HERALD OF THE KAZAKH-BRITISH
No. 4(67) 2023 TECHNICAL UNIVERSITY

UDC 20.53
IRSTI

https://doi.org/10.55452/1998-6688-2023-20-4-48-54

*IBRAGIM G.K., 2UMAROV T.F.
'Kazakh-British Technical University,050000, Almaty, Kazakhstan
’British Management University, Tashkent, Uzbekistan
*E-mail: g.ibragim@kbtu.kz

THE CONSIDERATION OF SEMANTIC GAP
BETWEEN DESIGN AND CODE

Abstract

In project management on creation of program application, specialists from different subject areas are involved,
who include their contributions, for instance, UI/UX designers who create mock-ups of the future application or
developers who write the code according to the prototype. The design conception may go beyond the possibilities of
interpreting it from a technical point of view of implementation. The realization of such idea could not to be able to
collect on only one defined program platform or language, and accordingly the problem is appeared. To eliminate
semantic gap between the designers’ concepts and opportunity of program developers in technical affordance,
released methodology, Model Driven Architecture (MDA), which is, on the one hand, a concept for implementation
of software, on the other hand a standard. In paper, considerate the MDA and its transformation levels with determine
a pragmatical semantics of mapping, reasons of chosen a class diagram as model of transformation and Java language
for code generation.

Key words: MDA, UML, transformation, mapping, semantic gap, pragmatics, class diagram, Java.
Introduction

Model Driven Architecture (MDA) is a methodology for the implementation processes of program
applications. The MDA was realized in 2001 year by the Object Management Group (OMG). OMG
is an international, open membership, not-for-profit technology standards consortium. Founded in
the 1989 year. Figure 1 illustrates the inherent pragmatics of the relationship between Model Driven
Engineering, Model Driven Development and Model Driven Architecture.

MDA: Model Driven Architecture © OMG

MDD: Model Driven Development © OMG

MDE: Model Driven Engineering

Figure 1 — The structure of MDE

48



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI Ne 4(67) 2023

MDA is acore of Model Driven Engineering (MDE). MDE is a software development methodology
that basis on defining and utilizing domain models.

The syntax of a programming language defines the processes of microprocessor, so it defines
semantics of functioning the microprocessor by executed program. Semantics in UML diagram
defines abstract functioning of executable program. And these two semantics is distinct. So, semantic
gap between UML diagram and the code representations of future application are emerged.

Semantics of programming language consist of domain semantics and semantic mapping. Semantic
mapping relates the syntactic expression to the components of the semantic domain. Semantic domain
is an ontology, description of concepts of construction of programming language, in this context. The
notion semantic domain may use in describing the semantics of design part of development. UML
diagrams have components which describe the processes of functioning of implementing application.
Hence it follows that UML diagram components depict semantic domain.

A semantic gap is a discrepancy in the logical connection of elements of one model in another,
transformed because of the first. The basic importance to Model Driven Architecture is a notion of
metamodel, above that it obtains model transformations. Metamodels determined using the Meta Object
Facility (MOF) standard. OMG defined also a specific standard language for models’ transformation
which called Query/Views/Transformations (QVT). And defined mechanism based on XML, which
provide interchange between models.

QVT is not success concept, it has no complete implementation, no industrial support, and not
used much by developers. For MDA implementation released Eclipse Metamodel Framework (EMF)
tool. EMF is used for a research project and affords to support a metamodel.

Materials and methods

Transformation

CIM
(Computational Independant Model)

@ =]
L

L
T

PSM
(Platform Specific Model)

-l b~
A
N Code
W I
W
-
e -

MDA: Different model levels,
model transformations between them

Figure 2 — Sequential transformations between models of MDA

Figure 2 explains the sequential transformations up Computational Independent Model (CIM)
level to executed code. The CIM level consider specifications, scenario, and requirements to software
application. It contains semantics of domain elements of conceptual model of application. Platform
Independent Model (PIM) is transformed version of CIM level. On transformation between CIM and
PIM levels the scenario of implementing application turn into UML diagram, which is understandable
design not only for domain specialist. On transformation of PIM to Platform Specific Model (PSM)
level, which demonstrated on Figure 3, the model of application turns into detailed version of PIM.
On that level all UML diagram elements acquire more detailed features, which give opportunity to

49



HERALD OF THE KAZAKH-BRITISH
No. 4(67) 2023 TECHNICAL UNIVERSITY

transform it to code. Behind all that transformations hidden notion which identifies metamodels and
contain domain semantics.

