Кадмий электролиттерінің түрлері мен құрамына салыстырмалы талдау жүргізілді. Алынатын 
қаптаманың сапасына әсер ететін факторлар зерттеліп, бұйымдардың электролизден кейінгі 
байқалатын негізгі көрсеткіштеріне есептеу жүргізілді (бетінің ауданы, металдың салмағы, ток 
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тығыздығы, тұнған металл көлемі, жабынның қалыңдығы, катодта тұндырылған металдың салмағы, 
ток тығыздығы). Қаптаманың сапасы электролиттің құрамына, оның температурасына және ток 
тығыздығына байланысты өзгеріске ұшырайтыны анықталды. Беттік-белсенді зат (декстрин, 
желатин, столяр желімі) пайдалану барысында потенциал арту мүмкіндігіне ие болып, берік 
қаптама қабатын алуға септігін тигізді. Беттік-белсенді зат қолданылмаған жағдайда кадмиймен 
қапталған таспаның жылтырлығының болмайтыны көрінді. Ток шамадан тыс берілген кезде таспа 
майда түйіршіктермен қапталып, қарайып кететіндігі анықталды. Таспаны кадмийлеу барысында 
уақыттың мәні артқан сайын таспа бетіне шөгілген кадмий қабаты арта түсті.
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ON DISTRIBUTIONS OF COUNTABLE MODELS FOR CONSTANT EXPANSIONS OF THE 
DENSE MEET-TREE THEORY. I

Abstract. We study all possible constant expansions of the structure of the dense meet-tree  〈М; <, П〉  [3]. Here, a dense 
meet-tree is a lower semilattice without the least and greatest elements. An example of this structure with the constant 
expansion is a theory that has exactly three pairwise non-isomorphic countable models [6], which is a good example in the 
context of Ehrenfeucht theories. We study all possible constant expansions of the structure of the dense meet-tree by using 
a general theory of classification of countable models of complete theories [7], as well as the description of the specificity 
for the theory of a dense-meet tree, namely, some distributions of countable models of these theories in terms of Rudin–
Keisler preorders and distribution functions of numbers of limit models. In this paper, we give a new proof of the theorem 
that the dense meet-tree theory is countable categorical and complete, which was originally proved by Peretyat’kin. Also, 
this theory admits quantifier elimination since complete types are forced by a set of quantifier-free formulas, and this leads 
to the fact that it is decidable.

Key words: meet-tree, countable model, expansion, Ehrenfeucht theories.
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 ТЫҒЫЗ АҒАШ ТЕОРИЯCЫН ТҰРАҚТЫ БАЙЫТУ ҮШІН ЕСЕПТЕЛЕТІН 
МОДЕЛЬДЕРДІ  БӨЛУ ТУРАЛЫ. I

Андатпа. 〈М; <, П〉  Табиғатта тығыз ағаш та, бос ағаш та кездеседі. Тығыз ағашты өндірісте көбірек пайдаланады. 
Сондықтан да біз  тығыз  су ағашы құрылымын байытудың [3] барлық түрлерін зерттейміз. Мұнда тығыз  ағаш 
деп ең үлкен және ең кішкентай элементтері жоқ төменгі жарты торды айтамыз. Осы тұрақты кеңейтілген 
құрылымның мысалы ретінде үш жұптық изоморфты емес саналымды моделі бар теорияны алуға болады 
[6] және ол Эренфойхт теорияларының мысалы ретінде қарастырылады. Тығыз ағаштың құрылымын барлық 
мүмкін болатын тұрақты кеңеюін зерттеу үшін біз толық теориялардың саналымды модельдерін жіктеудің 
жалпы теориясын [7], сонымен қатар, олардың ерекшеліктерін, атап айтқанда, Рудин-Кейслер реттері және шекті 
модельдер сандарының үлестіру функциялары тұрғысынан осы теориялардың саналымды модельдерінің кейбір 
үлестірімдерін зерттейміз. Бұл мақалада алғашында Перетятькин дәлелдеген тығыз  ағаш теориясы саналымды 
дәрежелік және толық екендігі туралы теореманың жаңа дәлелін береміз. Сондай-ақ, бұл теория кванторларды 
жоюға мүмкіндік береді. Өйткені типтер жиынтығы кванторлық емес формулалар арқылы жүктеледі және сол 
себепті, шешілімді теория болуына әкеледі.

Тірек сөздер: кездесетін ағаш, саналымды модель, байыту, Эренфойхт теориялары.
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О РАСПРЕДЕЛЕНИЯХ СЧЕТНЫХ МОДЕЛЕЙ ДЛЯ КОНСТАНТНЫХ ОБОГАЩЕНИЙ 
ТЕОРИИ ПЛОТНОГО ДЕРЕВА ВСТРЕЧ. I

Аннотация. Мы изучаем всевозможные константные обогащения структуры плотного дерева встреч 〈М; <, П〉 [3]. 
Здесь под плотным деревом встреч мы понимаем нижнюю полурешетку без наибольшего и наименьшего элемента. 
В качестве примера этой структуры с константным обогащением можно взять теорию, которая имеет в точности 
три попарно неизоморфные счетные модели [6], который является хорошим примером в контексте эренфойхтовых 
теорий. Мы изучаем всевозможные константные обогащения структуры плотного дерева встреч, используя общую 
теорию классификации счетных моделей полных теорий [7], а также описание специфики теории плотного дерева, 
а именно некоторые распределения счетных моделей этих теорий в терминах предпорядков Рудина–Кейслера и 
функций распределения чисел предельных моделей. В этой статье мы даем новое доказательство теоремы, что 
эта теория плотного дерева встреч является счетно-категоричной и полной, которое было изначально доказано 
Перетятькиным. Также эта теория допускает элиминацию кванторов, поскольку множество типов навязывается 
бескванторными формулами, и это приводит к тому, что она еще и является разрешимой. 

