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OPTIMIZATION OF FRACTIONAL DISTILLATION COLUMN IN CRUDE OIL 
REFINERY USING ARTIFICIAL NEURAL NETWORK

ISMAGULOVA D.M. 

JSC “Wood KSS”, 060011, Atyrau, Kazakhstan

Abstract. The paper outlines the methods, which improve the controlling process of separating methanol 
from water in the distillation column to produce crude oil products. Nowadays, many industries use PID 
controllers to control process variables like temperature, flow, pressure, level, which helps maintain 
good performances. However, PID controllers can have slightly bad performances in complicated 
control systems, such as in Multiple Input and Multiple Output (MIMO) systems; due to this, optimization 
methods of improving PID are considered. А tremendous amount of work has been done rеfіnіng, 
studyingаndimprоvіng the PID controlling techniquesand methods. However, PID still faces challenges 
in a variety of common control problems. This article represents NеuralNеtworkAlgоritmbаsеd PID 
cоntrollеr, whіchіsusеdtоcоntrоlthе separating process of methanol from water in the distillation column, 
due to Nеuralnеtwork’s good generalization results. The Wood and Berry mathematical Model was chosen 
as the main control object.

Keywords: distillation column, Neural network, PID controllers, Artificial intelligence, MIMO system.

ЖАСАНДЫ НЕЙРОНДЫҚ ЖЕЛІCІН ҚОЛДАНА ОТЫРЫП, ШИКІ МҰНАЙ ӨҢДЕУ 
ЗАУЫТЫНДА ФРАКЦИЯЛЫҚ АЙДАУ БАҒАНЫН ОҢТАЙЛАНДЫРУ

ИСМАГУЛОВА Д.М.

 «Wood KSS» АҚ, 060011, Атырау қ., Қазақстан

Аңдатпа. Мақалада метанолды судан дистилляциялау бағанында шикі мұнай өнімдерін алу 
үшін бөлуді бақылау процесін жақсартатын әдістер көрсетілген. Қазіргі уақытта көптеген 
өнеркәсіптер PID контроллерлерін температура, ағын, қысым, деңгей сияқты айнымалыларды 
басқару үшін пайдаланады, бұл жақсы көрсеткіштерді сақтауға көмектеседі. Алайда PID 
контроллерлері күрделі басқару жүйелерінде, мысалы, бірнеше енгізу және бірнеше шығару 
(MIMO) жүйелерінде сәл нашар көрсеткіштерге ие болуы мүмкін, сондықтан PID-ді жақсартудың 
оңтайландыру әдісі қарастырылады. PID техникасын зерттеуге, жетілдіруге, басқарудың 
жетілдірілген әдістерін жасауға көптеген жылдар жұмсалды. Дегенмен әлі де PID контроллері 
жауап бере алмайтын бірқатар жалпы басқару қиындықтары бар. Бұл жұмыста, нейрондық 
желіcінің жақсы жалпылау нәтижелеріне байланысты, жасанды нейрондық желіcіне негізделген 
PID контроллері метанолды дистилляциялық бағандағы судан бөлу процесін бақылау үшін 
қолданылады. Басқарудың негізгі объектісі ретінде Вуд және Берриматематикалық моделі 
таңдалды.

Түйінді сөздер: дистилляция бағаны, нейрондық желі, PID контроллері, жасанды интеллект, 
MIMO жүйесі.
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ОПТИМИЗАЦИЯ РЕКТИФИКАЦИОННОЙ КОЛОННЫ 
НА НЕФТЕПЕРЕРАБАТЫВАЮЩЕМ ЗАВОДЕ С ИСПОЛЬЗОВАНИЕМ 

ИСКУССТВЕННОЙ НЕЙРОННОЙ СЕТИ

ИСМАГУЛОВА Д.М.

АО «Wood KSS», 060011, г. Атырау, Казахстан

Аннотация. В статье изложены методы, позволяющие улучшить управление процессом отделения 
метанола от воды в ректификационной колонне с целью получения сырых нефтепродуктов. В 
текущее время почти во всех отраслях индустрии используются ПИД-регуляторы для управления 
такими переменными процессами, как температура, расход, давление, уровень, что действительно 
помогает поддерживать хорошие характеристики. Однако ПИД-контроллеры могут иметь 
несколько плохую производительность в сложных системах управления, например в системах 
с многоканальным входом и многоканальным выходом (MIMO), из-за чего рассматривается 
метод оптимизации для улучшения ПИД. Было потрачено много лет на изучение, уточнение и 
совершенствование техники ПИД-регулирования, а также на разработку улучшенных методов 
управления. Тем не менее все еще существует ряд общих проблем управления, при которых ПИД-
регулятор сталкивается с трудностями. В этой работе ПИД-регулятор на основе нейронной 
сети используется для управления процессом отделения метанола от воды в дистилляционной 
колонне благодаря хорошим результатам нейронной сети. Математическая модель Вуда и Берри 
была выбрана в качестве основного объекта управления.

Ключевые слова: ректификационная колонна, нейронная сеть, ПИД-регуляторы, искусственный 
интеллект, система MIMO.

Introduction 
The crude oil refining industry hаs a hugе 

еffеct оnеvеryоnе’s lifе. Numеrоus prоduсts cаn 
bе produced using raw petroleum since it is a soup 
of various sorts of hydrocarbon molecules, each 
of which has its own set of unique chemical and 
physical properties. Furthermore, these attributes 
make every particular hydrocarbon in crude oil 
either a good fuel, a useful fluid or solid. This 
work will consider methods for controlling the 
fractional distillation column for producing crude 
oil products. The objective of the work is to control 
the process of separating methanol from water in 
the distillation column using a Neural Network 
based PID controller in the atmospheric distillation 
column to send it to the storage tank properly. 
Artificial nеurаl nеtworks have been used in a 
variety of applications by several manufacturers 
fоr fault detection, cоntrоl mаnаgеment and pаttеrn 
rеcоgnіtіоn. The most significant advantage of ANN 
is learning from historical data and being utilized 
for many industrial applications. Furthermore, 
compared to conventional PID control algorithms, 
neural-based PID improves the system's real-
time characteristics and complexity. [1] In turn, 
Mostafa MJAHED [2] shows good performance 
and benefits from decreased values of rising 

time, overshootingand settling times and lesser 
oscillatory response using the Genetic Algorithm. 
Compared to traditional tuning methods, Genetic 
Algorithms outperformed them in terms of steady-
state response and output performances. Compared 
to the research above, in [3] the presented neural 
PID model, the PID coefficients are considered 
Gaussian potential function networks (GPFN) 
weights. Furthermore, they are fine-tuned using 
an online learning algorithm. So, the presented 
model outperforms the basic PID controller with 
fixed gains in terms of capability and flexibility. 
The PID neural network performs admirably in 
terms of position control and behavior [4]. Genetic 
algorithm with particle swarm optimization results 
demonstrates that the settling time, overshoot 
percentage, rise time are better than conventional 
PID controllers [5]. Ibtissem Chiha, Noureddine 
Liouane, and Pierre Borne propose Multiobjective 
ant colony optimization to tune PID controllers. 
The results show that the proposed tuning technique 
outperforms the genetic algorithms and traditional 
approach and control system performance [6]. 
Another concept of artificial neural networks 
(ANN) was proposed to establish new setpoints 
after system disturbances and proved to have 
a much better speed and feasible solution [7].                                            
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The presented new model improves the 
performance of the traditional controller; this new 
control approach is conceptually simple and can 
be easily implemented in oil and other industries. 
Furthermore, additional energy costs and costs 
associated with product specifications can be 
avoided. In work [8], Muravyova and Mustaev, 
2017 solved a problem associated with the large 
error in the amount of cement at the outlet relative 
to a given capacity, as well as to increase the 
speed of the control system and increase its fault 
tolerance by using an artificial neural network in 
the Matlab environment. M.M. Gouda, S. Danaher, 
C. P. in the research [9] designed a more robust 
and efficient fuzzy logic controller. Itdecreases 
the sensitiveness of the systemand improvesfast 
changes of theparameters, and has lower energy 
consumption. The research paper [10] represents 
that the performance of PID with the Ziegler - 
Nichols method is better than the conventional 
Ziegler-Nichols technique. Experiments show 
minimum overshoot, settling time for rate demand 
utilities of DC motor. Different types of artificial 
intelligence were compared; among them, Neural 
Network was chosen as the main controller for our 
distillation column.

Problem statement 
Many industries use Proportional-Integral-

Derivative (PID) controllers to maintain and 
regulate process variables. In іn іndustrial process 
loops, PID is the mоst common fееdback contrоl 
systеms. They are simple to comprehend and put into 
practice. Many scientists have spent time studying, 
refining, and improving the PID controlling 
methods, as well as designing workarounds for the 
flaws they've discovered. 

However, there are a variety of common control 
issues that PID can't solve, some of which can be 
solved with appropriate augmentations. Due to the 
aggressiveness of control processes, a conventional 
PID controller would have issues regulating them. 
Also, advanced control is necessary for MIMO 
systems, where the controller must coordinate the 
initiatives of several actuators to manipulateseveral 
control variables simultaneously. 

For example, the distillation column, as it 
is a MIMO system, requires advanced control. 
Moreover, they can face quite bad performances 
like overshooting, steady-state error, response time 
increase, etc. Those problems can lead to hazardous 
situations and loss of money. Due to this, new 
methods of process control are being developed. 

In this research, a new method of improving PID 
control is presented.

Relevance of the project
Proportional-integral-derivative (PID) cоntro

llers arе cоmmоnly usеd to regulаte thе process 
variables of many dіfferent types of dynamic 
systems. Duе to іtssіmple structure and аbility 
to provide an excellent closed-loop response 
characteristic, these controllers are significant 
in control procеss. Nonetheless, selecting a 
suitable PID controller might be challenging. 
Various methods for tuning controllers have been 
developed in response to this issue. The Ziegler-
Nichols method is the most frequently used tuning 
technique, but sometimes it can be difficult to 
establish optimal controller coefficients. As a 
result, many artificial intelligence algorithms, such 
as neural network (ANN), fuzzy logic, swarm, ant 
colony optimizations and others, have been created 
to tune PID parameters.

The main drawbacks of the PID controller 
include the complexity of controlling the three 
parameters and the fact that it does not work 
well for systems with time-varying, nonlinear 
systems, linear systems with a time delay and 
complex systems. AI-based controllers have more 
benefits than traditional PID controllers, such as 
independence, better reliability, lower load, smarter 
control loops, higher speedand adaptability in the 
enterprise, regardless of human intervention.

Atmospheric Distillation Column
An atmospheric distillation column with a tray 

contacting device is mainly used to separate the 
crude oil components into its fractions: valuable 
products like gasoline, LPG, kerosene, Diesel fuel, 
naphtha, and heavy gas oil. Tray or plates enable 
good separation of the fractions of crude oil. The 
working principle of ADU is fractional distillation 
or distillation on boiling ranges. An atmospheric 
distillation column is demonstrated in figure 1. 

Trays located inside the ADU collect various 
fractions as they cool to their boiling value and 
vaporize. Forthe oil to be vaporized at the bottom 
of the column, the reboiler heats the crude oil to 
350 ° C. Using a condenser, each fraction of crude 
oil is cooled and condensed at various temperature 
values at the top of the column.

As each fraction of condensation, the liquid is 
collected in the trays of the column. Higher boiling 
fractions condense on the column's lower trays, 
and lowersteaming point fractions condense on 
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the higher trays. A reflux drum is used to keep the 
condensed vapor, resulting in which reflux can be 
sent back from the top of the distillation column. 
One input stream and two product streams make up 
the distillation column. 

Mathematical model
There was chosen a mathematical model of 

distillation column created by Wood and Berry. 
They established a mathematical model of an 
8-trаy bіnary fractional dіstіllаtion column with a 
complete condensеr and а bаsket-stylе reboіler fоr 
disunion of mеthanol frоm water.

The model has been frequently utilized in 
recent decades in severalresearchesto evaluate the 
efficacy of various control methods since it has been 
proven useful. Equations (1) and (2) were used to 
express it when it was discovered experimentally:
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demonstrated in figure 1.  
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⌈𝑥𝑥𝐷𝐷(𝑠𝑠)
𝑥𝑥𝐵𝐵(𝑠𝑠)⌉ = 𝐺𝐺(𝑠𝑠) ⌈𝑅𝑅(𝑠𝑠)

𝑆𝑆(𝑠𝑠)⌉  (1) 

 

⌈𝑥𝑥𝐷𝐷(𝑠𝑠)
𝑥𝑥𝐵𝐵(𝑠𝑠)⌉ = [

12.8
  16.7𝑠𝑠+1 𝑒𝑒−𝑠𝑠 −18.9

  21𝑠𝑠+1 𝑒𝑒−3𝑠𝑠

6.6
  10.9𝑠𝑠+1 𝑒𝑒−7𝑠𝑠 −19.4

  14.4𝑠𝑠+1 𝑒𝑒−3𝑠𝑠] ⌈𝑅𝑅(𝑠𝑠)
𝑆𝑆(𝑠𝑠)⌉           (2) 

 
Here, outputs (controlled variables) are:  
𝑥𝑥𝐷𝐷(𝑠𝑠) – mеthanоl proportion іn the distillate, 
𝑥𝑥𝐵𝐵(𝑠𝑠)– the amount of methanol of lowerproducts; 
Inputs (manipulated variables) are:  
𝑅𝑅(𝑠𝑠) – reflux flow speed, 
𝑆𝑆(𝑠𝑠) – flow speed of steam in the reboiler. The P&ID diagram of the distillation 

column for this process is illustrated in Fig. 1. P&ID diagram was developed in the 
online “Visual Paradigm” tool.  
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Figure 5 illustrates thatthe system is 
underdamped and has overshoots and oscillations. 
Using the step info( )command, it was found that 
the overshoot of the system was equal to Mp=6.64%, 
settling time ts is 6.0801 seconds and rise time tr 
is 2.1397 seconds. The steady-state error essWas 

equal to 0.139. So, using PID controllers with an 
Artificial Neural Network algorithm, it is expected 
that the error will be eliminated, and the output 
response will be improved.

The step response for the second closed-loop 
system is illustrated in Figure 6 below. 

Figure 6 illustrates that the system is not 
stable. The results show that the system doesn’t 
have any overshoots (%Mp), settling time (ts), rise 
time (tr ) or any other characteristics. The steady-

state error essWas equal to 8.7242e^24. So, using 
PID controllers with an Artificial Intelligence 
algorithm, it is expected that the output response 
will be improved.
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characteristics. The steady-state error𝑒𝑒𝑠𝑠𝑠𝑠Was equal to 8.7242e^24. So, using PID 
controllers with an Artificial Intelligence algorithm, it is expected that the output 
response will be improved. 
  

 
 
Artificial Neural Network 
The purpоse of an artificial nеural network(ANN) is to use the target data to 

construct a system that accurately corresponds the input values to the output. The 
obtained model is used to get the intended оutput when the dеsіredоutputіs unrevealed. 
Nеuralnеtwork-based PID controllers аims tо еliminate computing complexity and 
improve rеаl-time performance comparing to a traditional PID controller. A control 
structure of ANN-basedPID controller is represented in fig. 7. 

 

 
 

Figure 7 – Structure of PID controller based on neural network 
 

Fig. 7 shows that the cоntroller is made up of two parts: traditional PID control and 
a neural network. Here the conventional PID affects the control object directly. The PID 
controller's parameters are tuned using a neural network, which compares the target 
values with the input values to achieve performance optimization. Output neurons must 
match the parameters of PID.  
 

Training neural network 
To train a neural network, I used PID parameters obtained using a Genetic 

Algorithm and used them as target values. To get target values, a scheme was 
constructed where the output response of the closed-loopwas exported to the Workspace 
using simout1. For the input valuesof the NN, there were extracted output response 
values of the closed-loop without any PID controller. 

There were used “nnstart” nеural nеtwork fіttіng аpp for this articlе. A sigmoid 
like transfer function of a two-layer feedforward network is used for a hidden layer of 
our network in Matlab software. The output layer is based on the linear transfer function 
(TF). Thenetwork will be trained with the Lеvenbеrg-Mаrquardt backpropagation 
algorithm. The structure of the neural network, which has input, hidden, and output 
layers,as shown in figure 8.   
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10 neurons were selected for a hidden layer of neural network architecture and 
one neuron both for input, output layers as in the picture above.  