Main provisions

Mapping is not easy part of MDA. The semantics of domain specification should not change on
transformation levels. Mapping feasible based on NLP and Graph theory.

Mapping based on matching. The notion of second suppose the use of Model Management
Algebra (MMA). The match in MMA presented as an operator which takes two models as input and
returns a mapping of them. Mapping identifies combinations of objects in the input models that are
either equal or similar, based on the external meaning of equality and similarity. That definitions set
leads to two versions of the operator: Elementary and Complex matches.

Elementary is when one element is a modified version of another. The complex is based on the
complex meanings of the equation. That match, in its case, should distinguish sets of equal objects
from similar ones. Similarity implies that the object is related, but with uncertainty, how are objects
interconnected. Elementary and complex matching are not algorithms. But these matching’s rules
have their usage in graph isomorphism to detect structural similarity in complex models, and not only.
In NLP to identify, analyze similarity in text of a model.

Fim PsM

Figure 3 — Transformation PIM to PSM
Results and discussion

Pragmatics of mapping

In sequential of all written above may conclude following definition which contained in the notion
of matching according to software development:

Semantic pragmatics is a comparison of two models by separating the essential from the non-
essential. For instance, semantic pragmatics between model programming language and the model
of PSM level, which in case the transformed model of previous levels of MDA, reveals in cutting
off elements do not correspond to the syntax of programming language and domain-driven design
specifications.

Semantic pragmatics is embedded in matching, which means it is embedded in mapping, which
in case embedded in transformations of levels of MDA.

50



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI Ne 4(67) 2023

Literature review

MDA reviewed in papers [1, 2, 3, 4]. In articles considered MDA methodology in detailed position
from statement to levels transformation description.

In the paper of Peter D. Mosses el at. [5] a semantics of programming language is determined
as conceptual meaning of a program. It means that semantics provides abstract version of how the
application will work in real. The form and structure of semantics of any program are determined by
their syntax. So, the syntax has the defining role in collecting a semantics of implementing application.

In [6], considered the solution of bridging translating problems between pseudo-code and code
with using NLTK library functions. NLP is a developing sphere of information technology. Nowadays,
most applications based on trained “Al”, the abbreviation Al in parenthesis, because it is not complete
version of human brain, it works similar and with human written algorithms. It is not existing by
itself. NLP use machine learning methods and related to data science, because from the namespace,
it processes the text. Data is textual and symbolic information. NLP use in automatic word detection,
words translator. Tokenization and summarization are the main parts of NLP. In paper, the primary
objective in research was to translate the pseudo-code to code automatically. The method to solve
was using seq2seq technique. The prevented technique solves the 26% blank pseudo-code problem of
SPoC dataset.

In [7], authors present an approach to automatically transform textual business rules to an SBVR
model, Semantics of Business Vocabulary and Business Rule is a standard of OMG. The approach sate
on NLP and SBRV model, which include semantic notations of each rule. The semantics contained as
XMl file.

In paper [8], presented approach of automatic generation of code using smart contract code
examples from Solidity PSM. then the generated smart contract code compile on the Ethereum
blockchain JavaScript virtual machine, compare with original contract code in terms of Solidity code
metrics, similarity scores and execution costs. Authors elaborate on how the Solidity PSM is used for
Solidity smart contract code generation by employing model-to-text transformations.

In [9], proposed transformation from PIM to PSM as a process. Authors extend it as separating
mapping specification and transformation definition. The proposed process involves a metamodel
based on MOF and Ecore, a UML metamodel, a mapping and transformation language model, and a
transformation engine.

The mapping model specifies a relationship between the source and target metamodel, which is
an UML.

A transformation model generates from a mapping model. The transformation program
implements on the base of the transformation model. Transformation accomplishes according to the
transformation engine, which executes the transformation program. Then the transformation engine
on output produces the target model.

Three categories of mapping given in the article based on the concept of similar structure and
semantics between the elements of metamodels. There are: one — to — one, one — to — many, many —
to —one.

A one - to - one mapping is defined by one element from a target metamodel that equal to similar
structure and semantics of one element from a source metamodel. A one — to — many mapping is
defined by non-empty and non-unitary set of elements from a target metamodel with similar semantics
to one element from a source metamodel. The last mapping is opposite definition of the one — to —
many mapping.