Ключевые слова: дерево встреч, счетная модель, обогащение, теории Эренфойхта.
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It is well known that M. G. Peretyat’kin [6] has constructed the complete decidable 
theory 𝑇𝑇0 having exactly 3 nonisomorphic countable models by expanding a dense meet-tree 
structure [3] with constants 𝑐𝑐𝑛𝑛

(0), 𝑛𝑛 ∈ 𝜔𝜔, such that 𝑐𝑐𝑛𝑛
(0) < 𝑐𝑐𝑛𝑛+1

(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
Ehrenfeucht or 𝐼𝐼(𝑇𝑇, 𝜔𝜔) = 2𝜔𝜔. 

 

 

In our work, we study all possibilities of constant expansions of a dense meet-tree 
structure 〈𝑀𝑀;<,⊓〉 by using a general theory of classification of countable models of complete 
theories [7]. Moreover, we describe some distributions of countable models of these theories in 
terms of Rudin–Keisler preorders and distribution functions of numbers of limit models. For 
instance, in the monograph [7] it is shown that the numbers of countable models for constant 
expansions of 𝑇𝑇d𝑚𝑚𝑚𝑚 with one sequence (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔 of constants, with two sequences 
(𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔 of constants, and three sequences (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛

(2))𝑛𝑛∈𝜔𝜔 of 
constants are 3, 6 and 34, respectively. 

 

Main Provisions 

The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
by 𝐼𝐼(𝑇𝑇, 𝜆𝜆). 

 Definition [4]. A theory 𝑇𝑇 is called Ehrenfeucht if 1 < 𝐼𝐼(𝑇𝑇, 𝜔𝜔) < 𝜔𝜔. 

 Definition [1]. A type 𝑝𝑝(𝑥𝑥) ∈ 𝑆𝑆(𝑇𝑇) is said to be powerful in a theory 𝑇𝑇 if every model 
ℳ of 𝑇𝑇 realizing 𝑝𝑝 also realizes every type 𝑞𝑞 ∈ 𝑆𝑆(𝑇𝑇), i.e., ℳ ⊨ 𝑆𝑆(𝑇𝑇). 

The powerful types, that always are represented in Ehrenfeucht theories [1], play an 
important role for the finding the number of countable models. If a complete theory does not 
have a powerful type, then it has infinitely many countable models. Indeed, we take a type 𝑝𝑝0, 
since it is not powerful, there is a type 𝑝𝑝1 and a model ℳ0 that realizes the type 𝑝𝑝0 and omits the 
type 𝑝𝑝1, since the types 𝑝𝑝0, 𝑝𝑝1 are not powerful, again there is a type 𝑝𝑝2 and a model ℳ1 that 
realizes the types 𝑝𝑝0, 𝑝𝑝1 and omits the type 𝑝𝑝2 and etc. Thus, any Ehrenfeucht theory has a 
powerful type. 
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Interrelations of types in theories are defined, in many aspects, by the Rudin-Keisler 
preorders. The next definitions and notations are taken from [7]. Let ℳ𝑝𝑝 denote the class of 
isomorphic models that are prime over a realization of the type 𝑝𝑝. 

Definition. Let 𝑝𝑝 and 𝑞𝑞 be types in 𝑆𝑆(𝑇𝑇). We say that the type 𝑝𝑝 is dominated by a type 
𝑞𝑞, or 𝑝𝑝 does not exceed 𝑞𝑞 under the Rudin-Keisler preorder (written 𝑝𝑝 ≤RK 𝑞𝑞), if ℳ𝑞𝑞 ⊨ 𝑝𝑝, that 
is, ℳ𝑝𝑝 is an elementary submodel of ℳ𝑞𝑞 (written ℳ𝑝𝑝 ⪯ ℳ𝑞𝑞). Besides, we say that a model ℳ𝑝𝑝 
is dominated by a model ℳ𝑞𝑞, or ℳ𝑝𝑝 does not exceed ℳ𝑞𝑞 under the Rudin-Keisler preorder, and 
write ℳ𝑝𝑝 ≤RK ℳ𝑞𝑞. 

 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
ℳ𝑝𝑝 and ℳ𝑞𝑞 are said to be domination-equivalent, Rudin-Keisler equivalent, or RK-equivalent 
(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑀𝑀1,𝑀𝑀2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑀𝑀1 ∼ 𝑀𝑀2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(𝑥̅𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(𝑥̅𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(𝑥̅𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple 𝑎̅𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑡𝑡(𝑎̅𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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preorders. The next definitions and notations are taken from [7]. Let ℳ𝑝𝑝 denote the class of 
isomorphic models that are prime over a realization of the type 𝑝𝑝. 

Definition. Let 𝑝𝑝 and 𝑞𝑞 be types in 𝑆𝑆(𝑇𝑇). We say that the type 𝑝𝑝 is dominated by a type 
𝑞𝑞, or 𝑝𝑝 does not exceed 𝑞𝑞 under the Rudin-Keisler preorder (written 𝑝𝑝 ≤RK 𝑞𝑞), if ℳ𝑞𝑞 ⊨ 𝑝𝑝, that 
is, ℳ𝑝𝑝 is an elementary submodel of ℳ𝑞𝑞 (written ℳ𝑝𝑝 ⪯ ℳ𝑞𝑞). Besides, we say that a model ℳ𝑝𝑝 
is dominated by a model ℳ𝑞𝑞, or ℳ𝑝𝑝 does not exceed ℳ𝑞𝑞 under the Rudin-Keisler preorder, and 
write ℳ𝑝𝑝 ≤RK ℳ𝑞𝑞. 

 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
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If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑀𝑀1,𝑀𝑀2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑀𝑀1 ∼ 𝑀𝑀2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(𝑥̅𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(𝑥̅𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(𝑥̅𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple 𝑎̅𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑡𝑡(𝑎̅𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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эта теория допускает элиминацию кванторов, поскольку множество типов навязывается 
бескванторными формулами, и это приводит к тому, что она еще и является разрешимой.  
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Introduction 

It is well known that M. G. Peretyat’kin [6] has constructed the complete decidable 
theory 𝑇𝑇0 having exactly 3 nonisomorphic countable models by expanding a dense meet-tree 
structure [3] with constants 𝑐𝑐𝑛𝑛

(0), 𝑛𝑛 ∈ 𝜔𝜔, such that 𝑐𝑐𝑛𝑛
(0) < 𝑐𝑐𝑛𝑛+1

(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
Ehrenfeucht or 𝐼𝐼(𝑇𝑇, 𝜔𝜔) = 2𝜔𝜔. 