The training results of ANN for the first (on the left side) and second (on the right 
side) closed-loop systems is illustrated in figure 9.  
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Overall, the training performance for the first system was slightly good compared 
to the second loop. The first loop was trained at 106 Epochs and the second at 911 
Epochs, which is very long. 

Finally, to check the output response of two independent closed-loopsystems, a 
block diagram of the PID controller feedback system was constructed with an Artificial 
Neural Network, shown in figure 10.  
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Figure 10 – Neural network-based PID controller 

 
The results of the first feedback system are illustrated in figure 11. 
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Figure 11 shows that the output response of the first loop using NN based PID 
controller was improved. It was found that the overshoot of the system was equal 
to𝑀𝑀𝑝𝑝=0.0397%, settling time𝑡𝑡𝑠𝑠 is 0.0194 seconds and rise time𝑡𝑡𝑟𝑟 is 0.0150 seconds. So, 
by using PID controllers with the Artificial Neural Network algorithm, there was 
obtained better results. 

The step response for the second closed-loop system with NN PID is illustrated in 
Figure 12.  
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Overall, the training performance for the first 
system was slightly good compared to the second 
loop. The first loop was trained at 106 Epochs and 
the second at 911 Epochs, which is very long.

Finally, to check the output response of two 

independent closed-loopsystems, a block diagram 
of the PID controller feedback system was 
constructed with an Artificial Neural Network, 
shown in figure 10. 
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Figure 12 – The step response of the 2nd  system

Figure 11 shows that the output response of 
the first loop using NN based PID controller was 
improved. It was found that the overshoot of the 
system was equal to Mp=0.0397%, settling time 
ts  is 0.0194 seconds and rise time tr  is 0.0150 

seconds. So, by using PID controllers with the 
Artificial Neural Network algorithm, there was 
obtained better results.

The step response for the second closed-loop 
system with NN PID is illustrated in Figure 12. 

The results show that the system hasan 
overshoot equal to Mp=0.0397%, settling time 
ts=1.1777, rise time tr – 0.9038. So, NN based PID 
controller helped to make the system stable and 
improve overall performance. 

Conclusion
In this article, the techniques of improving 

traditional PID controllers in crude oil refineries 
are considered. To sum up, there was studied the 
usage of artificial intelligence in different fields. 
As seen from the research done, the artificial 
intelligence-based PID controllers are one of the 
optimal algorithms that can be used for controlling 
the object and whole system. The artificial nеural 
nеtwork helps to predict future plant behaviors. 

Neural networks are widely applied to solve 
technical problems. Based on my research, it 
was discovered that the majority of researchers 
use ANN for modeling and designing linear and 
nonlinear systems for industrial control systems. 

Moreover, training a Nеural network-basedPID 
controller feedback system to control the process 
of separating methanol from water in a distillation 
column in a crude oil refinery showed good 
performances compared to the system without the 
AI network. It was proven that by using a neural 
network, the system response improved overshoots 
eliminated, rise time and settling times decreased. 
Applying the NN based PID controllers and 
replacing the conventional PID contrоllers reduced 
the error between desired values and system output.
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МЕТОДИКИ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ, ОБЗОР И ПРИМЕНЕНИЕ

АЙТЖАНОВА С.А.

Актюбинский филиал РГП «Казахстанский институт стандартизации и метрологии»,
030000, г. Актобе, Казахстан

Аннотация. В настоящей статье изложены нормативные правовые акты, стандарты и применение 
методик выполнения измерений. Описание нормы характерных показателей (требований) на каждую 
продукцию, будь то хлеб, молоко, нефтепродукты, изделия легкой или тяжелой промышленности 
и т.д., регламентируется в технических регламентах, а далее в нормативных документах на 
продукцию, где для каждого показателя обычно бывают ссылки на методы испытаний этой 
характеристики продукции. И для испытания продукции всегда необходим метод проведения 
испытаний. В большинстве случаев для данных целей уже разработаны стандартные методы 
проведения испытаний и измерений, которые описаны в отечественных или межгосударственных 
стандартах: СТ РК или ГОСТ, а также в международных – IEC, ISO и др. Однако для проведения 
испытаний в отдельных случаях стандартные методы отсутствуют. Решением задачи в данном 
случае является разработка собственной методики выполнения измерений, так называемой 
нестандартизированной, методики, где погрешности измерений при условии соблюдения всех 
требований документа гарантированы. В статье описаны стадии разработки, аттестации, 
утверждения и применения как обычных методик, так и референтных методик выполнения 
измерений. В статье приведены ссылки из законодательства Республики Казахстан в области 
обеспечения единства измерений на стандарты, нормативные правовые акты и Закона РК «Об 
обеспечении единства измерений».

Ключевые слова: методика, методика выполнения измерений, МВИ, государственная система 
обеспечения единства измерений, ГСИ

ӨЛШЕМДЕР ОРЫНДАУ ӘДІСТЕМЕЛЕРІ, ШОЛУ ЖӘНЕ ҚОЛДАНУ 

АЙТЖАНОВА С.А.

«Қазақстан стандарттау және метрология институты» РМК, «ҚазСтандарт» РМК 
Ақтөбе филиалы,  030000, Ақтөбе қ., Қазақстан 

Аңдатпа. Осы мақалада нормативтік құқықтық актілер, стандарттар және өлшемдер орындау 
әдістемелерінің қолданылуы мазмұндалған. Нан, сүт, мұнай өнімдері, жеңіл немесе ауыр өнеркәсіп 
бұйымдары және т.б. сияқты әрбір өнімдерге тән көрсеткіштердің (талаптардың) нормаларының 
сипаты техникалық регламенттерде, кейін әдетте әрбір көрсеткіш үшін өнімнің осы сипаттамасын 
сынау әдістеріне сілтемелер келтірілген өнімге арналған нормативтік құжаттарда реттеледі. 
Өнімді сынау үшін сынақтарды өткізу әдісі қажет. Көптеген жағдайларда осы мақсаттар үшін 
отандық немесе мемлекетаралық стандарттарда – ҚР СТ немесе ГОСТ, сондай-ақ халықаралық IEC, 
ISO және т.б. стандарттарда сипатталған сынақтар мен өлшемдерді орындаудың стандартты 
әдістері әзірленген. Алайда жекелеген жағдайларда сынақтарды өткізу үшін стандартты әдістер 
жоқ. Осы жағдайда мәселенің шешімі стандартталмаған деп аталатын өз өлшемдер орындау 
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әдістемелерін әзірлеу болып табылады, мұнда құжаттың барлық талаптарын сақтаған кезде 
өлшемдердің қателіктері кепілдендірілген. Мақалада қарапайым, сондай-ақ референттік өлшемдер 
орындау әдістемелерін әзірлеу, аттестаттау, бекіту және қолдану сатылары сипатталған. 
Мақалада өлшем бірлігін қамтамасыз ету саласындағы Қазақстан Республикасы заңнамасынан 
стандарттар, нормативтік құқықтық актілер мен «Өлшем бірлігін қамтамасыз ету туралы» 
Заңына сілтемелер келтірілген.

Түйінді сөздер: әдістеме, өлшемдер орындау әдістемесі, ӨОӘ, мемлекеттік өлшем бірлігін 
қамтамасыз ету жүйесі, МӨЖ
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Abstract. This article outlines regulatory legal acts, standards and the application of measurement 
procedures. The description of the norm of characteristic indicators (requirements) for each product, be it 
bread, milk, petroleum products, light or heavy industry products, etc. is regulated in technical regulations, 
and further in regulatory documents for products, where for each indicator there are usually references to 
test methods of this product characteristic. For testing products, a test method is always necessary. In most 
cases, standard methods of testing and measurements have already been developed for these purposes, which 
are described in domestic or interstate standards: ST RK or GOST, as well as in international IEC, ISO, etc. 
However, there are no standard methods for testing in some cases. The solution to the problem in this case is 
the development of its own measurement methodology, the so-called non-standardized methodology, where 
measurement errors, subject to compliance with all the requirements of the document, are guaranteed. The 
article describes the stages of development, certification, approval and application of both conventional 
methods and reference measurement procedures. The article contains references from the legislation of the 
Republic of Kazakhstan in the field of ensuring the unity of measurements to standards, regulatory legal acts 
and the Law «On ensuring the unity of measurements».
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Введение 
Методики, или методики выполнения изме

рений (МВИ), в соответствии с терминологией 
статьи 1 Закона Республики Казахстан [1] и 
Правил [2] определены как комплекс прaвил и 
норм, обеспечивающих получение результатов 
измерений с определенной погрешностью. 

Основные стандарты, устанавливающие 
порядок разработки, метрологической аттес
тации и применения методик, – это СТ РК                 
2.18 [3], ГОСТ 8.010 [4].

Основная часть
В связи с гармoнизацией международных и 

государственных требoваний к объектам оценки 
соответствия значительно расширился перечень 
регламентируемых характеристик для разных 

групп промышленной и продовольственной про
дукции, где качество и безопасность продукции 
характеризуются техническими, технологичес
кими и метрологическими нормами. Харак
теристики метрологических и технических 
норм должны гарантироваться достoверностью 
получаемых результатов, что достигается в 
результате обеспечения единства измерений. В 
этой связи особое внимание уделяется методикам, 
методам и средствам измерений, испытательному 
и вспомогательному оборудованию, стандартным 
образцам и аттестованным смесям, применяемым 
для контроля качества, а также для обеспечения 
безопасности продукции. 

МВИ используются для обеспечения норм 
точности в различных отраслях экономики, 
а также для выполнения установленных 
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требований и норм технических регламентов 
Таможенного сoюза (далее – ТР ТС) в рамках 
ЕАЭС, обеспечивающих качество и безопасность 
продукции и оказываемых услуг в республике. 
Поэтому возникает необходимость пересмотра 
и совершенствования действующих МВИ и 
разработки новых методик. 

Согласно СТ РК 2.18 [3], ГОСТ 8.010 [4] МВИ 
должны содержать как минимум следующие 
разделы, описывающие требования к:

- описанию области применения методик;
- погрешности измерений (точности изме

рений, приписанным характеристикам погреш
ности);

- техническим и метрологическим харак
теристикам, применяемым к средствам изме
рений, испытательному и вспомогательному 
оборудованию, стандартным образцам;

- условиям выполнения измерений,  
безопасности рабочих мест операторов и 
экологии,  уровню квалификации специалистов;

- описанию подготовки к выполнению 
измерений; 

- описанию отбора и подготовки образца 
пробы; 

- описанию выполнения измерений;
- обработке, оформлению полученных 

результатов измерений,  контролю погрешности 
результатов измерений по данной методике.

Лаборатория, применяющая МВИ, где 
показатели точности измерений, такие как пов
торяемость, внутрилабораторная прецизион
ность, воспроизводимость, правильность и 
точность анализа, установлены согласно РМГ 
61 [5] или погрешности по ГОСТ 8.207 [6], 
контролирует данные приписанные характе
ристики по РМГ 76 [7]. Нормы для внутри
лабораторного контроля устанавливаются с 
учетом приписанных характеристик погрешнос
ти или ее составляющих.

Разработанные и метрологически аттес
тованные методики подлежат регистрации в 
реестре государственной системы обеспечения 
единства измерений Республики Казахстан (ГСИ 
РК). Как правило, это МВИ, к которым установ
лены метрологические требования в норма
тивных правовых актах, в перечнях измерений 
ст. 22 [1]. Данную процедуру выполняет 
Государственный научный метрологический 
центр (ГНМЦ) при РГП «КазСтандарт».

Этапы разработки методик, затем аттестации 
и регистрации в реестре ГСИ РК:

- разработка Технического задания (исход

ных данных) и программы на МВИ, выбор 
метода или методов испытаний, измерений, 
исследование характеристик, параметров мето
дики (проведение экспериментальных испы
таний, измерений и составление технического 
отчета), согласование МВИ с надзорными орга
нами и заинтересованными предприятиями, 
организациями и утверждение, оформление 
МВИ по Приложению Б ГОСТ 8.010 [4], СТ РК 
1.5 [8], СТ РК 2.505 [9].

- метрологическая аттестация и утвержде
ние МВИ.

Самые актуальные области применения 
методик выполнения измерений – это 
охрана окружающей среды, защита жизни и 
здоровья граждан, безопасность труда и дви
жения транспорта, оценка соответствия, госу
дарственные учетные операции, торговые опе
рации между покупателем и продавцом, изме
рения в сфере коммунальных услуг и услуг связи.

Приведем примеры одних из немногих 
МВИ, разработанных в области нефти и газа, а 
также экологии:

- «МВИ установками измерительными 
«ОЗНА-МАССОМЕР» по определению массы 
нефти и объема нефтяного газа различными 
методами»;

- «МВИ СИКН (система измерений коли
чества и показателей качества нефти)» для 
разных предприятий при месторождениях, 
согласованных с АО «КазТрансОйл»;

- «МВИ СИРГ (система измерений рас
хода газа)» для разных предприятий при место
рождениях, согласованных с АО «КазТрансОйл»;

- «Методика выполнения измерений. Опре
деление натрия хлористого, натрия сернокислого, 
сухого остатка, влаги и нерастворимого остатка 
в отходах производства титриметрическим и 
гравиметрическим методами»;

- «Методика выполнения измерений со
держания урана в технологических урансо
держащих растворах и твердых полупродуктах 
потенциометрическим методом с использованием 
титратора»;

- «Количество извлекаемых из недр сырой 
нефти, нефти без учета воды, нефтяного газа. 
Методика выполнения измерений многофазными 
расходомерами Vx для компании «Шлюмберже 
Лоджелко Инк.» в РК»;

- «МВИ массовых концентраций дей
ствующих веществ пестицидов (гербицидов) в 
препаративных формах, высокочистых пести
цидах в твердых и жидких матрицах методом 



ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №1 (60), 2022

20

газожидкостной хроматографии».
Возможно также использование аттесто

ванных МВИ, разработанных в странах 
СНГ в соответствии с требованиями межго
сударственного документа ПМГ 44 [10]. 

Подробную информацию о зарегистриро
ванных методиках выполнения измерений можно 
найти на сайте https://techreg.qoldau.kz [11], а 
также информация о МВИ, зарегистрированных 
до 11 апреля 2019 г., приведена в архиве Реестра 
ГСИ РК на сайте https:// ksm.kz [12].

Безусловно, МВИ состоят из основных 
объектов ГСИ РК: это измеряемая единица 
величины, методы измерений, метрологические 
характеристики стандартных образцов и средств 
измерений. Использование новейших технологий 
при разработке методик обуславливает развитие 
системы передачи размеров единиц измерений 
от государственных эталонов рабочим эталонам 
и от последних – всем средствам измерений. При 
этом важно соблюдать обеспечение прослеживае
мости единицы измерения исследуемого объекта 
МВИ к государственным или рабочим эталонам, 
государственным стандартным образцам. 
Также необходимо учитывать, что, согласно                          
статье 9 [1], в республике допускается применять 
единицы величин Международной системы 
единиц, принятой Генеральной конференцией 
по мерам и весам в соответствии с документами 
Международной организации законодательной 
метрологии (МОЗМ), а также в установленном 
порядке по ГОСТ 8.417 [13].

При отсутствии государственных или 
рабочих эталонов, отсутствии стандартных 
образцов возможно применение референтных 
методик выполнения измерений. Статья 1 [1] и 
Правила [2] регламентируют, что референтную 
методику используют для оценки правильности 
результатов измерений, полученных по другим 

МВИ. При этом величины единиц результатов 
измерений референтной МВИ должны быть 
того же рода, что и в исследуемой МВИ. Также 
референтные методики применяются для 
калибровки средств измерений или аттестации 
метрологических характеристик стандартных 
образцов.

Для применения методики в качестве 
референтной МВИ лаборатории необходимо 
проведение опробования данной методики и 
описание прослеживаемости ее результатов до 
государственного стандартного образца либо до 
процедур, связанных с государственными или 
эталонами высших разрядов с высоким уровнем 
неопределенности. Кроме того, лаборатория 
должна быть аккредитована, что является 
показателем правильности выполнения методики 
референтного измерения и соответствующего 
применения используемых средств измерений, 
оборудования, реактивов и реагентов. 

Разработанные лабораториями референтные 
МВИ подтверждаются и затем публикуются 
национальными метрологическими институтами 
(или международными организациями) в 
сотрудничестве с Международным комитетом по 
весам и мерам (МКМВ; International Committee 
for Weightsand Measures; CIPM).