Article [10] describe tool and approach of automatic generation code from UML class diagram
in software development, consequently. Authors in their article describe the Eclipse modeling tool in
concrete and Java code generation from UML diagram file. In [11] given approach of automatically
generating Java code. Authors created GenCode named tool as solution for mobile application
development. GenCode is open access and generate Java code from UML only. The algorithm of
GenCode tool is as follows: First, the diagram is fixed and sorted into the “structure” and “sequence”
packages. The structure package contains a class diagram, and sequence contains a sequence
diagram. After that, the “models’ generator” package will generate code for Android generator and
CSharpgenerator for the selected one. First, the structural code is generated, then the behavioral code.

51



HERALD OF THE KAZAKH-BRITISH
No. 4(67) 2023 TECHNICAL UNIVERSITY

In article [13], the authors research focuses on identification of significance of class diagram in
software development. And formulated the class diagram description.

In article [14], a metamodel of Java language and model-based code transformations are touched
upon. There are presented the scratch of Java meta-based code as an example of applying modeling
tools like QVT. Besides, marked the definition blackbox.

Class diagram and Java

Unified Model Language is easy implementable to any Independent Development Environment
(IDE) for its paradigm. In software engineering there are some IDE to generate code from UML
directly: Eclipse Metamodel Framework IDE, NetBeans IDE, IntelliJ IDEA, Visual studio, Android
Studio.

IDE transform the PSM level to code not from the initial CIM level. There are many research in
using that IDEs but one is not yet described. It is Android studio. All these IDE based on class diagram
and implement transformation from PIM to PSM, then to code. To get such result it requires Visual
Paradigm plugin. The reason of using Visual Paradigm by developers is that the Visual Paradigm
is an aggregate of design, analysis, management tools, which provide code generation. The noticed
detail in research of software development that most code transformations based on class diagram and
interpretation on Java language. The question why class diagram chosen as optimal variant arises, and
why code interpreted in Java not Python or C++. The class diagram relates to structural type, so it is
static and used to model static view of a software application. The static view describes the vocabulary
of the prototype of application. Beside that the class diagram is a consideration for component and
deployment diagrams and used to build the executable code. UML diagrams not entirely based on OOP,
but exactly the class diagram present the mapping of object-oriented languages. One of these object-
oriented languages is Java. The choose exactly that language comes from its semantic modelling.
Because of the class diagram is static, and static semantics are sufficient to construct the most used
Java refactoring. Java metamodel reflects static semantics.

Conclusion

The implementation of any software application is based on semantics. Semantics in MDA is
presented in the form of a CIM level specification, which interpreted as a UML diagram at the PIM
level. Then, the PIM model converts to the PSM model. By comparing models, the semantic gap is
eliminated. The mapping is based on semantic pragmatics. Each transformation is a set of rules that
is determined by semantic pragmatics. The article also presents a literature review of articles by other
researchers related to this topic. Many software developers use IDE to automatically generate code
from UML diagrams. And each of them is associated with class diagrams and the Java language. The
reason of chosen is their similar semantic structure. Due to that, the class diagram correctly converts
into the Java code, and thereby the semantic gap between design and code is eliminated.

REFERENCES

1 Silega N., Noguera M., Rogozov Y. 1., Lapshin V. S. & Gonzalez T. (2022) Transformation from CIM to
PIM: A systematic mapping. IEEE Access, 10, 90857-90872.

2 Niepostyn S.J. (2015) Consistent model driven architecture. Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments 2015.

3 Natek H., Elmounadi A. & Guerouate, F. (2022). Overview in the eclipse model-driven architecture
tools. ITM Web of Conferences, 46, 02001.

4 SafitriA. G. & Atqiya F. (2022). Automatic model transformation on multi-platform system development
with model driven architecture approach. Computer Science and Information Technologies, 3(3), pp. 157-168.

5 Mosses P. D. (2006). Formal semantics of programming languages. Electronic Notes in Theoretical
Computer Science, 148(1), pp. 41-73.

6 Acharjee U.K., Arefin M., Hossen K.M., Uddin M.N., Uddin M.A. & Islam L. (2022) Sequence-to-
sequence learning-based conversion of pseudo-code to source code using neural translation approach. IEEE
Access, 10, 26730-26742.

52



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI Ne 4(67) 2023

7 HajA., Jarrar A., Balouki Y. & Gadir T. (2021) The semantic of business vocabulary and business rules:
An automatic generation from textual statements. IEEE Access, 9, 56506-56522.

8 Jurgelaitis M., Ceponiene L. & Butkiene R. (2022) Solidity code generation from UML state machines
in model-driven smart contract development. IEEE Access, 10, 33465-33481.