 

 

In our work, we study all possibilities of constant expansions of a dense meet-tree 
structure 〈𝑀𝑀;<,⊓〉 by using a general theory of classification of countable models of complete 
theories [7]. Moreover, we describe some distributions of countable models of these theories in 
terms of Rudin–Keisler preorders and distribution functions of numbers of limit models. For 
instance, in the monograph [7] it is shown that the numbers of countable models for constant 
expansions of 𝑇𝑇d𝑚𝑚𝑚𝑚 with one sequence (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔 of constants, with two sequences 
(𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔 of constants, and three sequences (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛

(2))𝑛𝑛∈𝜔𝜔 of 
constants are 3, 6 and 34, respectively. 

 

Main Provisions 

The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
by 𝐼𝐼(𝑇𝑇, 𝜆𝜆). 

 Definition [4]. A theory 𝑇𝑇 is called Ehrenfeucht if 1 < 𝐼𝐼(𝑇𝑇, 𝜔𝜔) < 𝜔𝜔. 

 Definition [1]. A type 𝑝𝑝(𝑥𝑥) ∈ 𝑆𝑆(𝑇𝑇) is said to be powerful in a theory 𝑇𝑇 if every model 
ℳ of 𝑇𝑇 realizing 𝑝𝑝 also realizes every type 𝑞𝑞 ∈ 𝑆𝑆(𝑇𝑇), i.e., ℳ ⊨ 𝑆𝑆(𝑇𝑇). 

The powerful types, that always are represented in Ehrenfeucht theories [1], play an 
important role for the finding the number of countable models. If a complete theory does not 
have a powerful type, then it has infinitely many countable models. Indeed, we take a type 𝑝𝑝0, 
since it is not powerful, there is a type 𝑝𝑝1 and a model ℳ0 that realizes the type 𝑝𝑝0 and omits the 
type 𝑝𝑝1, since the types 𝑝𝑝0, 𝑝𝑝1 are not powerful, again there is a type 𝑝𝑝2 and a model ℳ1 that 
realizes the types 𝑝𝑝0, 𝑝𝑝1 and omits the type 𝑝𝑝2 and etc. Thus, any Ehrenfeucht theory has a 
powerful type. 
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 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑀𝑀1,𝑀𝑀2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑀𝑀1 ∼ 𝑀𝑀2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
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limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(𝑥̅𝑥) a type of 𝑇𝑇 lying in 
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𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple 𝑎̅𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑡𝑡(𝑎̅𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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эта теория допускает элиминацию кванторов, поскольку множество типов навязывается 
бескванторными формулами, и это приводит к тому, что она еще и является разрешимой.  
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Introduction 

It is well known that M. G. Peretyat’kin [6] has constructed the complete decidable 
theory 𝑇𝑇0 having exactly 3 nonisomorphic countable models by expanding a dense meet-tree 
structure [3] with constants 𝑐𝑐𝑛𝑛

(0), 𝑛𝑛 ∈ 𝜔𝜔, such that 𝑐𝑐𝑛𝑛
(0) < 𝑐𝑐𝑛𝑛+1

(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
Ehrenfeucht or 𝐼𝐼(𝑇𝑇, 𝜔𝜔) = 2𝜔𝜔. 

 

 

In our work, we study all possibilities of constant expansions of a dense meet-tree 
structure 〈𝑀𝑀;<,⊓〉 by using a general theory of classification of countable models of complete 
theories [7]. Moreover, we describe some distributions of countable models of these theories in 
terms of Rudin–Keisler preorders and distribution functions of numbers of limit models. For 
instance, in the monograph [7] it is shown that the numbers of countable models for constant 
expansions of 𝑇𝑇d𝑚𝑚𝑚𝑚 with one sequence (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔 of constants, with two sequences 
(𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔 of constants, and three sequences (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛

(2))𝑛𝑛∈𝜔𝜔 of 
constants are 3, 6 and 34, respectively. 

 

Main Provisions 

The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
by 𝐼𝐼(𝑇𝑇, 𝜆𝜆). 

 Definition [4]. A theory 𝑇𝑇 is called Ehrenfeucht if 1 < 𝐼𝐼(𝑇𝑇, 𝜔𝜔) < 𝜔𝜔. 

 Definition [1]. A type 𝑝𝑝(𝑥𝑥) ∈ 𝑆𝑆(𝑇𝑇) is said to be powerful in a theory 𝑇𝑇 if every model 
ℳ of 𝑇𝑇 realizing 𝑝𝑝 also realizes every type 𝑞𝑞 ∈ 𝑆𝑆(𝑇𝑇), i.e., ℳ ⊨ 𝑆𝑆(𝑇𝑇). 

The powerful types, that always are represented in Ehrenfeucht theories [1], play an 
important role for the finding the number of countable models. If a complete theory does not 
have a powerful type, then it has infinitely many countable models. Indeed, we take a type 𝑝𝑝0, 
since it is not powerful, there is a type 𝑝𝑝1 and a model ℳ0 that realizes the type 𝑝𝑝0 and omits the 
type 𝑝𝑝1, since the types 𝑝𝑝0, 𝑝𝑝1 are not powerful, again there is a type 𝑝𝑝2 and a model ℳ1 that 
realizes the types 𝑝𝑝0, 𝑝𝑝1 and omits the type 𝑝𝑝2 and etc. Thus, any Ehrenfeucht theory has a 
powerful type. 

ϵ S(T), on 
which the relation of domination is induced by <RK, a relation deciding domination among 

Interrelations of types in theories are defined, in many aspects, by the Rudin-Keisler 
preorders. The next definitions and notations are taken from [7]. Let ℳ𝑝𝑝 denote the class of 
isomorphic models that are prime over a realization of the type 𝑝𝑝. 