Вывод
Таким образом, повышение точности 

результатов измерений МВИ, установление и 
подтверждение соответствия методики предъ
являемым к ней метрологическим требованиям, 
обеспечение прослеживаемости результатов до 
эталонов, или стандартного образца, или рефе
рентной методики с требуемым для измерений 
уровнем неопределенности являются важным 
условием для обеспечения единства измерений. 
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D. Macpherson, D. Marker and C. Steinhorn. A subset A of a linearly ordered structure M is convex if for 
all a, b  A and c  M whenever a < c < b we have c  A. A weakly o-minimal structure is a linearly 
ordered structure M = M, =, <, … such that  any definable (with parameters) subset of  M is a union of 
finitely many convex sets in M. A criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in case of 
existing an element of the set of realizations of one of these types the definable closure of which has a non-
empty intersection with the set of realizations of another type is found. 
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Аңдатпа. Мақала бастапқыда Д. Макферсон, Д. Маркер және Ч. Стайнхорн терең зерттеген әлсіз 
o-минималдылық түсінігіне қатысты. Сызықтық реттелген M құрылымының А ішкі жиыны дөңес 
болады, егер кез келген a, b  A және c  M кезінде a < c < b бізде c  A болса.  Әлсіз o-минималды 
құрылым – бұл M құрылымының кез келген анықталатын (параметрлері бар) ішкі жиыны М-дегі 
дөңес жиындардың ақырлы санының бірігуі болатындай M = M, =, <,…  сызықты реттелген 
құрылым.  Бинарлық дөңестік рангілері теңдігінің критерийі әлсіз ортогональды емес алгебралық 
емес 1-типтері үшін дерлік омега-категориялық әлсіз o-минималды теорияларда осы түрлердің 
біреуінің жүзеге асу жиынынан элемент болған жағдайда табылады, оның анықталатын 
жабылуы басқа түрдегі іске асыру жиынымен бос емес қиылысы бар.   
 
Түйінді сөздер:  әлсіз о-минималдық, омега-категориялық дерлік, дөңестік рангісі, әлсіз 
ортогоналдық, эквиваленттік қатынас.  
 
 
Аннотация. Настоящая статья касается понятия слабой о-минимальности, первоначально 
глубоко исследованного Д. Макферсоном, Д. Маркером и Ч. Стайнхорном. Подмножество A 
линейно упорядоченной структуры M является выпуклым, если для любых a, b  A и c  M всякий 
раз, когда a < c < b, мы имеем c  A. Слабо о-минимальной структурой называется линейно 
упорядоченная структура M = M, =, <, … такая, что любое определимое (с параметрами) 
подмножество структуры M является объединением конечного числа выпуклых множеств в M. 
Найден критерий равенства бинарных рангов выпуклости для не слабо ортогональных 
неалгебраических 1-типов в почти омега-категоричных слабо о-минимальных теориях в случае 
существования элемента из множества реализаций одного из этих типов, определимое замыкание 
которого имеет непустое пересечение со множеством реализаций другого типа.   
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o-минималдылық түсінігіне қатысты. Сызықтық реттелген M құрылымының А ішкі жиыны дөңес 
болады, егер кез келген a, b  A және c  M кезінде a < c < b бізде c  A болса.  Әлсіз o-минималды 
құрылым – бұл M құрылымының кез келген анықталатын (параметрлері бар) ішкі жиыны М-дегі 
дөңес жиындардың ақырлы санының бірігуі болатындай M = M, =, <,…  сызықты реттелген 
құрылым.  Бинарлық дөңестік рангілері теңдігінің критерийі әлсіз ортогональды емес алгебралық 
емес 1-типтері үшін дерлік омега-категориялық әлсіз o-минималды теорияларда осы түрлердің 
біреуінің жүзеге асу жиынынан элемент болған жағдайда табылады, оның анықталатын 
жабылуы басқа түрдегі іске асыру жиынымен бос емес қиылысы бар.   
 
Түйінді сөздер:  әлсіз о-минималдық, омега-категориялық дерлік, дөңестік рангісі, әлсіз 
ортогоналдық, эквиваленттік қатынас.  
 
 
Аннотация. Настоящая статья касается понятия слабой о-минимальности, первоначально 
глубоко исследованного Д. Макферсоном, Д. Маркером и Ч. Стайнхорном. Подмножество A 
линейно упорядоченной структуры M является выпуклым, если для любых a, b  A и c  M всякий 
раз, когда a < c < b, мы имеем c  A. Слабо о-минимальной структурой называется линейно 
упорядоченная структура M = M, =, <, … такая, что любое определимое (с параметрами) 
подмножество структуры M является объединением конечного числа выпуклых множеств в M. 
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Introduction
Let L be a countable first-order language. 

Throughout this paper we consider L-structures and 
suppose that L contains a binary relation symbol 
< which is interpreted as a linear order in these 
structures. The notion of weak o-minimality was 
originally studied in [1]. Real closed fields with a 
proper convex valuation ring provide an important 
example of weakly o-minimal structures [2, 3].

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B means 
that a < b whenever a 
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Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

 B, and A < b means that A < 
{b}. For an arbitrary subset A of M we introduce the 
following notations: A+:={b
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to q  (denoting this by p ⊥w q) if there exist an 
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(RC(A)) is defined as follows: 
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4) RC(A) ≥  + 1 if there exist a 
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E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
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For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
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5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 
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with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
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there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
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We say that the convexity rank of an arbitrary 
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there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
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established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

) = 3 then a dense linear order is 
interpreted in $T$. Nonetheless there is an example 
(constructed by M.G. Peretyat'kin in [8]) of a theory 
with the condition I(T, 

Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

) = 3 that is not almost 

Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

-categorical.
In [9] the authors established almost 

Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

-categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle 
for the algebraic closure holds in almost 

Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

-categorical quite o-minimal theories.  Recently in 
[10] orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over 

Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

 for such 
theories and binarity of almost 

Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

-categorical quite 
o-minimal theories were proved. Also, in [11] binarity 
of almost omega-categorical weakly o-minimal 
theories of convexity rank 1 was established. At last, 
in the work [12] a criterion for binarity of almost 
omega-categorical weakly o-minimal theories in 
terms of convexity rank was found.

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, 

Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

 be 
non-algebraic. Then RCbin(p) < 

Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

.
Recall some notions originally introduced in 
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Recall some notions originally introduced in 

[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
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Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

-definable subset, let 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
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representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
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Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
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important example of weakly o-minimal 
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equivalence relation on Mn given by

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 
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that for every 2 ≤ i ≤ n each Ei-class is partitioned 
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subclasses and the following holds: 
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E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
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In this case, we say that the function f is 
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function is locally increasing (decreasing) of 
depth 0. 
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algebraic, p ⊥w q. Then the following holds: 
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non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 
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(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
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generality, suppose that p and q are isolated. The 
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Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 
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Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 
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M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
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In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 
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function is locally increasing (decreasing) of 
depth 0. 
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a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 
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some a  p(M). Then the following conditions are 
equivalent: 
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(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
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generality, suppose that p and q are isolated. The 
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Mn given by  
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 (1) p is irrational  q is irrational; 
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naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 
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Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 
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(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
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(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
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Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 
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relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) which partition p(M) into infinitely many infinite 
convex classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

for some (any) a 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 p(M). Consider the following 
formulas:

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

By Theorem 8 the function f is strictly monotonic 
on each E1-class and f is strictly monotonic on each 
Ek+1(a, M)/Ek for any a 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 p(M), where 1 ≤ k ≤ n-2. 
Therefore we have that E'1(x, y), …, E'n-1(x, y) are 
equivalence relations partitioning q(M) into infinitely 
many infinite convex classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

whence RCbin(q) > n, that contradicts the 
hypothesis.

(2)

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 (3). Since dcl({a}) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 q(M) 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 there 
exist b 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 q(M) and an L-formula 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 such that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

Assume the contrary: dcl({b}) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 p(M) 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 
Note that a 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 dcl({b}). Otherwise there exists a1
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last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  
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Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 
p(M) such that a1 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  
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which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
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t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  
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[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
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naturally embedded in M . Similarly, we can 
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precisely in definable sorts of the structure M , 
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which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 
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a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 dcl({b}). Since b  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 
dcl({a}), we have that  a1 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 dcl({a}), and this implies 
an infinity of dcl({a}), contradicting the almost 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

-categoricity of T. Thus, a

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 dcl({b}). Then there 
exists an L-formula 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  
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b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
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assumption. 
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which contradicts (3). 
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whence RCbin(q)  n, that contradicts the 
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exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
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then f bijectively maps p(M) onto q(M). Then 
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which contradicts (3). 
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p(M). Consider the following formula: 
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for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
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M)/Ei, since otherwise there exists an -
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which contradicts that the relation Ei+1 is an 
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p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 
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b  dcl({a}), we have that  a1  dcl({a}), and this 
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then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
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M)/Ei, since otherwise there exists an -
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which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
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. It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our assumption.

       (3) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 (4). Assume the contrary: f: p(M) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 
q(M) is an 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable function and f is not locally 
constant on p(M). Then f must be locally monotonic 
on p(M), i.e. either locally increasing or locally 
decreasing by Proposition 6. But then f bijectively 
maps p(M) onto q(M). Then dcl({b}) 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 
for some (any) b 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 q(M) which contradicts (3).
(4)  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 (1). Let f: p(M) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
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Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable function being locally constant on p(M). 
Consider the following formula:

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

Clearly, E(x, y) is an equivalence relation 
partitioning p(M) into infinitely many infinite 
convex classes.
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Let RCbin(p) = n. Then there exist  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, y) 
partitioning p(M) into infinitely many infinite convex 
classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 
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Obviously, for some 1 ≤ i ≤ n-1 we have that E(x, 

y) ≡ Ei(x, y). Then we assert that RCbin(q) = n – i. 
Indeed, f is a constant on each Ei-class. Further, we 
consider the behaviour of the function f on each Ei+1(a, 
M)/Ei, where a  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
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for some (any) a  p(M). Consider the 
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 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

(x, y) such that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

which contradicts that the relation Ei+1 is an 
immediate successor of the relation Ei(x, y) among 
all 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable equivalence relations on  p(M). 
Similarly, we can prove that f is strictly monotonic on 
each Ek+1(a, M)/Ek, where i ≤ k ≤ n – 2 and f is strictly 
monotonic on p(M)/En-1.

Consider the following formulas:

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

We can establish that E'i+1(x, y), …, E'n-1(x, y) are 
equivalence relations partitioning q(M) into infinitely 
many infinite convex classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

whence RCbin(q) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable equivalence 

relation Eq(x, y) partitioning q(M) into infinitely 
many infinite convex classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
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monotonic on each E1-class and f is strictly 
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whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 
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M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
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’(a, b). It is not difficult to see that f bijectively 
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then f bijectively maps p(M) onto q(M). Then 
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(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 
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E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
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Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
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consider the following formula:
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Ê (x, y) :=  t1  t2 [Eq (t1, t2)  f(x) = t1  f(y) 

= t2]. 
 
Obviously,  
Ei(a, M)  Ê (a, M)  Ei+1(a, M), 
 
contradicting also that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on 
p(M). Similarly, we can prove that there is no an 
-definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
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Thus, RCbin(q) = n – i, i.e. RCbin(p) > RCbin(q).  
 
Corollary 11. Let T be an almost -categorical 

weakly o-minimal theory, p, q  S1() be non-
algebraic, p ⊥w q, dcl({a})  q(M)   for some 
a  p(M). Then the following conditions are 
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 (2)} there exists an -definable function f: 

p(M) → q(M) being a bijection of p(M) on q(M); 
 (3)} dcl({b})  p(M)   for any b  q(M); 
 (4)} there exists an -definable function f: 

p(M) → q(M) being locally monotonic on p(M). 
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contradicting also that the relation Ei+1 is an 
immediate successor of the relation Ei(x, y) among 
all  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 
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(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
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depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 
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-categorical 
weakly o-minimal theory, p, q 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 
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for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
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M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 
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• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
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 (1)  (2). Assume the contrary: there exists 
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equivalent: 

(1) RCbin(p ) >RCbin(q); 
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Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable function f: p(M)  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 q(M) being locally monotonic on p(M).

Conclusion
We have found necessary and sufficient conditions 

in order to the binary convexity ranks of non-weakly 
orthogonal non-algebraic 1-types in almost omega-
categorical weakly o-minimal theories were equal in 
the case of existing some definable function between 
the sets of realizations of these 1-types.    
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СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ КЛАССИФИКАЦИИ ДАННЫХ 
ПРИ ПРОГНОЗИРОВАНИИ ЦЕН TRADE-IN АВТО

АСУБАЕВА Е.М., АБДИАХМЕТОВА З.М.

Казахский национальный университет имени аль-Фараби,
050040, г. Алматы, Казахстан

Аннотация. В статье реализованы и проанализированы алгоритмы машинного обучения для 
предсказания цен авто. Предсказание цен – одна из самых сложных, но интересных задач. В предсказании 
задействовано много факторов – год выпуска, состояние, пробег, объем двигателя и т.д. Эти аспекты 
в совокупности влияют на цены авто, делая их нестабильными  и затрудняя прогнозирование с высокой 
степенью точности. Методы машинного обучения могут выявить закономерности и идеи, которые 
мы раньше не видели, и их можно использовать для безошибочно точных прогнозов и классификации 
данных. Выбор надлежащего алгоритма классификации данных, который подходил бы для отдельно 
взятой задачи, зависит от объема, качества и природы данных, от вычислительных ресурсов 
компьютера, а также от того, как вы планируете использовать результат. Каждый алгоритм 
классификации имеет свои особенности и основывается на определенных допущениях. В конечном счете 
качество классификатора, его вычислительная и предсказательная мощность зависят от базовых 
данных, предназначенных для тренировки алгоритма. Цель данной статьи – рассмотреть этапы 
предварительной обработки тренировочных данных и показать, как машинное обучение в частности 
и информационные технологии в целом преуспели в разработке инструментов для моделирования, 
проектирования, прогнозирования, планирования и поддержки принятия решений в области продажи 
авто. В данном исследовании предлагается гибридный подход к задачам прогнозирования, то есть 
к решению задач прогнозирования с применением методов статистического анализа и машинного 
обучения.

Ключевые слова: машинное обучение, задача классификации, логистическая регрессия, случайный лес, 
дерево принятия решений, k-ближайших соседей, RESTAPI.

TRADE-IN АВТО БАҒАЛАРЫН БОЛЖАУ КЕЗIНДЕ ЖІКТЕУ ӘДІСТЕРІН 
САЛЫСТЫРМАЛЫ ТАЛДАУ

АСУБАЕВА Е.М., АБДИАХМЕТОВА З.М.

әл-Фараби атындағы Қазақ ұлттық университеті,
050040, Алматы қ., Қазақстан

Аңдатпа. Мақалада автокөлік бағасын болжау үшін машиналық оқыту алгоритмдері енгізілген және 
талданған.  Бағаны болжау – күрделі, бірақ қызықты тапсырмалардың бірі. Болжауға көптеген 
факторлар қатысады – шығарылған жылы, жағдайы, жүрісі, қозғалтқыш көлемі және т.б. Барлық 
осы аспектілер автокөлік бағасын тұрақсыз етеді және жоғары дәлдікпен болжауды қиындатады. 
Машиналық оқыту әдістерін бұрын көрмеген үлгілер мен идеяларды ашып және оларды дәл болжау 
мен жіктеу үшін қолдануға болады. Берілген тапсырмаға сәйкес келетін деректерді жіктеу әдісін 
таңдау – деректердің көлеміне, сапасына және сипатына, компьютердің есептеу ресурстарына 
және нәтижені қалай пайдалану жоспарларына байланысты. Әрбір жіктеу алгоритмінің өзіндік 
ерекшеліктері бар және ол белгілі болжамдарға негізделген. Бұл мақаланың мақсаты – оқыту 
деректерін алдын ала өңдеу кезеңдерін қарастыру және атап айтқанда, машиналық оқыту және 
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тұтастай алғанда ақпараттық технологиялар автомобиль саласында модельдеу, жобалау, болжау, 
жоспарлау және шешімдерді қолдау құралдарын әзірлеуде қалай табысқа жеткенін көрсету. Бұл 
зерттеу есептерді болжаудың гибридті тәсілін ұсынады, яғни статистикалық талдау және 
машиналық оқыту әдістерін пайдалана отырып болжау мәселелерін шешу.