9 Lopes D., Hammoudi S., Bézivin J. & Jouault, F. (2006) Mapping specification in MDA: From theory
to practice. Interoperability of Enterprise Software and Applications, pp. 253-264.

10 Fouquet F., Nain G., Morin, B., Daubert E., Barais, O., Plouzeau N., & Jézéquel J. (2012) An eclipse
modelling framework alternative to meet the Models@Runtime requirements. Model Driven Engineering
Languages and Systems, pp. 87—-101.

11 Parada A., Marques M. & Brisolara L.B. (2015) Automating mobile application development: UML-
based code generation for Android and Windows phone. Revista de Informatica Tedrica e Aplicada, 22(2), 31.

12 Yang S. & Sahraoui H. (2022) Towards automatically extracting UML class diagrams from natural
language specifications. Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings.

13 Yashwant W. (2014) Significance of class diagram in software development. Conference Managelization
at Osmanabad.

14 Hamioud S. & Atil F. (2015) Model-driven Java code refactoring. Computer Science and Information
Systems, 12(2), pp. 375-403.

FUBPATUM I'.K., *YMAPOB T.®.
'Kazakcran-bpuran texuukanbsik yausepcureti, 050000, Anmarsl K., Kazakcran
’bpuTaH MEHEKMEHT YHUBEpCUTETI, TallKkeHT K., ©30ekcTan
*E-mail: g.ibragim@kbtu.kz

JU3AHH MEH KOJ APACBIHIAFbI CEMAHTUKAJIBIK
AJIITAKTBIKTbI KAPACTBIPY

Anjgarna

XKobanapapr Oackapy KesiHie, OariapiaMaliblk KOCBIMIIAHBI KypyFa OpTYpJl callanapiblH MaMaHIapbl
KaTBICAIbI JKOHE Op MaMaH jko0ara e3 yieciH Kocaasl. MpIcalbl, OoNamak KOCBIMITaHBIH MaKeTTePiH jKacaymIbl —
UI/UX nu3aiiHepsiep MEH COJI MPOTOTHIIKE COMKEC KOJI JKa3aThlH OarmapiaaMaiaymbuiap. Jn3aiH TYKbIpbIMIaMachl
iCKe achIpy/IbIH TEXHUKAJIBIK TYPFBICBIHAH, Y3€Te aChIPbUTY MYMKIHIIKTEpIHEH ThIC 60ybl MyMKiH. XKy3ere achipyabt
Tek Oenrini Oip Oarmapmamansik iatgopma Hemece OaraapiaManay TUTIHAE JKMHAY MYMKIH eMec, CoMKeciHIe
JIAMBITY/Ia JIa KUBIHABIKTAD TYbIHAAAbL. Jlu3aliHepiep/IiH TYKbIphIMIaMaiapbl MEH OarqapiiaMaiblK jKacaKrama
JKacayIIbIIapIbIH TEXHUKAIBIK KO )KETIMILTIK MYMKIHIIKTEPi apachlHIaFbl CEMAaHTHKAIBIK aIIAKTHIKTHI )KOIO YIITH
Model driven Architecture (MDA) omicTemeci mbIFapbUTABL, Oy Oip )KarsIHAH OaFIapiIaMablK )KacaKTaMaHbl CHTIi3y
TYKBIPBIMJIaMACHI, EKiHIII JKaFbIHAH cTaHAapT. Makanaga MDA »oHe OHBIH TYPJICHIIIPY JeHT eUIepiHiH apachIHIAFbl
MparMaTiKaiblK CEMaHTHKa, TYPJICHIIPY MOJeli PeTiHIe Kiacc JuarpaMMachl MEH KOATHI Kypy YIIiH Java TutiH
TaHaay cedentepi 3epTTei.

Tipex ce3aep: MDA, UML, TpancdopMariusi, COUKECTCHIIPY, CEMaHTHKAIBIK AIIAKTHIK, TParMaTHKa, KI1acc
JuarpaMmMacsel, Java.