Definition. Let 𝑝𝑝 and 𝑞𝑞 be types in 𝑆𝑆(𝑇𝑇). We say that the type 𝑝𝑝 is dominated by a type 
𝑞𝑞, or 𝑝𝑝 does not exceed 𝑞𝑞 under the Rudin-Keisler preorder (written 𝑝𝑝 ≤RK 𝑞𝑞), if ℳ𝑞𝑞 ⊨ 𝑝𝑝, that 
is, ℳ𝑝𝑝 is an elementary submodel of ℳ𝑞𝑞 (written ℳ𝑝𝑝 ⪯ ℳ𝑞𝑞). Besides, we say that a model ℳ𝑝𝑝 
is dominated by a model ℳ𝑞𝑞, or ℳ𝑝𝑝 does not exceed ℳ𝑞𝑞 under the Rudin-Keisler preorder, and 
write ℳ𝑝𝑝 ≤RK ℳ𝑞𝑞. 

 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
ℳ𝑝𝑝 and ℳ𝑞𝑞 are said to be domination-equivalent, Rudin-Keisler equivalent, or RK-equivalent 
(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑀𝑀1,𝑀𝑀2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑀𝑀1 ∼ 𝑀𝑀2) if so are their representatives.  
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𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 
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saturated model of 𝑇𝑇, the type 𝑡𝑡𝑡𝑡(𝑎̅𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
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(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑀𝑀1,𝑀𝑀2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑀𝑀1 ∼ 𝑀𝑀2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(𝑥̅𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(𝑥̅𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(𝑥̅𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple 𝑎̅𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑡𝑡(𝑎̅𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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write ℳ𝑝𝑝 ≤RK ℳ𝑞𝑞. 

 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
ℳ𝑝𝑝 and ℳ𝑞𝑞 are said to be domination-equivalent, Rudin-Keisler equivalent, or RK-equivalent 
(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑀𝑀1,𝑀𝑀2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑀𝑀1 ∼ 𝑀𝑀2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(𝑥̅𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(𝑥̅𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(𝑥̅𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple 𝑎̅𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑡𝑡(𝑎̅𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 

 

 of any (some) weakly saturated 
model of T, the type 

Interrelations of types in theories are defined, in many aspects, by the Rudin-Keisler 
preorders. The next definitions and notations are taken from [7]. Let ℳ𝑝𝑝 denote the class of 
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 
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where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 
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). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
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Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
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(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
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( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 with 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 a finite subset of  A and 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 a finite 
subset of B is called a  partial isomorphism if

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

, 

holds for every atomic  

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  
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than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 
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where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

  and 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
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where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 
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∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾
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It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max
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 𝑏𝑏𝑖𝑖 and  

, where 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼
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where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 
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It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
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subset of 𝐵𝐵 is called a  partial isomorphism if 
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holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
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Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 
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It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
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than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  
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Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 and B  of  DMT, 
where 

Materials and Methods  
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than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 
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Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 be subsets with cardinality n. Then, for any 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼
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𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 
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It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max
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 𝑏𝑏𝑖𝑖 and  

 there is 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
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), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 
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). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 
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holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 is some ordering of the set A. Suppose 
that 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 for 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

  for 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 and 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 
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(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
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∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

. Then since 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 and 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 we have the following

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

It can be seen that αi are comparable with each other and they are less than αj, consequently, there is a 
maximal element among them, say 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  . By construction, we have 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑖𝑖 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and   and 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

Now to find 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 we reduce our proof to the consideration of eight cases. 
Case (i):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. We want to show that there exists such  

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 and 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

when 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

.  
By the fact that there is no minimal element there exists 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, for every 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 such that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Since 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, this implies that ck are comparable to each other and among 
them there is a maximal element, say 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Let 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Then 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 for every  

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 
and  

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 for every 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

.
Now we prove that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. For this, we assume that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, then since 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 
we have 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 which contradicts 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, and therefore 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. 
Case (ii):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. By the fact that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 is maximal element among αі we have

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 

Since 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, it is clear that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, and 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 for every 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 follows from 
axiom (c), as there exist infinitely many incomparable elements 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, which greater than 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, that is, 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Then one of bk will be incomparable with 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. 
Case (iii): 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. In this case, we will just take 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. 
Case (iv):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. In this case, 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

.
Let 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Then we have 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 and 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, where 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. As in 
the Case (ii), we find 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. 
Case (v):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Similar to Cases (ii) and (iii) 
Case (vi): 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Similar to Cases (ii) and (iii). 
Case (vii):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Note that, 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 is maximal element among

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 
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(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

Here we take Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 with the condition that their intersection is empty. Also, taking Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 is 
equivalent to taking 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 
Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Then we rewrite our expression as follows 
Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

	Let’s denote 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. It easy can be seen that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Now, we consider each case 
separately to find 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

:
1. if  

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 then 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

.
2. if 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 then

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

By the axiom (b) there is 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, where 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Besides, we will take 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 
as the meet 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 . Since 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, then they are comparable to each other and among 
them there is a maximal element,  say 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

.  By using the fact that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, we take 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

,  more precisely, 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Hence, 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 for 
every 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

.
It remains to prove that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 for every 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Assume the contrary, that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Since 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 we obtain 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. This contradiction shows that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

.
In the next case, we also assume the contrary, that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Using 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, together 
with the given fact that  

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 we will obtain that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 are comparable, that is, 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 or 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. This would contradict our assumption, because if we take 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 then 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 
and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, but 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

; if  

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, this implies that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and  

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, 
consequently, 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 are comparable. 
Case (viii): 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Since it is impossible, we do not consider this case.
Thus, in each case we have found 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 in the set В, and this completes our proof. 
Theorem 1.  The theory  DMT of dense meet-trees is ω-categorical. 
Proof. Let 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 be two 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

-structure of the dense meet-tree theory. 
Since they are dense, А and В must both be infinite. Fix some enumerations 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 of А and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing  

of В. We will build an isomorphism 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing  inductively, by extending increasing sequence of partial 

isomorphisms fn from some subset of А to В such that  an+1 belongs to the domain of f2i and bn+1 belongs 
to the codomain of f2i+1. 