Түйінді сөздер: машиналық оқыту, жіктеу мәселелері, логистикалық регрессия, кездейсоқ орман, 
шешім ағашы, k-жақын көршілер, RESTAPI.

COMPARATIVE ANALYSIS OF DATA CLASSIFICATION METHODS 
FOR PREDICTION OF TRADE-IN AUTO PRICES

ASSUBAYEVA Y.M., ABDIAKHMETOVA Z.M.,

Al-Farabi Kazakh National university,050040, Almaty, Kazakhstan

Abstract. This article implements and analyzes machine-learning algorithms, for predicting carsprices.
Predicting prices is one of the most challenging but interesting tasks. There are so many factors involved in 
the prediction - year of manufacture, condition, mileage, engine size, etc. All these aspects combine to make 
auto prices volatile and very difficult to predict with a high degree of accuracy. Machine learning techniques 
can uncover patterns and ideas that we have not seen before, and can be used to predict and classify data 
accurately and accurately. The choice of the proper data classification algorithm, which would be suitable 
for a given task, depends on the volume, quality and nature of the data, on the computing resources of the 
computer, and how you plan to use the result. Each classification algorithm has its own characteristics and is 
based on certain assumptions. Also requires practical skills. In practice, it is always recommended to compare 
the quality of at least several different learning algorithms in order to choose the best model for a particular 
task, since the most experienced data scientists will not be able to tell which algorithm is more efficient. 
Algorithms can differ in the number of features or samples, the noise level in the dataset, and whether the 
classes are linearly separable or not. Ultimately, the quality of the classifier, its computational and predictive 
power, depends on the underlying data intended for training the algorithm. The purpose of this article is 
to consider the stages of pre-processing training data, and show how machine learning in particular and 
information technology in general have succeeded in developing tools for modeling, designing, predicting, 
planning and decision support in the field of auto sales. This study proposes a hybrid approach to forecasting 
problems, that is, solving forecasting problems using statistical analysis and machine learning methods.

Keywords: machine learning, classification problems, logistic regression, random forest, decision tree, 
k-nearest neighbor, REST API.

Введение
Машинное обучение (ML) стало одной из 

самых захватывающих и прорывных технологий 
современности [1, 2]. Такие крупные компании, 
как Google, Apple, Microsoft, Amazon и другие, 
вкладывают значительный капитал в разработку 
методов и приложений,  в эту область исследова
ния, открывая путь к новым возможностям. 
Например, когда приложение Kaspibank принимает 
решение по одобрению кредита или когда 
Netflix рекомендует фильм, который может вам 
понравиться, разговоры с речевыми ассистентами 
по смартфону происходят с помощью алгоритмов 
машинного обучения. 

Работая в сфере продаж новых легковых 

и легких коммерческих автомобилей, мы стол
кнулись с такой глобальной проблемой, как спад 
производства, и новыми проблемами в логистике, 
связанными с разрывом цепочек поставок. 
Ключевой проблемой для автопрома с лета 2020 
г. остается дефицит электронных компонентов, 
из-за чего автозаводы вынуждены сокращать 
выпуск машин и уходить в простои. Это привело 
к нехватке автомобилей и росту цен на новые 
легковые машины. В сравнении с октябрем 2020 
г. в 2021 г. продажи упали на 18.1%. Аналитики 
утверждают, что автопрому предстоит еще пройти 
долгий путь, чтобы преодолеть сложившийся 
кризис. Поэтому руководство ООО «Р-Моторс 
ЛАДА» приняло решение компенсировать спад 
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продаж новых авто за счет выкупа вторичного 
авто для дальнейшей перепродажи. 

Если в ценообразование на первичном рынке 
автомобилей входит логистика, налоги, желае
мая прибыль дилера и зарплата цепочки его 
сотрудников, то факторы формирования стоимости 
цен на trade-in авто куда более обширные. 
Поэтому важно максимально объективно оценить 
состояние машины и в соответствии с этим выс
тавить стоимость, принимая во внимание такие 
показатели, как:

−	год выпуска авто;
−	техническое состояние и состояние кузова;
−	пробег;
−	особенности комплектации;
−	время продажи (даже сезон, в который авто 

выставляется на реализацию, оказывает влияние 
на спрос и, соответственно, стоимость);

−	востребованность модели на рынке;
−	сервисная история.
Традиционный подход к ценообразованию 

полностью опирается на слово эксперта, который 
принимает решение только на основе своего 
опыта.

Машинное обучение задействует сложные 
алгоритмы для того, чтобы учитывать множество 
факторов и устанавливать правильные цены для 
тысячи продуктов практически за секунды [4]. 
Модели ценообразования на базе машинного 
обучения определяют паттерны полученных 
данных, что дает возможность определять цены с 
учетом факторов, о которых менеджер по выкупу 
мог даже не догадываться.

На практике всегда рекомендуется сравнить 
качество нескольких разных алгоритмов 
обучения, чтобы выбрать наилучшую модель 
для отдельно взятой задачи, так как даже самые 
опытные специалисты по обработке и анализу 
данных не смогут сказать, какой алгоритм 
эффективнее [3]. Алгоритмы могут отличаться 
по числу признаков либо образцов, уровню 
шума в наборе данных и по тому, являются 
классы линейно разделимыми или нет. В рамках 
этой статьи будут рассмотрены такие методы 
классификации, как логистическая регрессия, 
случайный лес, дерево принятия решений,                                                                                                              
k-ближайших соседей, для прогнозирования 
цен на подержанные авто с использованием 
технологии машинного обучения. 

Материалы и методы исследования
Задача классификации является подкатего

рией методов машинного обучения с учителем, 

цель которой заключается в определении катего
риальных меток классов для следующих экзем
пляров на основе исторических наблюдений [5]. 
Здесь определение «с учителем» относится к 
коллекции образцов, в которых нужные метки 
принадлежности к классам уже известны. При 
обучении с учителем извлекается модель на основе 
алгоритмов классификации и из маркированных 
тренировочных данных, которая позволяет делать 
прогнозы о ранее не встречавшихся или будущих 
данных [6].

Другая подкатегория методов обучения с 
учителем представляет регрессия, где результат – 
непрерывная величина. Метки в классификации 
могут иметь двоичную природу, к примеру филь
трация почты на спам и не спам. Типичным 
примером многоклассовой классификации 
является рукописное распознавание символов. 

Существует множество методов классифи
кации с различными подходами при реализации. 
Каждый алгоритм имеет свои особенности и 
основывается на определенных допущениях. В 
конечном счете качество классификатора, про
цент точности предсказания зависят от трени
ровки алгоритма. Во время тренировки алго
ритма задействуются такие шаги, как отбор приз
наков, выбор качественной метрики, выбор клас
сификатора и алгоритмов оптимизации, оценка 
качества модели, тонкая настройка алгоритма. 

Классификаторы на основе алгоритма                            
деревьев принятия решений (DecisionTrees, 
DT) [14] представляют собой иерархическую 
древовидную структуру (подмножества), 
которая образовалась путем принятия решений, 
основываясь на постановке ряда вопросов [6]. 
Дерево содержит корень, откуда идет разбиение 
данных по признаку, тем самым генерируя правила, 
что ведет к приросту информации (Information 
Gain, IG). Процесс разбиения данных повторяется 
в каждом дочернем узле (Node) в зависимости от 
условия разветвления до тех пор, пока не получится 
результат прогнозирования (однородный лист). 
Для оценки качества разветвления можно исполь
зовать такие показатели, как коэффициент Джини 
или среднеквадратическая ошибка (MSE).У каж
дого узла столько ветвлений, сколько значений 
имеет выбранный признак. На практике результат 
может привести к образованию глубоких деревьев, 
что является признаком переобучения. Чтобы 
избежать этого, рекомендуется устанавливать 
пределы максимальной глубины. Существуют 
множества библиотек, где можно визуализировать 
результат таких деревьев принятия решений. 
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Целевая функция алгоритма на основе дерева 
определяется следующим образом:
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гдe𝑓𝑓– это признак, по которому выполняется расщепление, 𝐷𝐷𝑝𝑝 и 𝐷𝐷𝑗𝑗)– набор 
данных родительского и j-го дочернего узла, I – мера неоднородности, 𝑁𝑁𝑝𝑝–
общее число образцов в родительском узле и 𝑁𝑁𝑗𝑗 – число образцов в j-м 
дочернем узле [1].  

Деревья решений могут создавать сложные границы решения путем 
деления пространства признаков на прямоугольники. Чтобы избежать глубоких 
деревьев, в библиотеке scikit-learn предусмотрена возможность указывать 
максимальную глубину. Таким образом, можно легко натренировать дерево, 
обходя сложные границы решения.  

Логистическая регрессия [17] – один из простых и одновременно мощных 
алгоритмов для задач линейной и бинарной классификации. Несмотря на 
название этого метода, логистическая регрессия – это модели задачи 
классификации, а не регрессии. Модель с динамичным обучением 
стохастического градиентного спуска позволяет прогнозировать вероятность 
отдельно взятого события [7]. Алгоритм статистическим методом предсказания 
событий максимизирует условные вероятности тренировочных данных, делая 
ее более подверженной выбросам. Практическая ценность заключается в том, 
чтомодель легче реализовать, чем модели на основе опорных векторов (SVM). 
Методы SVM главным образом сосредоточены на точках, ближайших к 
границе решения. Кроме того, модели логистической регрессии можно легко 
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предсказания событий максимизирует условные 
вероятности тренировочных данных, делая ее 
более подверженной выбросам. Практическая 
ценность заключается в том, что модель легче 
реализовать, чем модели на основе опорных 
векторов (SVM). Методы SVM главным образом 
сосредоточены на точках, ближайших к границе 
решения. Кроме того, модели логистической 
регрессии можно легко обновлять, упрощая работу 
с потоковой передачей данных. Однако модель не 
лишена метода регуляризации для обеспечения 
предотвращения переобучения, фильтрации 
шума из данных. В основе регуляризации лежит 
идея внесения дополнительной информации 
для наложения штрафа на экстремальные веса 
параметров. Стандартной формой регуляризации 
является L2-регуляризация весов, которую можно 
записать следующим образом [3]:
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дополнительной информации для наложения штрафа на экстремальные веса 
параметров. Стандартной формой регуляризации является L2-регуляризация 
весов, которую можно записать следующим образом [3]: 
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Здесь 𝛬𝛬 – это параметр регуляризации лямбда. Регуляризация является 

еще одним аргументом в пользу важности масштабирования признаков, таких 
как стандартизация. Чтобы регуляризация работала должным образом, 
необходимо обеспечить сопоставимость весов. 

Алгоритм случайного леса (randomforest) [14] еще один пример 
классификатора с учителем, который используется также и для регрессии, 
приобрел популярность в ML в таких задачах, как механизмы рекомендаций, 
классификация изображений, за счет своей простоты использования, 
классификационной способности и меньшей восприимчивости к переобучению. 
Интуитивно лес принятия решения можно рассматривать как объединение 
нескольких деревьев решений для достижения единого результата. Основная 
идея заключается в том, чтобыобъединить слабые деревья для создания более 
устойчивой модели к выбросу данных.  

Для назначения метки класса агрегируется прогноз из каждого дерева на 
основе голосов, т.е. наиболее частая категориальная переменнаядаст 
предсказанный класс. Каждое дерево в лесу решения классификации выводит 
гистограмму ненормализованной частоты меток с помощью голосования [5]. В 
ходе статистической обработки суммируются эти гистограммы и 
нормализуется результат для получения вероятностных значений для каждой 
метки. Деревья с высокой достоверностью прогноза имеют больший вес в 
окончательном принятии решения ансамблей.  

Большое преимущество леса принятия решений в том, что не приходится 
переживать о переобучении, так как модель устойчива к шуму из отдельных 
деревьев решений. Как правило, чем больше число деревьев, тем выше качество 
классификатора на основе леса, достигаемое за счет вычислительной емкости 
[12]. 

Последний алгоритм, рассматриваемый в данной статье, – это  
классификатор на основе k-ближайших соседей (k-nearestneighborclassifier, 
KNN) [15]. Алгоритм интересен тем, что является примером ленивого обучения 
[10]. Классификатор получил такое название из-за своей очевидной простоты – 
он не извлекает различающую функцию из тренировочных данных, а вместо 
этого запоминает тренировочный набор данных. 

Число k– это количество соседних объектов в пространстве признаков, 
которые сравниваются с классифицируемым объектом путем измерения 
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Алгоритм случайного леса (randomforest) [14] 
– еще один пример классификатора с учителем, 
который используется также и для регрессии, 
приобрел популярность в ML в таких задачах, 
как механизмы рекомендаций, классификация 
изображений, за счет своей простоты исполь
зования, классификационной способности и 
меньшей восприимчивости к переобучению. 
Интуитивно лес принятия решения можно рас
сматривать как объединение нескольких деревьев 
решений для достижения единого результата. 
Основная идея заключается в том, чтобы 
объединить слабые деревья для создания более 
устойчивой модели к выбросу данных. 

Для назначения метки класса агрегируется 
прогноз из каждого дерева на основе голосов, 
т.е. наиболее частая категориальная переменная 
даст предсказанный класс. Каждое дерево в лесу 
решения классификации выводит гистограмму 
ненормализованной частоты меток с помощью 
голосования [5]. В ходе статистической обработки 
суммируются эти гистограммы и нормализуется 
результат для получения вероятностных 
значений для каждой метки. Деревья с высокой 
достоверностью прогноза имеют больший вес в 
окончательном принятии решения ансамблей. 

Большое преимущество леса принятия 
решений в том, что не приходится переживать о 
переобучении, так как модель устойчива к шуму 
из отдельных деревьев решений. Как правило, 
чем больше число деревьев, тем выше качество 
классификатора на основе леса, достигаемое за 
счет вычислительной емкости [12].

Последний алгоритм, рассматриваемый в 
данной статье, – это  классификатор на основе 
k-ближайших соседей (k-nearestneighborclassifier, 
KNN) [15]. Алгоритм интересен тем, что является 
примером ленивого обучения [10]. Классификатор 
получил такое название из-за своей очевидной 
простоты – он не извлекает различающую 
функцию из тренировочных данных, а вместо 
этого запоминает тренировочный набор данных.

Число k – это количество соседних объектов 
в пространстве признаков, которые сравниваются 
с классифицируемым объектом путем измерения 
расстояния. Для этого необходимо определиться 
с метриками расстояния. Метрики расстояния 
подбираются в зависимости от признака 
набора данных. Для образцов с вещественными 

ФИЗИКО-МАТЕМАТИЧЕСКИЕ И ТЕХНИЧЕСКИЕ НАУКИ
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значениями часто используется простая евкли
дова мера. Основываясь на метрике расстояния, 
алгоритм KNN находит в тренировочном 
наборе данных k образцы, которые являются 
самыми близкими к классифицируемой 
точке. Например, если k=6, то каждый объект 
сравнивается с шестью соседями. В ходе 
обучения алгоритм улавливает идею сходства 
(расстояние) и запоминает все векторы признаков 
и соответствующие им метки классов. При работе 
с наблюдениями для меток класса, которые 
алгоритм еще не видел, вычисляется расстояние 
между вектором нового наблюдения и ранее 
запомненными. Затем выбирается k ближайших 
к нему векторов, и новый объект относится к 
классу, которому принадлежит большинство из 
них [3]. Правильный выбор числа k крайне важен 
для нахождения хорошего равновесия между 
переобучением и недообучением. 

Машинное обучение является мощным и 
эффективным инструментом при реализации 
алгоритмов классификации, однако определяющее 
значение в этих процессах имеет качество 
исходных данных [9], так как качество данных и 
объем полезной информации являются ключевыми 
факторами, которые определяют, как хорошо 
алгоритм сможет обучиться. Следовательно, 
крайне важно сначала набор данных подвергнуть 
предварительной обработке и только потом 
подавать его на вход обучаемого алгоритма. 
Реальные наборы данных могут содержать 
пропущенные значения из-за отсутствия данных, 
операторской ошибки при заполнении и т.д. В 
параметрах некоторых моделей есть возможность 
указать игнорировать пропуски (use_missing = 
false). Лучшей стратегией было бы заполнить 
недостающие значения, чем избавляться от 
наблюдений, в которых отсутствуют данные, 
но стоит учесть, что выбор неудачного 
метода заполнения пропущенных значений 
не всегда приводит к улучшению результата 
прогнозирования. Именно поэтому проведение 
подготовки исходных данных, их предварительная 
обработка позволяют значительно повысить 
точность результатов, получаемых в ходе 
применения машинного обучения. В данном 
эксперименте создание хороших тренировочных 
наборов резюмировалось в пяти шагах.