*UBPAT'UM I'.K., ?YMAPOB T.®.
'Kazaxcranko-bpuranckuii texanueckuit yausepcuret, 050000, r. Anmarsl, Kazaxcran
’bpUTaHCKUI YHUBEPCUTET MEHEKMEHTA, I. TalkeHT, Y30eKucTaH
*E-mail: g.ibragim@kbtu.kz

PACCMOTPEHUE CEMAHTUYECKOT'O PA3PbIBA
MEXKIY JIU3AMHOM U KOJAOM

AHHOTALUA
B ympasnenue npoekTaMu pyu CO3IaHIH MPOTPAMMHOTO MPIIIOKEHUS BOBICUCHBI CTICIHAINCTHI PAa3HBIX MIPE-
METHBIX 00JIacTel, KOTOphIe JenaroT cBoi Bkian. Hampumep, muzaiinepsl UI/UX, KOTOpbIe CO3MAI0T MaKeThl OyIy-
Ero NpuIoKCHUA, NI paSpa60T‘II/IKI/I, KOTOPbIC MUINYT KO B COOTBETCTBUH C IIPOTOTUIIOM. KOHHGHHI/IH ;[143a171Ha
MOJKET BBIXOAMTD 32 PAMKH BO3MOXKHOCTEHN €€ MHTEPIpPETaluu C TEXHUUECKOH TOUKM 3peHus peanuzanuu. Peanuza-

53



HERALD OF THE KAZAKH-BRITISH
No. 4(67) 2023 TECHNICAL UNIVERSITY

[I1I0 HEBO3MOXKHO COOpaTh TOJILKO Ha OJIHOM OIpeJIelICHHOW TPOrPaMMHOI TIaT(hOpMe UIH sI3bIKE, U, COOTBETCTBEH-
HO, TIOSIBJISIFOTCSI Tpo0JieMbl B pa3paboTke. [jist ycTpaHeHHs CeMaHTHYeCKOTO Pa3pbIBa MKy KOHIETIIHSIMU JTU3aii-
HEpPOB M BO3MOYKHOCTSIMH Pa3pabOTUMKOB MTPOTPaMM B TEXHHUUECKOH JOCTYITHOCTH ObUIA BBITYIIEHA METO/IOJIOTHUS
Model Driven Architecture (MDA), koTopasi siBIsleTCs, C OMHOH CTOPOHBI, KOHIETIIHEH BHEAPCHHS IPOTPaMMHOTO
obecriedeHus, ¢ Ipyroi — ctangapToM. B cratse paccmatpuBaetcs MDA u ero ypoBHH IpeoOpa3oBaHUs € OTIpeie-
JICHUEM NParMaTH4eCcKoi CeMaHTHKN OTOOpPasKeHNs, IIPUYMH BBIOOpa JrarpaMMbl KJIacCOB B Ka4eCTBE MOJEIIH IIpe-
00pa3oBaHMs U SI3bIKA Java U1 TeHepaluy KoJa.

KatoueBbie cioBa: MDA, UML, Tpanchopmarys, cOnocTaBieHHe, CEMaHTHYECKUI pa3phIB, IparMarTHka,
JuarpaMma KJiaccos, Java.

About authors

Ibrahim Gulnur Kuandykizi

Master’s degree, Kazakh-British Technical University, 59, Tole bi str.,
050000, Almaty, Kazakhstan.

ORCID ID: 0000-0003-0974-106X

E-mail: g.ibragim@kbtu.kz

Timur Faridovich Umarov

Professor, British Management University, Tashkent, Uzbekistan.
ORCID ID: 0009-0008-0044-7159

E-mail: t.umarov@bmu-edu.uz

ABTOpJIap TypaJjbl MJliMeTTep

HUoparum I'yinnyp KyanabIKKbI3bI

Maructp, Kazakcran-bpuran TeXHUKaIBIK YHUBEpCUTETI, Tone Ou ker., 59,
050000, Anmars! k., Kazakcran

ORCID ID: 0000-0003-0974-106X

E-mail: g.ibragim@kbtu.kz

Ymapos Tumyp ®@apugosuy

[Ipodeccop, British Management University, TamkenT k., ©30ekcTan
ORCID ID: 0009-0008-0044-7159

E-mail: t.umarov@bmu-edu.uz

HNudopmanusi 06 aBTopax

Hoparum I'yanyp KyanabIKKbI3bI

Maructp, Kazaxcrancko-bpuranckuii TeXHUYeCKUi yHUBEpCHTET, yiI. Tone 6u, 59,
050000, r. Anmatsl, Kazaxcran

ORCID ID: 0000-0003-0974-106X

E-mail: g.ibragim@kbtu.kz

Ymapos Tumyp ®Papugosu4

[Ipodeccop, British Management University, T. Tamkent, Y30exucran

ORCID ID: 0009-0008-0044-7159

E-mail: tumarov@bmu-edu.uz

54