We start f0 being the empty function, namely f0 is an isomorphism between the empty substructure 
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of  A and the empty substructure of B. So suppose we inductively have constructed fn and we are going to 
construct fn+1. If n+1 is even, then we apply Lemma 2 on an+1 and fn to construct a partial isomorphism fn+1 
which extends fn and whose domain includes an+1 (this is the  forth  in back and forth). 

In the back part, the odd stages of the construction, are handled in the same way, with the roles of 
A and B reversed, that is, if n+1 is odd, then we consider 

sequence of partial isomorphisms 𝑓𝑓𝑛𝑛 from some subset of 𝐴𝐴 to 𝐵𝐵 such that 𝑎𝑎𝑛𝑛+1 belongs to the 
domain of 𝑓𝑓2𝑖𝑖 and 𝑏𝑏𝑛𝑛+1 belongs to the codomain of 𝑓𝑓2𝑖𝑖+1.  

We start 𝑓𝑓0 being the empty function, namely 𝑓𝑓0 is an isomorphism between the empty 
substructure of 𝒜𝒜 and the empty substructure of ℬ. So suppose we inductively have constructed 
𝑓𝑓𝑛𝑛 and we are going to construct 𝑓𝑓𝑛𝑛+1. If 𝑛𝑛 + 1 is even, then we apply Lemma 2 on 𝑎𝑎𝑛𝑛+1 and 𝑓𝑓𝑛𝑛 
to construct a partial isomorphism 𝑓𝑓𝑛𝑛+1 which extends 𝑓𝑓𝑛𝑛 and whose domain includes 𝑎𝑎𝑛𝑛+1 (this 
is the  forth  in back and forth).  

In the back part, the odd stages of the construction, are handled in the same way, with the 
roles of 𝐴𝐴 and 𝐵𝐵 reversed, that is, if 𝑛𝑛 + 1 is odd, then we consider 𝑓𝑓𝑛𝑛−1, which is a partial 
isomorphism from some finite subset of 𝐵𝐵 to some finite subset of 𝐴𝐴. So by Lemma 2 there is a 
partial isomorphism 𝑓𝑓𝑛𝑛+1 whose domain includes both 𝑏𝑏𝑛𝑛+1 and the image of 𝑓𝑓𝑛𝑛. Then we put 
𝑓𝑓𝑛𝑛+1 = 𝑓𝑓𝑛𝑛+1−1 , which is a partial isomorphism.  

Therefore, 𝑓𝑓 = ⋃𝑖𝑖<𝜔𝜔 𝑓𝑓𝑖𝑖 will be desired isomorphism between 𝐴𝐴 and 𝐵𝐵.  

Theorem 1. immediately implies: 

Corollary.  The theory  DMT of dense meet-trees is complete.  

By Lemma 1 theories of dense meet-tree, admit the quantifier elimination since complete 
types are forced by collections of quantifier free formulas. Moreover the theory of a dense meet-
tree is finitely axiomatizable. Using Corollary we obtain the following its generalization:  

Theorem 2.  The theory of dense meet-tree is decidable. 

  

Conclusion 

 We investigated dense meet-tree, which is a lower semilattice without the least and 
greatest elements. It is proven that theories of dense meet-tree are countably categorical by using 
back-and-forth argument, and hence they are decidable. 
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partial isomorphism 𝑓𝑓𝑛𝑛+1 whose domain includes both 𝑏𝑏𝑛𝑛+1 and the image of 𝑓𝑓𝑛𝑛. Then we put 
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Therefore, 𝑓𝑓 = ⋃𝑖𝑖<𝜔𝜔 𝑓𝑓𝑖𝑖 will be desired isomorphism between 𝐴𝐴 and 𝐵𝐵.  

Theorem 1. immediately implies: 

Corollary.  The theory  DMT of dense meet-trees is complete.  

By Lemma 1 theories of dense meet-tree, admit the quantifier elimination since complete 
types are forced by collections of quantifier free formulas. Moreover the theory of a dense meet-
tree is finitely axiomatizable. Using Corollary we obtain the following its generalization:  

Theorem 2.  The theory of dense meet-tree is decidable. 

  

Conclusion 

 We investigated dense meet-tree, which is a lower semilattice without the least and 
greatest elements. It is proven that theories of dense meet-tree are countably categorical by using 
back-and-forth argument, and hence they are decidable. 
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ANALYTICAL APPROACH FOR INVERSE PROBLEMS THEORY APPLICATIONS 
TOWARDS DETERMINATION OF THERMOPHYSICAL CHARACTERISTICS OF SOIL

Abstract
Current paper presents analytical expressions received for investigation of determination of thermophysical characteristics 
of soil applying the theory of inverse problems. There was considered experimental design with exact measurements and 
constructed mathematical model for considered case. The analytical expression for transient one-dimensional temperature 
field was received by Laplace transform. Additional data, such as the heat flux at inlet domain received by conducting 
numerical simulation of the heat source via computational model. Presented analytical expression for heat transfer 
parameter allows to determine the soil thermal property without loss of precision, which is crucial in agricultural field. 
Paper discusses posed peculiarities considered for the inverse problem methodology along with derivation stages of 
analytical expression. The analytical expression for proposed model is presented both in the frequency and real time 
domain by applied direct and inverse Laplace transform. The measured outlet input data is interpolated further by the 8-th 
order polynomial and presented with approximation residuals.
Key words: Inverse problems, transient heat transfer, analytical solution, experimental measurements, numerical 
simulation, soil.
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ТОПЫРАҚТЫҢ ТЕРМОФИЗИКАЛЫҚ СИПАТТАМАЛАРЫН АНЫҚТАУҒА КЕРІ
МӘСЕЛЕЛЕР ТЕОРИЯСЫ ҚОЛДАНЫЛУЫНЫҢ САРАПТАМАЛЫҚ  ТӘСІЛДЕРІ