Шаг первый: исключение признаков, которые 
не несут смысловой нагрузки для поступающего 
анализа. В данном дата-сете это id, vin код, 
ссылки на сайт, где можно подробно увидеть авто, 
координаты.

Шаг второй: импутация и удаление данных [12]. 
Это процесс замещения пропущенных, 

некорректных значений другими значениями. 
Один из наиболее распространенных методов 
интерполяции является импутацией простым 
средним значением всего признакового столбца. 
Для категориальных данных удобно заменять 
пропущенные значения самыми частотными 
(mostfrequent). Довольно часто используемый 
подход при работе с отсутствующими данными 
– это исключение записей (строк) или полей 
(столбцов), в которых встречаются пропуски 
(NaN). В крупных дата-сетах, чтобы увидеть 
количество пропущенных данных, можно 
воспользоваться методом sum по каждому 
столбцу. Один из самых простых способов 
исключить все объекты, которые содержат 
значения NaN (т.е. notanumber, не число), – метод 
dropna. Это приводит к сокращению объема 
данных и повышению его смысловой ценности.
Однако этот метод несет в себе определенные 
недостатки; например, можно в конечном счете 
удалить слишком много образцов, которые 
сделают надежный анализ невозможным. 

Шаг третий: корреляционный анализ. 
Является основой анализа статистических данных, 
цель которого заключается в определении наличия 
каких-либо значимых связей, закономерностей или 
тенденций. Итог такого анализа  –  коэффициент 
корреляции, который показывает, насколько 
сильна связь между двумя переменными в наборе 
данных [8]. Положительный результат корреляции 
означает, что обе переменные увеличиваются 
по отношению друг к другу, в то время как 
отрицательная корреляция означает, что по мере 
того, как одна переменная уменьшается, другая 
увеличивается. Применение корреляционного 
анализа позволяет исследователям определить, 
какие аспекты и переменные зависят друг от 
друга, результат которых может дать полезные 
сведения или отправную точку для дальнейших 
исследований и более глубокого понимания. 
Наглядно данную связь можно увидеть, построив 
тепловую карту плотности с помощью различных 
библиотек визуализации данных (рисунок 1,               
стр. 35). Интерпретация полученного результата 
– коэффициент корреляции, колеблется от -1 до 
+1. Если значение близко к +1, значит, существует 
не так много положительной корреляции, при -1 
означает, что существует сильная отрицательная 
корреляция. Когда он близок к нулю, это означает, 
что корреляции нет.
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все объекты, которые содержат значения NaN (т.е.notanumber, не число), – 
метод dropna. Это приводит к сокращению объема данных и повышению его 
смысловой ценности.Однако этот метод несет в себе определенные недостатки; 
например, можно в конечном счете удалить слишком много образцов, которые 
сделают надежный анализ невозможным.  

Шаг третий: корреляционный анализ. Является основой анализа 
статистических данных, цель которого заключается в определении наличия 
каких-либо значимых связей, закономерностей или тенденций. Итог такого 
анализа – коэффициент корреляции, который показывает, насколько сильна 
связьмежду двумя переменными в наборе данных [8]. Положительный 
результат корреляции означает, что обе переменные увеличиваются по 
отношению друг к другу, в то время как отрицательная корреляция означает, 
что по мере того, как одна переменная уменьшается, другая 
увеличивается.Применениекорреляционного анализа позволяет исследователям 
определить, какие аспекты и переменные зависят друг от друга, результат 
которых может дать полезные сведения или отправную точку для дальнейших 
исследований и более глубокого понимания. Наглядно данную связь можно 
увидеть, построив тепловую карту плотности с помощью различных библиотек 
визуализации данных (рисунок 1). Интерпретация полученного результата – 
коэффициент корреляции, колеблется от -1 до +1. Если значение близко к 
+1,значит, существует не так много положительной корреляции, при -1 
означает, что существует сильная отрицательная корреляция. Когда он близок к 
нулю, это означает, что корреляции нет. 
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Как видно на рисунке 1, коэффициент корреляции с целевой 

функциейнизкий, что может привести к менее точному предсказанию. Тепловая 
карта будет более эффективной в представлении данных, если будут удалены 

Рисунок 1 – Визуализация корреляционного анализа 

Как видно на рисунке 1, коэффициент корреляции с целевой функцией низкий, что может привести 
к менее точному предсказанию. Тепловая карта будет более эффективной в представлении данных, 
если будут удалены избыточные данные, которые действуют на анализ данных как отвлекающий шум.

Шаг четвертый: избавиться от выбросов. Выбросы сильно отличаются от других наборов данных 
из-за изменчивости в измерениях или же в ходе ошибки ввода данных [8]. Если возможно, выбросы 
следует исключить из набора данных. Однако обнаружение этих аномальных экземпляров может быть 
трудным и не всегда возможным. Если признак численный, то можно построить гистограмму или 
коробчатую диаграмму (ящик с усами):

избыточные данные, которые действуют на анализ данных как отвлекающий 
шум. 

Шаг четвертый: избавиться от выбросов. Выбросы сильно отличаются от 
других наборов данных из-за изменчивости в измерениях или же в ходе ошибки 
ввода данных [8]. Если возможно, выбросы следует исключить из набора 
данных.Однако обнаружение этих аномальных экземпляров может быть 
трудным и не всегда возможным. Если признак численный, то можно построить 
гистограмму или коробчатую диаграмму (ящик с усами): 

 

 
Рисунок 2 – Построение коробчатой диаграммы для определения 

выбросов в целевой переменной 
 
Шаг пятый: обработка категориальных данных. Результат 

прогнозирования таких алгоритмов, как дерево решений, может быть получен 
непосредственно из категориальных данных без преобразования данных (это 
зависит от конкретной реализации). Когда алгоритмы как KNN не могут 
работать с категориальными данными напрямую. Они требуют, чтобы все 
входные и выходные переменные были числовыми.Поэтому для кодирования 
меток классов использовался метод LabelEncoder библиотеки scikit-learn, 
который однократно кодирует фиктивные переменные для категориальных 
данных. Затем можно применить словарь соответствий для преобразования 
меток классов в целые числа (таблица 1). 

 
Таблица 1 – Словарь соответствия после присвоения меток 

 
№ Drive Fuel Color Метка 
1 FWD Gas Red 0 
2 RWD Diesel White 1 
3 AWD Petrol Black 0 
4 4WD Electric Gray 1 
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Рисунок 2 – Построение коробчатой  диаграммы для определения выбросов 
в целевой переменной
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Как видно на рисунке 1, коэффициент 
корреляции с целевой функцией низкий, что 
может привести к менее точному предсказанию. 
Тепловая карта будет более эффективной в 
представлении данных, если будут удалены 
избыточные данные, которые действуют на анализ 
данных как отвлекающий шум.

Шаг четвертый: избавиться от выбросов. 
Выбросы сильно отличаются от других наборов 

данных из-за изменчивости в измерениях 
или же в ходе ошибки ввода данных [8]. Если 
возможно, выбросы следует исключить из набора 
данных. Однако обнаружение этих аномальных 
экземпляров может быть трудным и не всегда 
возможным. Если признак численный, то 
можно построить гистограмму или коробчатую 
диаграмму (ящик с усами):
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Шаг пятый: обработка категориальных дан
ных. Результат прогнозирования таких алгорит
мов, как дерево решений, может быть получен 
непосредственно из категориальных данных без 
преобразования данных (это зависит от конкретной 
реализации). Когда алгоритмы как KNN не могут 
работать с категориальными данными напрямую, 
они требуют, чтобы все входные и выходные 
переменные были числовыми. Поэтому для коди
рования меток классов использовался метод 
Label Encoder библиотеки scikit-learn, который 
однократно кодирует фиктивные переменные для 
категориальных данных. Затем можно применить 
словарь соответствий для преобразования меток 
классов в целые числа (таблица 1).

Таблица 1 – Словарь соответствия после при
своения меток

№ Drive Fuel Color Метка

1 FWD Gas Red 0

2 RWD Diesel White 1

3 AWD Petrol Black 0

4 4WD Electric Gray 1

При создании модели машинного обучения 
важно измерить результат работы модели. 
Обычно используемый метод измерения эффек
тивности алгоритма классификации – это 
матрица неточностей (матрица истинности, 
confusionmatrix) [13]. Матрица неточностей отоб
ражает количество правильных прогнозов по 
сравнению с количеством неправильных прог
нозов. В случае бинарного классификатора  это  
будет количество истинных, ложных положитель
ных, отрицательных результатов. Основываясь 
на этих числах, можно рассчитать некоторые 
значения, объясняющие производительность               
модели [12].

Точность (accuracy) – это мера того, сколько 
правильных прогнозов модель сделала для 
полного набора тестовых данных. Формула для 
вычисления точности выглядит следующим 
образом:

алгоритма классификации – это матрица неточностей (матрица истинности, 
confusionmatrix) [13]. Матрица неточностей отображает количество правильных 
прогнозов по сравнению с количеством неправильных прогнозов. В случае 
бинарного классификатора это будет количество истинных, ложных 
положительных, отрицательных результатов. Основываясь на этих числах, 
можно рассчитать некоторые значения, объясняющие производительность 
модели [12]. 

Точность (accuracy) – это мера того, сколько правильных прогнозов 
модель сделала для полного набора тестовых данных. Формула для вычисления 
точности выглядит следующим образом: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹                           (3) 

 
гдеTN – истинно отрицательный, FP –ложноположительный, FN – 
ложноотрицательный, TP – истинно положительный результат. 

Точность – хороший базовый показатель для измерения 
производительности модели.Обратной стороной простой точности является то, 
что точность хорошо работает в сбалансированных наборах данных.Однако в 
несбалансированных наборах данных точность становится худшим 
показателем. 

AUC ROC (площадь под кривой ошибок) – это график, который 
суммирует характеристики модели двоичной классификации по 
положительному классу [9]. Ось X указывает частоту ложных положительных 
результатов, а ось Y показывает истинную положительную частоту. Оценивая 
истинно положительные и ложные срабатывания для различных пороговых 
значений, можно построить кривую, которая простирается от нижнего левого 
угла к верхнему правому и изгибается к верхнему левому углу. Эта кривая 
называется кривой ROC. В литературе иногда приводится следующая 
экспертная шкала для значений ROC AUC, по которой можно судить о качестве 
модели: 0.9-1.0 – отличное; 0.8-0.9 - очень хорошее; 0.7-0.8 – хорошее; 0.6-0.7 – 
среднее; 0.5-0.6 – неудовлетворительное. 

Научная новизна 
Научная новизна данной работы заключается в применении алгоритмов 

машинного обучения для расширения возможностей программного комплекса 
по перекупке trade-in авто. В частности, рассматриваются несколько этапов 
обработки данных, описаны результаты проведенных экспериментов и 
практическая значимость исследований. Обосновано использование 
разработанного метода для проведения оценки в вопросах ценообразования. 

 
 
Результаты и обсуждения  
Данные для обучения были взяты с сервиса Haraba [18]. Это база 

объявлений поддержанных автомобилей со всей России с 2017 г. Обмен 
данными с сервисом Haraba осуществляется с помощью архитектуры RESTAPI 

               (3)

где TN – истинно отрицательный, FP – ложно 
положительный, FN – ложно отрицательный,               
TP – истинно положительный результат.

Точность – хороший базовый показатель для 
измерения производительности модели. Обрат
ной стороной простой точности является то, что 
точность хорошо работает в сбалансированных 
наборах данных. Однако в несбалансированных 
наборах данных точность становится худшим 
показателем.

AUC ROC (площадь под кривой ошибок) – 
это график, который суммирует характеристики 
модели двоичной классификации по 
положительному классу [9]. Ось X указывает 
частоту ложных положительных результатов, 
а ось Y показывает истинную положительную 
частоту. Оценивая истинно положительные и 
ложные срабатывания для различных пороговых 
значений, можно построить кривую, которая 
простирается от нижнего левого угла к верхнему 
правому и изгибается к верхнему левому углу. 
Эта кривая называется кривой ROC. В литературе 
иногда приводится следующая экспертная шкала 
для значений ROC AUC, по которой можно 
судить о качестве модели: 0.9-1.0 – отличное; 0.8-
0.9 - очень хорошее; 0.7-0.8 – хорошее; 0.6-0.7 – 
среднее; 0.5-0.6 – неудовлетворительное.

Научная новизна
Научная новизна данной работы заключается 

в применении алгоритмов машинного обучения 
для расширения возможностей программного 
комплекса по перекупке trade-in авто. В частности, 
рассматриваются несколько этапов обработки 
данных, описаны результаты проведенных экс
периментов и практическая значимость иссле
дований. Обосновано использование разрабо
танного метода для проведения оценки в вопросах 
ценообразования.

Результаты и обсуждения 
Данные для обучения были взяты с сервиса 

Haraba [18]. Это база объявлений подержанных 
автомобилей со всей России с 2017 г. Обмен 
данными с сервисом Haraba осуществляется с 
помощью архитектуры RESTAPI [19]. Для этого 
написана служба Windows Service [20], задача 
которой состоит в том, чтобы каждые 10 минут 
отправлять запрос в Haraba для получения новых 
объявлений:
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[19]. Для этого написана служба WindowsService [20], задача которой состоит в 
том, чтобы каждые 10 минут отправлять запрос вHaraba для получения новых 
объявлений: 
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Запросив все исторические данные из сервиса, получаем датасет, который 
прошел 5 этапов обработки данных, что описаны выше. Во время эксперимента 
использовалась пропорция 80:20, таким образом, разделив набор на 
тренировочные и тестовые данные.Задача – обучить модели анализировать 
каждый фактор, который влияет на ценообразование, и выбрать самую 
оптимальную среди 4 рассматриваемых алгоритмов.  

Язык программирования – Python, т.к. у него есть множество 
фреймворков, которые упрощают процесс написания кода и сокращают время 
на разработку и анализ данных. 
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процесс написания кода и сокращают время на разработку и анализ данных.
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Воспользуемся матрицей ошибок (сonfusionmatrix) для наглядного 
представления результата прогнозирования классификатора k ближайших 
соседей [6]. Значения матрицы дают сводку правильных и неправильных 
прогнозов с разбивкой по каждой категории. Матрица показывает 0 + 2175 = 
2175 правильных прогнозов и 257 + 5 = 262 неверных прогноза (рисунок 5). 
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точность модели составила 0,86 при k = 5. В ходе эксперимента были заданы 2, 
3, 4, 5, 6, 7 соседей в модель KNN. При пяти и более соседях границы решения 
показали более гладкие границы, приняв оптимальное равновесие между 
переобучением и недообучением. Так как число голосов при реализации 
алгоритма KNN между 5 и 6 соседями одинаковые, предпочтительно выбрать 
соседей с наименьшим расстоянием до образца. Среднее время на обучение 
классификатора заняло 1115.65 мсек. 

Рисунок 4 – Необходимые библиотеки Python для создания программы

Воспользуемся матрицей ошибок (сonfusion matrix) для наглядного представления результата 
прогнозирования классификатора k-ближайших соседей [6]. Значения матрицы дают сводку правильных 
и неправильных прогнозов с разбивкой по каждой категории. Матрица показывает 0 + 2175 = 2175 
правильных прогнозов и 257 + 5 = 262 неверных прогноза (рисунок 5, стр. 32).

ФИЗИКО-МАТЕМАТИЧЕСКИЕ И ТЕХНИЧЕСКИЕ НАУКИ

Запросив  все исторические  данные из 
сервиса, получаем дата-сет, который прошел 
5 этапов обработки данных, что описаны 
выше. Во время эксперимента использовалась 
пропорция 80:20, таким образом разделив набор 
на тренировочные и тестовые данные. Задача – 
обучить модели анализировать каждый фактор, 

который влияет на ценообразование, и выбрать 
самую оптимальную среди 4 рассматриваемых 
алгоритмов. 

Язык программирования – Python, т.к. у него 
есть множество фреймворков, которые упрощают 
процесс написания кода и сокращают время на 
разработку и анализ данных.