Аңдатпа
Бұл жұмыста кері есептер теориясының көмегімен топырақтың термофизикалық сипаттамаларын анықтауды 
зерттеу үшін алынған сараптамалық өрнектер берілген. Нақты өлшемдері бар эксперименттік схема зерттеліп, 
қарастырылып отырған жағдайға математикалық модель құрастырылды. Лаплас түрлендіруінің көмегімен 
стационарлы емес бір өлшемді температура өрісі үшін аналитикалық өрнек алынды. Қосымша деректер, мысалы, 
кіріс жылу ағыны, есептеу моделін пайдаланып жылу көзін сандық модельдеу арқылы алынады. Жылу беру 
параметрі үшін ұсынылған аналитикалық өрнек топырақтың жылулық қасиеттерін дәлдікті жоғалтпай анықтауға 
мүмкіндік береді. Бұл ауыл шаруашылығы саласында өте маңызды. Мақалада кері есептің әдістемесі үшін 
ескерілетін жиынтық белгілер, сондай-ақ аналитикалық өрнекті шығару кезеңдері қарастырылады. Ұсынылған 
модель үшін аналитикалық өрнек Лапластың тікелей және кері түрлендірулерінің көмегімен жиілік облысында 
да, нақты уақыт аймағында да ұсынылған. Шығудағы өлшенген кіріс деректері 8-ші ретті көпмүшемен қосымша 
интерполяцияланады және жуықтау қалдықтарымен ұсынылады. Сонымен қатар, модельдеудің дәлдігін арттыру 
үшін жан-жақты құрылымдары бар модельді көрсетуге қаншалықты ынталы болсақ, аналитикалық шешімді 
шығару кезеңдерінде соғұрлым қиындықтар туындайды. Осы себепті біз нақты әлемде қарастырылатын мәселенің 
жалпы тенденцияларын көрсететін эквивалентті модельді ұсына аламыз. Ұсынылған мақаланың жалпы мақсаты 
– біртекті орта үшін қолданылатын коэффициенттерді анықтау процедурасы үшін аналитикалық кері талдау 
әдістемесінің жалпы идеясын ұсыну.
Тірек сөздер: Кері есептер, өтпелі жылу алмасу, аналитикалық шешім, тәжірибелік өлшемдер, сандық модельдеу, 
топырақ.
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АНАЛИТИЧЕСКИЙ ПОДХОД ДЛЯ ПРИЛОЖЕНИЙ ТЕОРИИ ОБРАТНЫХ ЗАДАЧ 
К ОПРЕДЕЛЕНИЮ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТА

Аннотация
В данной работе представлены аналитические выражения, полученные для исследования определения теплофи
зических характеристик грунта с применением теории обратных задач. Была рассмотрена экспериментальная 
схема с точными измерениями и построена математическая модель для рассматриваемого случая. Аналитическое 
выражение для нестационарного одномерного температурного поля получено с помощью преобразования 
Лапласа. Дополнительные данные, такие как тепловой поток на входе, получают путем проведения численного 
моделирования источника тепла с помощью вычислительной модели. Представленное аналитическое выражение 
для параметра теплопередачи позволяет без потери точности определить тепловые свойства почвы, что крайне важно 
в сельскохозяйственной сфере. В статье обсуждаются поставленные особенности, учитываемые для методологии 
обратной задачи, а также этапы вывода аналитического выражения. Аналитическое выражение для предложенной 
модели представлено как в частотной области, так и в области реального времени с применением прямого и 
обратного преобразования Лапласа. Измеренные входные данные на выходе дополнительно интерполируются 
полиномом 8-го порядка и представляются с остатками аппроксимации. Общая цель предлагаемой статьи состоит 
в том, чтобы изобразить общее представление о методологии аналитического обратного анализа для процедуры 
определения коэффициентов, используемых для однородной среды.
Ключевые слова: обратные задачи, нестационарный теплообмен, аналитическое решение, экспериментальные 
измерения, численное моделирование, грунт.

 
Introduction
In today’s world there are a lot of well-known empirical methods for determination of thermal-

physical characteristics of structural and non-structural materials in the laboratory conditions with 
prescribed accuracy [1–5]. However, it is still a matter of difficulty to identify key properties of material 
without terminating the exploitation process during experiments conducted on the field or receiving 
such data analytically without loss of accuracy and precision [6]. It is well-known fact that analytical 
expressions are more favorable in terms of reduction of computational cost expressed in time and 
memory, to receive exact value without losses due to introduced errors by numerical approximation [7]. 
Determination of thermal characteristics of soil plays key role in agricultural area and construction sector 
[8–9]. Investigating soil fertility or appropriate freezing depth of soil are the key issues in agricultural 
sector which are impossible without reliable data of thermal characteristics for considered soil category 
[10–12]. Another application of the usage of inverse problems is to determine the type of the soil by 
observing calculated values of key thermal parameters using statistical comparative analysis [13–16].  
The essence of the inverse analysis methodology lies in the prescribed ill-posedness of the problem due 
to violation of one of the following factors: lac of solution, infinitely many solutions or the solution 
discontinuous dependency on the input data. These factors comprehend numerical exploitation of the 
posed inverse problem. In such case analytical investigation is more preferable, since we illuminate these 
factors, however such implementations require to overcome number difficulties due to derivation stages. 
For instance, there should exist the solution of the posed direct problem, its continuous transform in the 
frequency domain, and same solution of the invers problem derived for the considered process. Moreover, 
the more we are keen to imply model with comprehensive structures in order to increase the accuracy of 
simulation, the more difficulties will arise during the derivation stages of the analytical solution. For that 
reason, we may pose an equivalent model that will reflect general tendencies of real-world considered 
problem.

The general goal of proposed paper is to depict general idea of the analytical inverse analysis 
methodology for coefficients determination procedure utilized for homogeneous medium terrain.
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Figure 1 – Soil experimental design 

 
The direct problem consists of determining the temperature field in domain 

Ω = 𝑥𝑥 ∈ [0,∞) ∪ 𝑡𝑡 ∈ [0, 𝑇𝑇]. We set absence of bounds on the right side for spatial 
part of domain since for single-layered structure we do not have any reflections of 
the heat-wave flux from the right side, considering it as isolated side, thus for set 
experimental design the model describing transient heat flow is constructed as: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑎𝑎2 𝜕𝜕2𝜃𝜃

𝜕𝜕𝑥𝑥2.      (1) 
 

𝜃𝜃(𝑥𝑥, 0) = 𝜃𝜃0(𝑥𝑥).     (2) 
 

𝜃𝜃(0, 𝑡𝑡) = 𝜃𝜃1(𝑡𝑡).     (3) 
 

𝜃𝜃(∞, 𝑡𝑡) = 0.     (4) 
 

 Here the initial condition (2) is received by interpolating measured data 
through time domain and the same is done for boundary condition (3), heat 
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Here the initial condition (2) is received by interpolating measured data through time domain and 
the same is done for boundary condition (3), heat conductivity coefficient is expressed as conductivity coefficient is expressed as 𝑎𝑎 = √𝑘𝑘/𝜌𝜌𝜌𝜌, where 𝜌𝜌 and 𝑐𝑐 are density and 

specific heat capacities of the soil, whereas 𝑘𝑘 is the heat transfer coefficient.  
 The inverse problem is formulated as follows: to determine the heat 
conductivity coefficient by measuring additional data on the inlet of the domain. 
For that reason, we measure heat flux from radiation of the bulb lamp at point 𝑥𝑥 =
0.  

 
Materials and Methods 

The measured radiation received from numerical simulation of the heating 
processes inside the bulb lamp [17]. The geometrical domain is considered as axis-
symmetrical region, which is discretized by structural grid presented below: 

 

 
Figure 2 – Axis-symmetrical region and heat flux inside bulb lamp 

 
 Simulated processes include conduction trough the tungsten spiral, which is 
further transferred by convection through argon to the lamp glass and then as the 
heat flux by radiation from glass to soil inlet.  

The following profiles gives numerical values of received heat flux due to 
radiation from the bulb lamp: 
 

, 
where 

эта теория допускает элиминацию кванторов, поскольку множество типов навязывается 
бескванторными формулами, и это приводит к тому, что она еще и является разрешимой.  
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Introduction 

It is well known that M. G. Peretyat’kin [6] has constructed the complete decidable 
theory 𝑇𝑇0 having exactly 3 nonisomorphic countable models by expanding a dense meet-tree 
structure [3] with constants 𝑐𝑐𝑛𝑛

(0), 𝑛𝑛 ∈ 𝜔𝜔, such that 𝑐𝑐𝑛𝑛
(0) < 𝑐𝑐𝑛𝑛+1

(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
Ehrenfeucht or 𝐼𝐼(𝑇𝑇, 𝜔𝜔) = 2𝜔𝜔. 

 

 

In our work, we study all possibilities of constant expansions of a dense meet-tree 
structure 〈𝑀𝑀;<,⊓〉 by using a general theory of classification of countable models of complete 
theories [7]. Moreover, we describe some distributions of countable models of these theories in 
terms of Rudin–Keisler preorders and distribution functions of numbers of limit models. For 
instance, in the monograph [7] it is shown that the numbers of countable models for constant 
expansions of 𝑇𝑇d𝑚𝑚𝑚𝑚 with one sequence (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔 of constants, with two sequences 
(𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔 of constants, and three sequences (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛

(2))𝑛𝑛∈𝜔𝜔 of 
constants are 3, 6 and 34, respectively. 

 

Main Provisions 

The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
by 𝐼𝐼(𝑇𝑇, 𝜆𝜆). 

 Definition [4]. A theory 𝑇𝑇 is called Ehrenfeucht if 1 < 𝐼𝐼(𝑇𝑇, 𝜔𝜔) < 𝜔𝜔. 

 Definition [1]. A type 𝑝𝑝(𝑥𝑥) ∈ 𝑆𝑆(𝑇𝑇) is said to be powerful in a theory 𝑇𝑇 if every model 
ℳ of 𝑇𝑇 realizing 𝑝𝑝 also realizes every type 𝑞𝑞 ∈ 𝑆𝑆(𝑇𝑇), i.e., ℳ ⊨ 𝑆𝑆(𝑇𝑇). 

The powerful types, that always are represented in Ehrenfeucht theories [1], play an 
important role for the finding the number of countable models. If a complete theory does not 
have a powerful type, then it has infinitely many countable models. Indeed, we take a type 𝑝𝑝0, 
since it is not powerful, there is a type 𝑝𝑝1 and a model ℳ0 that realizes the type 𝑝𝑝0 and omits the 
type 𝑝𝑝1, since the types 𝑝𝑝0, 𝑝𝑝1 are not powerful, again there is a type 𝑝𝑝2 and a model ℳ1 that 
realizes the types 𝑝𝑝0, 𝑝𝑝1 and omits the type 𝑝𝑝2 and etc. Thus, any Ehrenfeucht theory has a 
powerful type. 

 and с are density and specific heat capacities of the soil, whereas k is the heat transfer coefficient. 
The inverse problem is formulated as follows: to determine the heat conductivity coefficient by 

measuring additional data on the inlet of the domain. For that reason, we measure heat flux from radiation 
of the bulb lamp at point x – 0. 

Materials and Methods
The measured radiation received from numerical simulation of the heating processes inside the bulb 

lamp [17]. The geometrical domain is considered as axis-symmetrical region, which is discretized by 
structural grid presented below:
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Simulated processes include conduction trough the tungsten spiral, which is further transferred by 
convection through argon to the lamp glass and then as the heat flux by radiation from glass to soil inlet. 