Воспользуемся матрицей ошибок (сonfusion 
matrix) для наглядного представления результата 
прогнозирования классификатора k-ближайших 
соседей [6]. Значения матрицы дают сводку пра

вильных и неправильных прогнозов с разбивкой 
по каждой категории. Матрица показывает 0 + 
2175 = 2175 правильных прогнозов и 257 + 5 = 
262 неверных прогноза (рисунок 5, стр. 38).
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Рисунок 5 – Оценка классификатора k-ближайших соседей с помощью матрицы ошибок

При классификации данных с помощью алгоритма k ближайших соседей точность модели 
составила 0,86 при k = 5. В ходе эксперимента были заданы 2, 3, 4, 5, 6, 7 соседей в модель KNN. 
При пяти и более соседях границы решения показали более гладкие границы, приняв оптимальное 
равновесие между переобучением и недообучением. Так как число голосов при реализации алгоритма 
KNN между 5 и 6 соседями одинаковые, предпочтительно выбрать соседей с наименьшим расстоянием 
до образца. Среднее время на обучение классификатора заняло 1115.65 мсек.

В логистической регрессии мы используем значение по умолчанию C = 1 (инверсионная сила 
регуляризации). Это обеспечивает хорошую производительность с точностью 0.89 как для обучения, 
так и для набора тестов. Результат, приведенный с помощью матрицы ошибок, показывает 1188 + 51 = 
1249 правильных прогнозов и 38 + 0 = 38 неверных предсказаний (рисунок 6). Также результат приведем 
с помощью гистограммы вероятности (рисунок 7, стр. 33). Среди рассматриваемых классификаторов 
логистическая регрессия оказалась быстрее всех, показав результат 215.15 мсек.
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(инверсионная сила регуляризации). Это обеспечивает хорошую 
производительность с точностью 0.89 как для обучения, так и для набора 
тестов. Результат, приведенный с помощью матрицы ошибок,показывает 1188 + 
51 = 1249 правильных прогнозов и 38 + 0 = 38 неверных предсказаний (рисунок 
6). Также результат приведем с помощью гистограммы вероятности (рисунок7). 
Среди рассматриваемых классификаторов логистическая регрессия оказалась 
быстрее всех, показав результат 215.15 мсек. 
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Рисунок 7 – Гистограмма вероятности определения цены методом 
логистической регрессии 

 
Как видно на рисунке 7, гистограмма имеет положительный перекос. 

Второй столбец сообщает нам, что существует примерно 1600 наблюдений с 
вероятностью от 0, до 0,2. Есть небольшое количество наблюдений с 
вероятностью больше 0,5. 

Рисунок 6 – Сопоставление предсказаний с фактическими данными с помощью алгоритма 
логистической регрессии

При классификации данных с помощью 
алгоритма k ближайших соседей точность модели 
составила 0,86 при k = 5. В ходе эксперимента 
были заданы 2, 3, 4, 5, 6, 7 соседей в модель 
KNN. При пяти и более соседях границы 
решения показали более гладкие границы, приняв 
оптимальное равновесие между переобучением 
и недообучением. Так как число голосов при 
реализации алгоритма KNN между 5 и 6 соседями 
одинаковые, предпочтительно выбрать соседей с 
наименьшим расстоянием до образца. Среднее 
время на обучение классификатора заняло              
1115.65 мсек.

В логистической регрессии мы используем 
значение по умолчанию C = 1 (инверсионная 
сила регуляризации). Это обеспечивает хорошую 
производительность с точностью 0.89 как для 
обучения, так и для набора тестов. Результат, 
приведенный с помощью матрицы ошибок, 
показывает 1188 + 51 = 1249 правильных 
прогнозов и 38 + 0 = 38 неверных предсказаний 
(рисунок 6). Также результат приведем с помо
щью гистограммы вероятности (рисунок 7,                                   
стр. 39). Среди рассматриваемых классифика
торов логистическая регрессия оказалась быстрее 
всех, показав результат 215.15 мсек.



Нефтегазовая Инженерия

39

В логистической регрессии мы используем значение по умолчанию C = 1 
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51 = 1249 правильных прогнозов и 38 + 0 = 38 неверных предсказаний (рисунок 
6). Также результат приведем с помощью гистограммы вероятности (рисунок7). 
Среди рассматриваемых классификаторов логистическая регрессия оказалась 
быстрее всех, показав результат 215.15 мсек. 
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Рисунок 7 – Гистограмма вероятности определения цены методом логистической регрессии

Как видно на рисунке 7, гистограмма имеет положительный перекос. Второй столбец сообщает нам, 
что существует примерно 1600 наблюдений с вероятностью от 0, до 0,2. Есть небольшое количество 
наблюдений с вероятностью больше 0,5.

Результат прогнозирования с помощью метода дерева принятия решения с параметрами по 
умолчанию также показывает отличный результат с точностью 0,93. На обучение затрачено 412,07 
мсек, уступая по скорости только модели на основе алгоритма логистическая регрессия. С помощью 
матрицы ошибок представлен результат прогнозирования (рисунок8).
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точностью 0,93. На обучение затрачено 412,07 мсек, уступая по скорости 
только модели на основе алгоритма логистическаярегрессия. С помощью 
матрицы ошибок представлен результат прогнозирования(рисунок8). 

 

 
 

Рисунок 8 – Оценка классификатора дерево принятия решения с 
помощью матрицы ошибок 

 
И последняя модель, рассматривая в данной статье, – случайный лес. 

Модель выявила больше закономерностей в данных, показав точностьпрогноза 
в 94% и затратив на обучение 541.03 мсек. Результат представлен в виде ROC-
кривой (рисунок 9): 

 
 

 
Рисунок 9 – ROC-кривая для случайного леса 

 
Так как классификатор на основе алгоритма случайный лес показал 

высокие результаты по прогнозированию цены, принято решение использовать 
модель для выкупа вторичного авто. 

Рисунок 8 – Оценка классификатора дерево принятия решения с помощью матрицы ошибок

И последняя модель, рассматриваемая в данной статье, – случайный лес. Модель выявила больше 
закономерностей в данных, показав точность прогноза в 94% и затратив на обучение 541.03 мсек. 
Результат представлен в виде ROC-кривой (рисунок 9):

И последняя модель, рассматриваемая в 
данной статье, – случайный лес. Модель выявила 
больше закономерностей в данных, показав 

точность прогноза в 94% и затратив на обучение 
541.03 мсек. Результат представлен в виде ROC-
кривой (рисунок 9, стр. 40):

Как видно на рисунке 7, гистограмма имеет 
положительный перекос. Второй столбец сообщает 
нам, что существует примерно 1600 наблюдений 
с вероятностью от 0, до 0,2. Есть небольшое 
количество наблюдений с вероятностью больше 
0,5.

Результат прогнозирования с помощью 

метода дерева принятия решения с параметрами 
по умолчанию также показывает отличный 
результат с точностью 0,93. На обучение затрачено 
412,07 мсек, уступая по скорости только модели 
на основе алгоритма логистическая регрессия. С 
помощью матрицы ошибок представлен результат 
прогнозирования (рисунок 8).
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точностью 0,93. На обучение затрачено 412,07 мсек, уступая по скорости 
только модели на основе алгоритма логистическаярегрессия. С помощью 
матрицы ошибок представлен результат прогнозирования(рисунок8). 

 

 
 

Рисунок 8 – Оценка классификатора дерево принятия решения с 
помощью матрицы ошибок 

 
И последняя модель, рассматривая в данной статье, – случайный лес. 

Модель выявила больше закономерностей в данных, показав точностьпрогноза 
в 94% и затратив на обучение 541.03 мсек. Результат представлен в виде ROC-
кривой (рисунок 9): 

 
 

 
Рисунок 9 – ROC-кривая для случайного леса 

 
Так как классификатор на основе алгоритма случайный лес показал 

высокие результаты по прогнозированию цены, принято решение использовать 
модель для выкупа вторичного авто. 

Рисунок 9 – ROC-кривая для случайного леса

Так как классификатор на основе алгоритма случайный лес показал высокие результаты по 
прогнозированию цены, принято решение использовать модель для выкупа вторичного авто.

Пользовательский интерфейс программного продукта показан на рисунке 10. Форма состоит из 
реестра объявлений, где зеленым выделяются объявления, где цена от продавца не является завышенной: 

Пользовательский интерфейс программного продукта показан на рисунке 
10. Форма состоит из реестра объявлений, где зеленым выделяются объявления, 
где цена от продавца не является завышенной:  

 

 
 

Рисунок 10 – Пользовательский интерфейс с ценой от продавца и  
предсказанной ценой с помощью классификатора на основе алгоритма 

случайный лес 
 
Заключение 
В этой статье рассказывается,как нынешние реалии дефицита 

электронных компонентов привели дилерские центры к перепродаже 
подержанных авто и как методы машинного обучения помогают выявить, не 
слишком ли завышена цена, и позволяют находить в этом сегменте 
оптимальное решение. В итоге мы получили систему, которая каждые 10 минут 
запрашивает с сервиса Haraba новые объявления, анализирует полученные 
данные и,находязакономерности, прогнозирует цену и будущий спрос на авто.  

Благодаря введению машинного обучения в вопросах 
ценообразованиякомпания оптимизировала операционную эффективность, 
использует алгоритмы для ценовых рекомендаций и прогноза продаж, позволяя 
менеджерам фокусироваться на стратегических задачах. 
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APPROXIMATIONS OF REGULAR GRAPHS

MARKHABATOV N.D.1, SUDOPLATOV S.V.123

1Novosibirsk State Technical University, 630073, Novosibirsk, Russia
2Sobolev Institute of Mathematics of Siberian Branch of the Russian Academy of Sciences, 630090, 

Novosibirsk, Russia
3Novosibirsk State University, 630090, Novosibirsk, Russia

Abstract. The paper [11] raised the question of describing the cardinality and types of approximations for 
natural families of theories. In the present paper, a partial answer to this question is given, and the study 
of approximation and topological properties of natural classes of theories is also continued. We consider a 
cycle graph consisting of one cycle or, in other words, a  certain number of vertices (at least 3 if the graph 
is simple) connected into a closed chain. It is shown that an infinite cycle graph is approximated by finite 
cycle graphs. Approximations of regular graphs by finite regular graphs are considered. On the other hand, 
approximations of acyclic regular graphs by finite regular graphs are considered. It is proved that any infinite 
regular graph is pseudofinite. And also, for any k, any k-regular graph is homogeneous and pseudofinite. 
Examples of pseudofinite 3-regular and 4-regular graphs are given.

Key words: regular graph, approximation of a theory, pseudofinite theory.

ТҰРАҚТЫ ГРАФТАРДЫҢ АППРОКСИМАЦИЯЛАРЫ

МАРХАБАТОВ Н.Д.1, СУДОПЛАТОВ С.В.123

1Новосибирск мемлекеттік техникалық университеті, 630073, Новосибирск қ., Ресей
2РҒА Сібір бөлімі С.Л. Соболев ат. Математика институты, 630090, Новосибирск қ., Ресей

3Новосибирск мемлекеттік университеті, 630090, Новосибирск қ., Ресей

Андатпа. [11] Жұмыста теориялардың табиғи үйірлері үшін аппроксимациялардың қуаты мен 
түрлерін сипаттау мәселесі көтерілген. Бұл жұмыста қойылған сұраққа ішінара жауап берілген 
және біз теориялардың табиғи класстарының аппроксимацияларын зерттеуді жалғастырамыз. Бір 
циклден немесе басқаша айтқанда, тұйық тізбекте қосылған шыңдардың белгілі бір санынан (граф 
қарапайым болса, кемінде 3) тұратын граф цикл қарастырылады. Шексіз граф цикл ақырлы граф 
циклдармен жуықталатыны көрсетілген. Тұрақты графтардың ақырлы тұрақты графтар арқылы 
аппроксимациялары қарастырылады. Сонымен қатар, ациклдік графтардың ақырлы тұрақты 
графтар арқылы аппроксимациялары қарастырылады.  Шексіз тұрақты графтың псевдоақырлы 
екені дәлелденді. Сондай-ақ, кез келген k үшін кез келген k-тұрақты граф біртекті және псевдоақырлы 
екені дәлелденді. Псевдоақырлы 3-тұрақты және 4-тұрақты графтардың мысалдары келтірілген.

Түйінді сөздер: тұрақты граф, теориялар аппроксимациясы, псевдоақырлы теория.
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АППРОКСИМАЦИИ РЕГУЛЯРНЫХ ГРАФОВ

МАРХАБАТОВ Н.Д.1, СУДОПЛАТОВ С.В.123

1Новосибирский государственный технический университет, 630073, г. Новосибирск, Россия
2Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, 

630090, г. Новосибирск, Россия
3Новосибирский государственный университет, 630090, г. Новосибирск, Россия

Аннотация. В работе [11] поставлен вопрос об описании мощности и видов аппроксимаций для 
естественных семейств теорий. В настоящей работе дается частичный ответ на этот вопрос, 
а также продолжается изучение аппроксимации и топологических свойств естественных классов 
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Introduction 
A graph is an anlgebraic system 𝛤𝛤 =

⟨𝐺𝐺, 𝑅𝑅⟩, where 𝑅𝑅 is a binary predicate symbol. 
The elements of the universe 𝐺𝐺 are called the 
vertices of the graph 𝛤𝛤, and the elements of the 
binary relation 𝑅𝑅 ⊆ 𝐺𝐺2 are arcs. If (a,b) and 
(b,a) are arcs then the set [𝑎𝑎, 𝑏𝑏] =
{(𝑎𝑎, 𝑏𝑏), (𝑏𝑏, 𝑎𝑎)} is called an edge. It is identified 
with the arcs (𝑎𝑎, 𝑏𝑏) and (𝑏𝑏, 𝑎𝑎). This edge 𝑢𝑢 
connects the vertices 𝑎𝑎 and 𝑏𝑏, which are called 
the endpoints of 𝑢𝑢. If a vertex 𝑎𝑎 ∈ 𝐺𝐺 is an 
endpoint of an edge 𝑢𝑢 ∈ 𝑅𝑅, then 𝑎𝑎 and 𝑢𝑢 are 
incident. The degree of a vertex 𝑎𝑎 in a graph 𝛤𝛤, 
written 𝑑𝑑𝑑𝑑𝑑𝑑𝛤𝛤(𝑎𝑎) or simply 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) is the 
number of edges incident to 𝑎𝑎, except that each 
loop at 𝑎𝑎 counts twice. A vertex of degree 0 is 
called isolated, a vertex of degree 1 is called a 
hanging vertex. A graph that contains no cycles 
is called an acyclic graph. A connected acyclic 
graph is called a tree. Any graph without cycles 
is also called a forest so that the connected 
components  of a forest are trees. Subsystems 
of the graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ are called subgraphs.  

A path is a simple graph whose vertices 
can be ordered so that two vertices are adjacent 
if and only if they are consecutive in the list. If 
for two vertices 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 there is a path 
connecting them, then there is sure to be a 
minimal path connecting these vertices. We 
denote the length of this path by 𝜌𝜌(𝑎𝑎, 𝑏𝑏). If 𝛤𝛤 
has no such path, then 𝜌𝜌(𝑎𝑎, 𝑏𝑏) = ∞. A tree is a 
path if and only if 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) ≤ 2 for each vertex 
a of the tree. 

Definition [12]. example For a tree 
fixed form vertex 𝑎𝑎, well the graph value 
𝑒𝑒(𝑎𝑎) ≜ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜌𝜌(𝑎𝑎, 𝑏𝑏): 𝑏𝑏 ∈ 𝐺𝐺} is called the 
eccentricity of 𝑎𝑎. The eccentricity of a vertex is 
equal to the distance from this vertex to the 
most distant from it. The maximum among all 
the eccentricities of the vertices is called the 
diameter of the graph 𝛤𝛤 and is denoted by 
𝑑𝑑(𝛤𝛤):  𝑑𝑑(𝛤𝛤) ≜ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑒𝑒(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. A vertex 𝑎𝑎 
is called peripheral if 𝑒𝑒(𝑎𝑎) = 𝑑𝑑(𝛤𝛤). The 
minimal eccentricity of the graph 𝛤𝛤 is called its 
radius and is denoted by 𝑟𝑟(𝛤𝛤): 𝑟𝑟(𝛤𝛤) ≜
𝑚𝑚𝑚𝑚𝑚𝑚{𝑒𝑒(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. The vertex 𝑎𝑎 is called 

central if 𝑒𝑒(𝑎𝑎) = 𝑟𝑟(𝛤𝛤). The set of all central 
vertices of a graph is called its center. 