The following profiles gives numerical values of received heat flux due to radiation from the bulb 
lamp:
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 The introduced heat flux is depicted in model as expression: 
 

𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 |𝑥𝑥=0 = 𝑞𝑞.      (5) 

 
 Considering (5) and (3), we can reformulate them as follows: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 |𝑥𝑥=0 = ℎ𝜃𝜃|𝑥𝑥=0, ℎ = 𝑞𝑞

𝑘𝑘𝑘𝑘(0,𝑡𝑡).    (6) 
 

 To find an analytical solution form, we apply Laplace Transform as usually 
done for seeking analytical expressions [18-20], so the problem (1)-(6) will take 
form in the frequency domain: 
 

𝑝𝑝𝑝𝑝 − 𝑎𝑎2 𝑑𝑑2𝑈𝑈
𝑑𝑑𝑥𝑥2 = 𝜃𝜃0.      (7) 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 |𝑥𝑥=0 = ℎ𝑈𝑈|𝑥𝑥=0.      (8) 

 
 The solution of (7) is found in the form: 
 

𝑈𝑈 = 𝜃𝜃0
𝑝𝑝 + 𝐶𝐶𝑒𝑒−

√𝑝𝑝
𝑎𝑎 𝑥𝑥.      (9) 

 
 The constant is found by boundary condition (8): 
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The introduced heat flux is depicted in model as expression:
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The constant is found by boundary condition (8):

𝑈𝑈 = 𝜃𝜃0
𝑝𝑝 (1 −

ℎ
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥) = 𝜃𝜃0

𝑝𝑝 (1 − 𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥) + 𝜃𝜃0

𝑎𝑎
1

√𝑝𝑝(√
𝑝𝑝
𝑎𝑎 +ℎ)

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥.  (12) 

 
The form (12) represents an analytical expression for proposed model in the 

frequency domain. Now, it is necessary to apply inverse transform and receive 
equivalent form in real-time domain. Considering that: 
 

ℒ−1 (1𝑝𝑝 𝑒𝑒
−√𝑝𝑝

𝑎𝑎 𝑥𝑥) = 𝐸𝐸𝐸𝐸𝐸𝐸 ( 𝑥𝑥
2𝑎𝑎√𝑡𝑡).     (13) 

  
From it, follows that: 
 

𝜃𝜃0
𝑝𝑝 (1 − 𝑒𝑒−

√𝑝𝑝
𝑎𝑎 𝑥𝑥) → 𝜃𝜃0 erf (

𝑥𝑥
2𝑎𝑎√𝑡𝑡) .    (14) 

 
 For the right part of (12) shifting and similarities theorems of operational 
calculus are applied: 
 

ℒ−1[𝐹𝐹(𝑝𝑝)] = ℒ−1 [ 1
𝑝𝑝
𝑎𝑎+ℎ

𝑒𝑒−𝑝𝑝
𝑥𝑥
𝑎𝑎] = 𝑎𝑎𝑒𝑒−ℎ(𝑎𝑎𝑎𝑎−𝑥𝑥)𝜇𝜇(𝑎𝑎𝑎𝑎 − 𝑥𝑥).   (15) 

 
 Having Efros theorem together with (15), we know that: 
 

ℒ−1 [𝐹𝐹(√𝑝𝑝)
√𝑝𝑝

] = ℒ−1 [ 1
√𝑝𝑝

1
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥] = 𝑎𝑎

√𝜋𝜋𝜋𝜋 ∫ 𝑒𝑒−ℎ(𝑎𝑎𝑎𝑎−𝑥𝑥)−
𝜏𝜏2
4𝑡𝑡𝑑𝑑𝑑𝑑∞

𝑥𝑥
𝑎𝑎

.  (16) 

 
Results and Discussion 
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Results and Discussion 
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 It should be noted that the error function can be expressed as the following 
converging series: 
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 Now, having the measurements of temperature received experimentally, we 
can find analytical expression for the heat diffusivity coefficient from (18). The 
data was measured during ten discrete time intervals that could be smoothly 
interpolated by the eighth order polynomial, depicted on the figure below, along 
with residual plot: 

 
Figure 4 – Measured discrete data interpolated by 8th order polynomial (above) 

along with its residuals (below) 
 
 On the above figure, we observe the fitting model, that is the coincide of the 
interpolated data with the measurements, so that the vertical axis represents the 
measurements, and we have time interval in the horizontal axis. Meanwhile the 
below graph represents the points at which the residual indicates an outliners, 
stating that at these points the measurements were influenced by the noise 
introduced via the measurement device error. 
 
Conclusion 

We take the first three term of the series (19), however increasing the order 
will lead to better accuracy, simplifying the expression (18) we obtain the 
following form: 
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	     − ln [𝑢𝑢(𝜉𝜉,𝑡𝑡)𝑢𝑢0
− 4𝑎𝑎4𝜉𝜉𝑡𝑡2−3𝑎𝑎2𝜉𝜉9𝑡𝑡+2.5𝜉𝜉5

4√𝜋𝜋𝑎𝑎5𝑡𝑡
5
2

] = 0.  (20) 

 
 Expression (20) is an analytical form with heat transfer parameters of soil 
which is heated by the lamp on the inlet. Determination of the necessary 
coefficients could be done by numerical iterative approach or direct calculations. 
In (20) the term 𝜃𝜃(𝜉𝜉, 𝑡𝑡) is additionally measured temperature at point 𝑥𝑥 = 𝜉𝜉, 
whereas all other terms are known constants. It could be clear that heat transfer 
parameters will depend on temperature and vary through time exponentially. 
 Received form is crucial in performing on site investigations or 
mathematical exploitations over correlational studies between thermal 
characteristics of soil and other terms. It is also useful for convergency rate studies 
for different approaches.  
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which is heated by the lamp on the inlet. Determination of the necessary 
coefficients could be done by numerical iterative approach or direct calculations. 
In (20) the term 𝜃𝜃(𝜉𝜉, 𝑡𝑡) is additionally measured temperature at point 𝑥𝑥 = 𝜉𝜉, 
whereas all other terms are known constants. It could be clear that heat transfer 
parameters will depend on temperature and vary through time exponentially. 
 Received form is crucial in performing on site investigations or 
mathematical exploitations over correlational studies between thermal 
characteristics of soil and other terms. It is also useful for convergency rate studies 
for different approaches.  
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