Definition [4]. An infinite graph 𝛤𝛤 =
⟨𝐺𝐺, 𝑅𝑅⟩ of the form 𝑅𝑅 =
{(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), (𝑎𝑎2, 𝑎𝑎3),… },   𝐺𝐺 =
{𝑎𝑎0, 𝑎𝑎1, … } is called a ray, and a double ray is 
an infinite graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ of the form  

 
𝐺𝐺 = {… , 𝑎𝑎−2, 𝑎𝑎−1, 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, … }, 

 
𝑅𝑅 = {… , (𝑎𝑎−2, 𝑎𝑎−1), (𝑎𝑎−1, 𝑎𝑎0),
(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), … }; 

 
in both cases the 𝑎𝑎𝑛𝑛’s are assumed to be 

distinct. 
Definition [7]. A regular graph is a graph 

where each vertex has the same number of 
neighbors. A regular graph with vertices of 
degree 𝑘𝑘 is called a k-regular graph or regular 
graph of degree 𝑘𝑘. 

Definition [6, 9]. A graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ is 
said to be homogeneous if, for 𝑈𝑈, 𝑉𝑉 ⊆ 𝐺𝐺, the 
statement that ⟨𝑈𝑈, 𝑅𝑅 ↾ 𝑈𝑈2⟩ ≡ ⟨𝑉𝑉, 𝑅𝑅 ↾ 𝑉𝑉2⟩ 
implies the existence of an automorphism of 𝛤𝛤 
mapping U to V. 

In this paper, we consider a cycle graph 
consisting of one cycle or, in other words, a 
certain number of vertices (at least 3 if the 
graph is simple) connected into a closed chain. 
The cycle graph with 𝑛𝑛 vertices is denoted by 
𝐶𝐶𝑛𝑛 . Every vertex of 𝐶𝐶𝑛𝑛  has  degree 2. We 
will consider approximations of regular graphs. 

In 1965 James Ax [1] investigated fields 
𝐹𝐹 having the property that every absolutely 
irreducible variety over 𝐹𝐹 has a 𝐹𝐹-rational 
point. It was shown that the non-principal 
ultraproduct of finite fields has such property. 
Yuri Leonidovich Ershov in [5] called such 
fields regularly closed. In 1968, James Ax, in 
his work [2], first introduced the concept of 
pseudofiniteness to show the decidability of the 
theory of all finite fields, i.e. there is an 
algorithm to decide whether a given statement 
is true for all finite fields. It was proved that 
pseudofinite fields are exactly those infinite 
fields that have every elementary property 
common to all finite fields, that is, pseudofinite 
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pseudofiniteness to show the decidability of the 
theory of all finite fields, i.e. there is an 
algorithm to decide whether a given statement 
is true for all finite fields. It was proved that 
pseudofinite fields are exactly those infinite 
fields that have every elementary property 
common to all finite fields, that is, pseudofinite 
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Introduction 
A graph is an anlgebraic system 𝛤𝛤 =

⟨𝐺𝐺, 𝑅𝑅⟩, where 𝑅𝑅 is a binary predicate symbol. 
The elements of the universe 𝐺𝐺 are called the 
vertices of the graph 𝛤𝛤, and the elements of the 
binary relation 𝑅𝑅 ⊆ 𝐺𝐺2 are arcs. If (a,b) and 
(b,a) are arcs then the set [𝑎𝑎, 𝑏𝑏] =
{(𝑎𝑎, 𝑏𝑏), (𝑏𝑏, 𝑎𝑎)} is called an edge. It is identified 
with the arcs (𝑎𝑎, 𝑏𝑏) and (𝑏𝑏, 𝑎𝑎). This edge 𝑢𝑢 
connects the vertices 𝑎𝑎 and 𝑏𝑏, which are called 
the endpoints of 𝑢𝑢. If a vertex 𝑎𝑎 ∈ 𝐺𝐺 is an 
endpoint of an edge 𝑢𝑢 ∈ 𝑅𝑅, then 𝑎𝑎 and 𝑢𝑢 are 
incident. The degree of a vertex 𝑎𝑎 in a graph 𝛤𝛤, 
written 𝑑𝑑𝑑𝑑𝑑𝑑𝛤𝛤(𝑎𝑎) or simply 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) is the 
number of edges incident to 𝑎𝑎, except that each 
loop at 𝑎𝑎 counts twice. A vertex of degree 0 is 
called isolated, a vertex of degree 1 is called a 
hanging vertex. A graph that contains no cycles 
is called an acyclic graph. A connected acyclic 
graph is called a tree. Any graph without cycles 
is also called a forest so that the connected 
components  of a forest are trees. Subsystems 
of the graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ are called subgraphs.  

A path is a simple graph whose vertices 
can be ordered so that two vertices are adjacent 
if and only if they are consecutive in the list. If 
for two vertices 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 there is a path 
connecting them, then there is sure to be a 
minimal path connecting these vertices. We 
denote the length of this path by 𝜌𝜌(𝑎𝑎, 𝑏𝑏). If 𝛤𝛤 
has no such path, then 𝜌𝜌(𝑎𝑎, 𝑏𝑏) = ∞. A tree is a 
path if and only if 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) ≤ 2 for each vertex 
a of the tree. 

Definition [12]. example For a tree 
fixed form vertex 𝑎𝑎, well the graph value 
𝑒𝑒(𝑎𝑎) ≜ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜌𝜌(𝑎𝑎, 𝑏𝑏): 𝑏𝑏 ∈ 𝐺𝐺} is called the 
eccentricity of 𝑎𝑎. The eccentricity of a vertex is 
equal to the distance from this vertex to the 
most distant from it. The maximum among all 
the eccentricities of the vertices is called the 
diameter of the graph 𝛤𝛤 and is denoted by 
𝑑𝑑(𝛤𝛤):  𝑑𝑑(𝛤𝛤) ≜ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑒𝑒(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. A vertex 𝑎𝑎 
is called peripheral if 𝑒𝑒(𝑎𝑎) = 𝑑𝑑(𝛤𝛤). The 
minimal eccentricity of the graph 𝛤𝛤 is called its 
radius and is denoted by 𝑟𝑟(𝛤𝛤): 𝑟𝑟(𝛤𝛤) ≜
𝑚𝑚𝑚𝑚𝑚𝑚{𝑒𝑒(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. The vertex 𝑎𝑎 is called 

central if 𝑒𝑒(𝑎𝑎) = 𝑟𝑟(𝛤𝛤). The set of all central 
vertices of a graph is called its center. 

Definition [4]. An infinite graph 𝛤𝛤 =
⟨𝐺𝐺, 𝑅𝑅⟩ of the form 𝑅𝑅 =
{(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), (𝑎𝑎2, 𝑎𝑎3),… },   𝐺𝐺 =
{𝑎𝑎0, 𝑎𝑎1, … } is called a ray, and a double ray is 
an infinite graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ of the form  

 
𝐺𝐺 = {… , 𝑎𝑎−2, 𝑎𝑎−1, 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, … }, 

 
𝑅𝑅 = {… , (𝑎𝑎−2, 𝑎𝑎−1), (𝑎𝑎−1, 𝑎𝑎0),
(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), … }; 

 
in both cases the 𝑎𝑎𝑛𝑛’s are assumed to be 

distinct. 
Definition [7]. A regular graph is a graph 

where each vertex has the same number of 
neighbors. A regular graph with vertices of 
degree 𝑘𝑘 is called a k-regular graph or regular 
graph of degree 𝑘𝑘. 

Definition [6, 9]. A graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ is 
said to be homogeneous if, for 𝑈𝑈, 𝑉𝑉 ⊆ 𝐺𝐺, the 
statement that ⟨𝑈𝑈, 𝑅𝑅 ↾ 𝑈𝑈2⟩ ≡ ⟨𝑉𝑉, 𝑅𝑅 ↾ 𝑉𝑉2⟩ 
implies the existence of an automorphism of 𝛤𝛤 
mapping U to V. 

In this paper, we consider a cycle graph 
consisting of one cycle or, in other words, a 
certain number of vertices (at least 3 if the 
graph is simple) connected into a closed chain. 
The cycle graph with 𝑛𝑛 vertices is denoted by 
𝐶𝐶𝑛𝑛 . Every vertex of 𝐶𝐶𝑛𝑛  has  degree 2. We 
will consider approximations of regular graphs. 

In 1965 James Ax [1] investigated fields 
𝐹𝐹 having the property that every absolutely 
irreducible variety over 𝐹𝐹 has a 𝐹𝐹-rational 
point. It was shown that the non-principal 
ultraproduct of finite fields has such property. 
Yuri Leonidovich Ershov in [5] called such 
fields regularly closed. In 1968, James Ax, in 
his work [2], first introduced the concept of 
pseudofiniteness to show the decidability of the 
theory of all finite fields, i.e. there is an 
algorithm to decide whether a given statement 
is true for all finite fields. It was proved that 
pseudofinite fields are exactly those infinite 
fields that have every elementary property 
common to all finite fields, that is, pseudofinite 
fields are infinite models of the theory of finite 
fields. He defined pseudofiniteness as follows: 

Definition. A field 𝐹𝐹 is pseudofinite if 𝐹𝐹 
is perfect, quasifinite and regularly closed. 

 The concept of “anotherpseudofinite 
structure” was first used in 1991 in the report of 
E. Hrushovski in meeting on Finite and Infinite 
Combinatorics in Sets and Logic [8], as well as 
in the joint works by E. Hrushovski and G. 
Cherlin. The following definition first occurs in 
[3]:  

Definition. Let 𝐿𝐿 be a language. An 𝐿𝐿- 
structure 𝑀𝑀 is pseudofinite if for all 𝐿𝐿-sentences 
𝜑𝜑, 𝑀𝑀 ⊨ 𝜑𝜑 implies that there is a finite 𝑀𝑀0 
such that 𝑀𝑀0 ⊨ 𝜑𝜑.  The elementary theory 𝑇𝑇 =
𝑇𝑇ℎ(𝑀𝑀) of a pseudofinite structure 𝑀𝑀 is called 
pseudofinite. 

Definition [11] Let 𝒯𝒯 be a family of 
theories and 𝑇𝑇 be a theory such that 𝑇𝑇 ∉ 𝑇𝑇. The 
theory 𝑇𝑇 is said to be 𝒯𝒯-approximated, or 
approximated by the family 𝒯𝒯, or a pseudo-𝒯𝒯- 
theory, if for any formula 𝜑𝜑 ∈ 𝑇𝑇 there exists 
𝑇𝑇′ ∈ 𝑇𝑇 for which 𝜑𝜑 ∈ 𝑇𝑇′. If a theory 𝑇𝑇 is 𝒯𝒯-
approximated, then 𝒯𝒯 is said to be an 
approximating family for 𝑇𝑇, and theories 𝑇𝑇′ ∈ 𝑇𝑇 
are said to be approximations for 𝑇𝑇.  

We put 𝑇𝑇𝜑𝜑 = {𝑇𝑇 ∈ 𝑇𝑇: 𝜑𝜑 ∈ 𝑇𝑇}. Such a set 
𝑇𝑇𝜑𝜑 is called the 𝜑𝜑-neighbourhood, or simply a 
neighbourhood for 𝑇𝑇. An approximating family 
𝒯𝒯 is called e-minimal if for any sentence 𝜑𝜑 ∈
𝛴𝛴(𝑇𝑇), 𝑇𝑇𝜑𝜑 is finite or 𝑇𝑇¬𝜑𝜑 is finite. It was shown 
in [7] that any e-minimal family 𝒯𝒯 has a unique 
accumulation point 𝑇𝑇 with respect to 
neighbourhoods 𝑇𝑇𝜑𝜑, and 𝑇𝑇 ∪ {𝑇𝑇} is also called 
e- minimal. 

Recall that the E-closure 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) [10] for 
the family 𝑇𝑇 of complete theories is 
characterized by the following proposition. 

Proposition 1. Let 𝑇𝑇 be a family of 
complete theories of the language Σ. Then 
𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) = 𝑇𝑇 for finite 𝑇𝑇 and for infinite 𝑇𝑇, the 
theory T belongs to 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) if and only if T is a 
complete theory of the language Σ and T ∈ 𝑇𝑇, 
or 𝑇𝑇 ∉ 𝑇𝑇 and for of any formula 𝜑𝜑 ∈ 𝑇𝑇 the set 
𝑇𝑇𝜑𝜑 is infinite. 

We denote by 𝑇́𝑇 the class of all complete 
elementary theories, by 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓 the subclass of 𝑇́𝑇 
consisting of all theories with finite models. 

Proposition 2. [11] For any theory 𝑇𝑇 the 
following conditions are equivalent: 

(1) 𝑇𝑇 is pseudofinite; 
(2) 𝑇𝑇 is 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓 - approximated; 
(3) 𝑇𝑇 ∈ 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓) ∖ 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓. 
Main results 
The following proposition shows that an 

infinite cycle graph is approximated by finite 
cycle graphs. 

Proposition 3. Any theory 𝑇𝑇 of a cycle 
graph on an infinite set is pseudofinite.  

Proof.  Let 𝛤𝛤 be a model of the theory 𝑇𝑇 
and 𝑎𝑎 be a vertex. For 𝛤𝛤, the following is true:                         
𝛤𝛤 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖→∞
𝐶𝐶𝑖𝑖, where 𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖−1 ∪ {𝑎𝑎} is finite, 𝑖𝑖 ≥

4.  That is, adding to 𝐶𝐶𝑖𝑖 new vertices 𝑎𝑎 of 
degree 2, in other words, increasing the 
distance between any pairs of vertices from 𝐶𝐶𝑖𝑖 
in the limit, we obtain an infinite linear graph 
(or double ray), which is  acyclic. The double 
ray 𝛤𝛤 has no hanging vertices. Since all vertices 
have degree 2, there is an automorphism 𝜙𝜙  that 
maps any vertex 𝑎𝑎𝑖𝑖 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑖𝑖) = 2  to a 
vertex 𝑎𝑎𝑗𝑗 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑗𝑗) = 2 and 𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑗𝑗. Thus, 
{𝑇𝑇ℎ(𝐶𝐶𝑖𝑖−1 ∪ {𝑎𝑎}): 𝑖𝑖 ∈ 𝜔𝜔} approximates the 
theory 𝑇𝑇 = 𝑇𝑇ℎ(𝛤𝛤). 

Theorem 1. Any theory 𝑇𝑇 of a regular 
graph with an infinite set is pseudofinite. 

Proof. We prove by induction on the 
degrees of vertices. definition Let 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ 
be a regular graph. Let 𝑚𝑚 fbe the degree of 
vertices.  

Let 𝑚𝑚 = 0 or 𝑚𝑚 = 1. Then, for the model 
regular 𝛤𝛤 of the theory 𝑇𝑇, it is true that 𝛤𝛤 =
∏ 𝛤𝛤𝑖𝑖𝑖𝑖→∞ , where 𝛤𝛤𝑖𝑖 is a finite acyclic graph with 
a finite number of connected components, 
where each of them is a vertex of degree 0 or an 
edge. This means that by increasing the number 
of connected components step by step, we can 
construct a pseudofinite graph Г. 

The case 𝑚𝑚 = 2 is considered in 
Proposition 2. Let 𝑚𝑚 = 𝑘𝑘, where 𝑘𝑘 ≥ 2, and 𝛤𝛤0′ 
be the 𝑘𝑘- regular graph with 2(𝑘𝑘 − 1) vertices. 
For a finite 𝑡𝑡, adding new 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡 vertices at 

fields are infinite models of the theory of finite 
fields. He defined pseudofiniteness as follows: 

Definition. A field 𝐹𝐹 is pseudofinite if 𝐹𝐹 
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construct a pseudofinite graph Г. 

The case 𝑚𝑚 = 2 is considered in 
Proposition 2. Let 𝑚𝑚 = 𝑘𝑘, where 𝑘𝑘 ≥ 2, and 𝛤𝛤0′ 
be the 𝑘𝑘- regular graph with 2(𝑘𝑘 − 1) vertices. 
For a finite 𝑡𝑡, adding new 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡 vertices at 

fields are infinite models of the theory of finite 
fields. He defined pseudofiniteness as follows: 

Definition. A field 𝐹𝐹 is pseudofinite if 𝐹𝐹 
is perfect, quasifinite and regularly closed. 

 The concept of “anotherpseudofinite 
structure” was first used in 1991 in the report of 
E. Hrushovski in meeting on Finite and Infinite 
Combinatorics in Sets and Logic [8], as well as 
in the joint works by E. Hrushovski and G. 
Cherlin. The following definition first occurs in 
[3]:  

Definition. Let 𝐿𝐿 be a language. An 𝐿𝐿- 
structure 𝑀𝑀 is pseudofinite if for all 𝐿𝐿-sentences 
𝜑𝜑, 𝑀𝑀 ⊨ 𝜑𝜑 implies that there is a finite 𝑀𝑀0 
such that 𝑀𝑀0 ⊨ 𝜑𝜑.  The elementary theory 𝑇𝑇 =
𝑇𝑇ℎ(𝑀𝑀) of a pseudofinite structure 𝑀𝑀 is called 
pseudofinite. 

Definition [11] Let 𝒯𝒯 be a family of 
theories and 𝑇𝑇 be a theory such that 𝑇𝑇 ∉ 𝑇𝑇. The 
theory 𝑇𝑇 is said to be 𝒯𝒯-approximated, or 
approximated by the family 𝒯𝒯, or a pseudo-𝒯𝒯- 
theory, if for any formula 𝜑𝜑 ∈ 𝑇𝑇 there exists 
𝑇𝑇′ ∈ 𝑇𝑇 for which 𝜑𝜑 ∈ 𝑇𝑇′. If a theory 𝑇𝑇 is 𝒯𝒯-
approximated, then 𝒯𝒯 is said to be an 
approximating family for 𝑇𝑇, and theories 𝑇𝑇′ ∈ 𝑇𝑇 
are said to be approximations for 𝑇𝑇.  

We put 𝑇𝑇𝜑𝜑 = {𝑇𝑇 ∈ 𝑇𝑇: 𝜑𝜑 ∈ 𝑇𝑇}. Such a set 
𝑇𝑇𝜑𝜑 is called the 𝜑𝜑-neighbourhood, or simply a 
neighbourhood for 𝑇𝑇. An approximating family 
𝒯𝒯 is called e-minimal if for any sentence 𝜑𝜑 ∈
𝛴𝛴(𝑇𝑇), 𝑇𝑇𝜑𝜑 is finite or 𝑇𝑇¬𝜑𝜑 is finite. It was shown 
in [7] that any e-minimal family 𝒯𝒯 has a unique 
accumulation point 𝑇𝑇 with respect to 
neighbourhoods 𝑇𝑇𝜑𝜑, and 𝑇𝑇 ∪ {𝑇𝑇} is also called 
e- minimal. 

Recall that the E-closure 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) [10] for 
the family 𝑇𝑇 of complete theories is 
characterized by the following proposition. 

Proposition 1. Let 𝑇𝑇 be a family of 
complete theories of the language Σ. Then 
𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) = 𝑇𝑇 for finite 𝑇𝑇 and for infinite 𝑇𝑇, the 
theory T belongs to 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) if and only if T is a 
complete theory of the language Σ and T ∈ 𝑇𝑇, 
or 𝑇𝑇 ∉ 𝑇𝑇 and for of any formula 𝜑𝜑 ∈ 𝑇𝑇 the set 
𝑇𝑇𝜑𝜑 is infinite. 

We denote by 𝑇́𝑇 the class of all complete 
elementary theories, by 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓 the subclass of 𝑇́𝑇 
consisting of all theories with finite models. 

Proposition 2. [11] For any theory 𝑇𝑇 the 
following conditions are equivalent: 

(1) 𝑇𝑇 is pseudofinite; 
(2) 𝑇𝑇 is 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓 - approximated; 
(3) 𝑇𝑇 ∈ 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓) ∖ 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓. 
Main results 
The following proposition shows that an 

infinite cycle graph is approximated by finite 
cycle graphs. 

Proposition 3. Any theory 𝑇𝑇 of a cycle 
graph on an infinite set is pseudofinite.  

Proof.  Let 𝛤𝛤 be a model of the theory 𝑇𝑇 
and 𝑎𝑎 be a vertex. For 𝛤𝛤, the following is true:                         
𝛤𝛤 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖→∞
𝐶𝐶𝑖𝑖, where 𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖−1 ∪ {𝑎𝑎} is finite, 𝑖𝑖 ≥

4.  That is, adding to 𝐶𝐶𝑖𝑖 new vertices 𝑎𝑎 of 
degree 2, in other words, increasing the 
distance between any pairs of vertices from 𝐶𝐶𝑖𝑖 
in the limit, we obtain an infinite linear graph 
(or double ray), which is  acyclic. The double 
ray 𝛤𝛤 has no hanging vertices. Since all vertices 
have degree 2, there is an automorphism 𝜙𝜙  that 
maps any vertex 𝑎𝑎𝑖𝑖 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑖𝑖) = 2  to a 
vertex 𝑎𝑎𝑗𝑗 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑗𝑗) = 2 and 𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑗𝑗. Thus, 
{𝑇𝑇ℎ(𝐶𝐶𝑖𝑖−1 ∪ {𝑎𝑎}): 𝑖𝑖 ∈ 𝜔𝜔} approximates the 
theory 𝑇𝑇 = 𝑇𝑇ℎ(𝛤𝛤). 

Theorem 1. Any theory 𝑇𝑇 of a regular 
graph with an infinite set is pseudofinite. 

Proof. We prove by induction on the 
degrees of vertices. definition Let 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ 
be a regular graph. Let 𝑚𝑚 fbe the degree of 
vertices.  

Let 𝑚𝑚 = 0 or 𝑚𝑚 = 1. Then, for the model 
regular 𝛤𝛤 of the theory 𝑇𝑇, it is true that 𝛤𝛤 =
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a finite number of connected components, 
where each of them is a vertex of degree 0 or an 
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of connected components step by step, we can 
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fields are infinite models of the theory of finite 
fields. He defined pseudofiniteness as follows: 

Definition. A field 𝐹𝐹 is pseudofinite if 𝐹𝐹 
is perfect, quasifinite and regularly closed. 

 The concept of “anotherpseudofinite 
structure” was first used in 1991 in the report of 
E. Hrushovski in meeting on Finite and Infinite 
Combinatorics in Sets and Logic [8], as well as 
in the joint works by E. Hrushovski and G. 
Cherlin. The following definition first occurs in 
[3]:  

Definition. Let 𝐿𝐿 be a language. An 𝐿𝐿- 
structure 𝑀𝑀 is pseudofinite if for all 𝐿𝐿-sentences 
𝜑𝜑, 𝑀𝑀 ⊨ 𝜑𝜑 implies that there is a finite 𝑀𝑀0 
such that 𝑀𝑀0 ⊨ 𝜑𝜑.  The elementary theory 𝑇𝑇 =
𝑇𝑇ℎ(𝑀𝑀) of a pseudofinite structure 𝑀𝑀 is called 
pseudofinite. 

Definition [11] Let 𝒯𝒯 be a family of 
theories and 𝑇𝑇 be a theory such that 𝑇𝑇 ∉ 𝑇𝑇. The 
theory 𝑇𝑇 is said to be 𝒯𝒯-approximated, or 
approximated by the family 𝒯𝒯, or a pseudo-𝒯𝒯- 
theory, if for any formula 𝜑𝜑 ∈ 𝑇𝑇 there exists 
𝑇𝑇′ ∈ 𝑇𝑇 for which 𝜑𝜑 ∈ 𝑇𝑇′. If a theory 𝑇𝑇 is 𝒯𝒯-
approximated, then 𝒯𝒯 is said to be an 
approximating family for 𝑇𝑇, and theories 𝑇𝑇′ ∈ 𝑇𝑇 
are said to be approximations for 𝑇𝑇.  

We put 𝑇𝑇𝜑𝜑 = {𝑇𝑇 ∈ 𝑇𝑇: 𝜑𝜑 ∈ 𝑇𝑇}. Such a set 
𝑇𝑇𝜑𝜑 is called the 𝜑𝜑-neighbourhood, or simply a 
neighbourhood for 𝑇𝑇. An approximating family 
𝒯𝒯 is called e-minimal if for any sentence 𝜑𝜑 ∈
𝛴𝛴(𝑇𝑇), 𝑇𝑇𝜑𝜑 is finite or 𝑇𝑇¬𝜑𝜑 is finite. It was shown 
in [7] that any e-minimal family 𝒯𝒯 has a unique 
accumulation point 𝑇𝑇 with respect to 
neighbourhoods 𝑇𝑇𝜑𝜑, and 𝑇𝑇 ∪ {𝑇𝑇} is also called 
e- minimal. 

Recall that the E-closure 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) [10] for 
the family 𝑇𝑇 of complete theories is 
characterized by the following proposition. 

Proposition 1. Let 𝑇𝑇 be a family of 
complete theories of the language Σ. Then 
𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) = 𝑇𝑇 for finite 𝑇𝑇 and for infinite 𝑇𝑇, the 
theory T belongs to 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) if and only if T is a 
complete theory of the language Σ and T ∈ 𝑇𝑇, 
or 𝑇𝑇 ∉ 𝑇𝑇 and for of any formula 𝜑𝜑 ∈ 𝑇𝑇 the set 
𝑇𝑇𝜑𝜑 is infinite. 

We denote by 𝑇́𝑇 the class of all complete 
elementary theories, by 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓 the subclass of 𝑇́𝑇 
consisting of all theories with finite models. 

Proposition 2. [11] For any theory 𝑇𝑇 the 
following conditions are equivalent: 

(1) 𝑇𝑇 is pseudofinite; 
(2) 𝑇𝑇 is 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓 - approximated; 
(3) 𝑇𝑇 ∈ 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓) ∖ 𝑇́𝑇𝑓𝑓𝑓𝑓𝑓𝑓. 
Main results 
The following proposition shows that an 

infinite cycle graph is approximated by finite 
cycle graphs. 

Proposition 3. Any theory 𝑇𝑇 of a cycle 
graph on an infinite set is pseudofinite.  

Proof.  Let 𝛤𝛤 be a model of the theory 𝑇𝑇 
and 𝑎𝑎 be a vertex. For 𝛤𝛤, the following is true:                         
𝛤𝛤 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖→∞
𝐶𝐶𝑖𝑖, where 𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖−1 ∪ {𝑎𝑎} is finite, 𝑖𝑖 ≥

4.  That is, adding to 𝐶𝐶𝑖𝑖 new vertices 𝑎𝑎 of 
degree 2, in other words, increasing the 
distance between any pairs of vertices from 𝐶𝐶𝑖𝑖 
in the limit, we obtain an infinite linear graph 
(or double ray), which is  acyclic. The double 
ray 𝛤𝛤 has no hanging vertices. Since all vertices 
have degree 2, there is an automorphism 𝜙𝜙  that 
maps any vertex 𝑎𝑎𝑖𝑖 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑖𝑖) = 2  to a 
vertex 𝑎𝑎𝑗𝑗 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑗𝑗) = 2 and 𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑗𝑗. Thus, 
{𝑇𝑇ℎ(𝐶𝐶𝑖𝑖−1 ∪ {𝑎𝑎}): 𝑖𝑖 ∈ 𝜔𝜔} approximates the 
theory 𝑇𝑇 = 𝑇𝑇ℎ(𝛤𝛤). 

Theorem 1. Any theory 𝑇𝑇 of a regular 
graph with an infinite set is pseudofinite. 

Proof. We prove by induction on the 
degrees of vertices. definition Let 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ 
be a regular graph. Let 𝑚𝑚 fbe the degree of 
vertices.  

Let 𝑚𝑚 = 0 or 𝑚𝑚 = 1. Then, for the model 
regular 𝛤𝛤 of the theory 𝑇𝑇, it is true that 𝛤𝛤 =
∏ 𝛤𝛤𝑖𝑖𝑖𝑖→∞ , where 𝛤𝛤𝑖𝑖 is a finite acyclic graph with 
a finite number of connected components, 
where each of them is a vertex of degree 0 or an 
edge. This means that by increasing the number 
of connected components step by step, we can 
construct a pseudofinite graph Г. 

The case 𝑚𝑚 = 2 is considered in 
Proposition 2. Let 𝑚𝑚 = 𝑘𝑘, where 𝑘𝑘 ≥ 2, and 𝛤𝛤0′ 
be the 𝑘𝑘- regular graph with 2(𝑘𝑘 − 1) vertices. 
For a finite 𝑡𝑡, adding new 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡 vertices at 
each step 𝑡𝑡, as a result we obtain a graph with  
2(𝑘𝑘 − 1) + ∑ 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡𝑡𝑡

𝑖𝑖=1  vertices of degree 
𝑘𝑘. Continuing the process, in the limit, the 
graph is divided into acyclic connected 
components (trees). Since any infinite regular 
tree is vertex transitive, any route of length 𝑠𝑠 
can be mapped to another 𝑠𝑠-route. And this 
mapping can be extended to an automorphism 
of the acyclic regular graph 𝛤𝛤, which implies 
pseudofiniteness.  

Then for 𝑚𝑚 = 𝑘𝑘 + 1 the graph 𝛤𝛤′ is also 
pseudofinite. Similarly, taking a (𝑘𝑘 + 1)- 
regular graph with vertices and adding 𝑘𝑘𝑡𝑡(𝑘𝑘 +
1) new vertices at each step 𝑡𝑡, in the limit we 
obtain an acyclic regular graph. Similarly, take 
an 𝑠𝑠-route and a vertex 𝑎𝑎1 from this route that 
has (𝑘𝑘 + 1) neighbors, we map 𝑎𝑎1 to another 
vertex 𝑎𝑎2 of another 𝑠𝑠-route. The set of 
neighbors of the vertex 𝑎𝑎1 can also be 
bijectively transferred to the set of neighbors of 
the vertex 𝑎𝑎2.  

Example 1. For clarity, as an example, we 
show the validity of the assertion for 2-regular 
and 3- regular, as well as 4-regular graphs. The 
pseudofiniteness of  2-regular graphs is proved 
in Proposition 2, and for 𝑚𝑚 = 3 it is shown in 
Fig. 1. The tetrahedron 𝛤𝛤0  is taken. At each 
step 𝑖𝑖 > 0, adding vertices, in the limit we 
obtain an acyclic graph 𝛤𝛤 = 𝑖𝑖𝛤𝛤𝑖𝑖, where 𝛤𝛤𝑖𝑖 is a 
finite regular graph. 

 

Figure 1 – Approximation of a 3-regular 
graph. 

 
For any finite 𝑡𝑡, any 3-regular graph 𝛤𝛤 

consists of 4 + ∑ 3 ⋅ 2𝑖𝑖𝑡𝑡
𝑖𝑖=1  vertices. The infinite 

3-regular graph 𝛤𝛤 is split into acyclic 
components. 

Example 2. In case 𝑚𝑚 = 4, we take the 
octahedron 𝛤𝛤. Every i-th stage adding new 
vertices in the limit we get an acyclic graph 
(see Fig. 2). For a finite step 𝑟𝑟, the graph has  
6+∑ 4 ⋅ 3𝑖𝑖𝑟𝑟

𝑖𝑖=1  vertices of degree 4. Take any 
two routes of same length 𝑠𝑠 as the induced 
subgraph and map one to another 𝑠𝑠-route, we 
can see that the mapping extends to an 
automorphism of the pseudofinite graph 𝛤𝛤. 

From the above statement and examples it 
immediately follows: 

Theorem 2. For any infinite regular graph 
𝛤𝛤, the following conditions are true: 

1. 𝛤𝛤 is pseudofinite; 
2. 𝛤𝛤 is homogeneous. 
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in Proposition 2, and for 𝑚𝑚 = 3 it is shown in 
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Conclusion
In samethis paper, we study approximations of 

regular graphs with finite ones. It is shown that the 
approximation in the limit gives an acyclic regular 
graph. It is proved that any theory Т of regular 
graphs on an infinite set is pseudofinite. When 
approximating some graphs, there is a case when, in 
the limit, a graph with cycles is obtained. To get an 
acyclic graph, one can use Proposition 2 and break 
the cycles into two rays. For further study of various 
graph approximations, the following question can be 
posed:

Question: Which graphs defined by their 
automorphisms are pseudofinite?
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