UDC 510.53 МРНТИ 27.03.45

DOI 10.55452/1998-6688-2021-18-2-53-58

INFINITE FAMILIES OF TOTAL FUNCTIONS WITH PRINCIPAL NUMBERINGS

ISSAKHOV A.A., RAKYMZHANKYZY F., OSTEMIROVA U.

Kazakh-British technical university, 050000, Almaty, Kazakhstan

Abstract. It was known that any non-single-element (in particular, any infinite) family of total functions with an oracle A, such that $O' \subseteq_T A$, does not have A-computable principal numbering; later it was proved that any finite family of total functions with a hyperimmune-free oracle A always has an A-computable principal numbering. The unresolved question was whether there exists an infinite family of total functions with a hyperimmune-free oracle A that has an A-computable principal numbering. The paper gives a positive answer to this question: it is proved that there exists an infinite A-computable family A for total functions, where the Turing degree of the set A is hyperimmune-free, such that A-computable principal numbering.

Key words: A-computable numbering, hyperimmune oracle, hyperimmune-free oracle, principal numbering.

БАСТЫ НӨМІРЛЕУЛЕРІ БАР БАРЛЫҚ ЖЕРДЕ АНЫҚТАЛҒАН ФУНКЦИЯЛАРДАН ТҰРАТЫН ШЕКСІЗ ҮЙІРЛЕР

ИСАХОВ А.А., РАХЫМЖАНҚЫЗЫ Ф., ӨСТЕМІРОВА У.

Қазақстан-Британ техникалық университеті, 050000, Алматы, Қазақстан

Аңдатпа. Кез келген бір-элементті емес (жеке жағдайда, кез келген шексіз) барлық жерде анықталған функциялардан тұратын **A** оракулымен есептелетін үйірлердің **A**-есептелімді бас нөмірлеуі болмайтыны белгілі болған және бұл тұжырым $\emptyset' \leq_T A$ үшін дұрыс; кейінірек, кез келген барлық жерде анықталған функциялардан тұратын гипериммунды-бос **A** оракулымен есептелетін *This work was supported by the Science Committee of the Republic of Kazakhstan (Grant AP08856493) ақырлы үйірлердің әрдайым **A**-есептелімді бас нөмірлеуі болатыны дәлелденген. **A**-есептелімді бас нөмірлеуі бар барлық жерде анықталған функциялардан тұратын гипериммунды-бос **A** оракулымен есептелетін ақырсыз үйір табылатыны шешілмеген мәселе болып қалған. Осы жұмыста бұл мәселе оң шешімін тапты: **A**-есептелімді бас нөмірлеуі бар барлық жерде анықталған функциялардан тұратын гипериммунды-бос **A** оракулымен есептелетін ақырсыз үйір табылатыны дәлелденген.

Түйінді сөздер: А-есептелімді нөмірлеу, гипериммунды оракул, гипериммунды-бос оракул, бас нөмірлеу.

БЕСКОНЕЧНЫЕ СЕМЕЙСТВА ВСЮДУ ОПРЕДЕЛЕННЫХ ФУНКЦИЙ С ГЛАВНЫМИ НУМЕРАЦИЯМИ

ИСАХОВ А.А., РАХЫМЖАНКЫЗЫ Ф., ОСТЕМИРОВА У.

Казахстанско-Британский технический университет, 050000, Алматы, Казахстан

Аннотация. Ранее было известно, что любое не одноэлементное (в частности, любое бесконечное) семейство всюду определенных функций с оракулом A, такое что $\emptyset' \leq_T A$, не имеет A-вычислимую главную нумерацию, позже было доказано, что любое конечное семейство всюду определенных функций с гипериммунно-свободным оракулом A всегда обладает A-вычислимой главной нумерацией. Оставался нерешенным вопрос о том, существует ли бесконечное семейство всюду определенных функций с

гипериммунно-свободным оракулом A, которое имеет -вычислимую главную нумерацию. B работе приводится положительный ответ на указанный вопрос: доказано, что существует бесконечное -вычислимое семейство F всюду определенных функций, где тьюрингова степень множества A гипериммунно-свободна, такое, что F имеет A-вычислимую главную нумерацию.

Ключевые слова: А-вычислимая нумерация, гипериммунный оракул, гипериммунно-свободный оракул, главная нумерация.

Introduction

A-computable principal numberings

All basic definitions related to computable numberings can be found in [1].

If a family F of total functions is A-computable for arbitrary set A, then a numbering α of the family F is called A-computable while $\alpha(n)(x)$ is A-computable binary function, [2]. If degree α contains a hyperimmune set, then α is hyperimmune. Otherwise, α is hyperimmune-free.

It is known that if an A-computable family F of total functions contains at least two elements, where A is a hyperimmune set (for $A \ge \emptyset'$ see [3]), then F has no A-computable principal numbering, [4]. It was also proved that if finite A-computable family F of total functions, where Turing degree of the set A is hyperimmune-free, then F has an A-computable principal numbering, [5].

Now we introduce alternative proofs of some theorems related to the main theorem.

Main part

Theorem (Issakhov, [3]). If an A-computable family F contains at least two functions, where $\emptyset' \leq_T A$, then F has no A-computable principal numbering.

Proof. Let α be an A-computable numbering of the family F. f and g are two different functions from F. Therefore there exists $\alpha \in \omega$ such that

$$f(a) \neq g(a)$$

Construct a numbering β such that for any $e \in \omega$:

$$\beta(e) \neq \alpha \varphi_e(e)$$

Let

$$K = \{a_0 < a_1 < a_2 < \cdots \},$$

$$\overline{K} = \{b_0 < b_1 < b_2 < \cdots \}$$

be halting set and its complement, respectively, which are A-computable sets. Let's define

$$\beta(b_i) = \alpha(i)$$

for any $i \in \omega$, which guarantee that β is an A-computable numbering of the family F. But

$$\beta(a_i) = \begin{cases} f, if \ \alpha \varphi_{a_i}(a_i)(a) = g(a) \\ g, & otherwise \end{cases}$$

Then β is still A-computable numbering of the family F, and

$$\beta(\alpha_i)(\alpha) \neq \alpha \varphi_{\alpha_i}(\alpha_i)(\alpha)$$

Therefore, for any α there exists β such that $\beta \leq \alpha$, which means α can not be a principal numbering of the family F.

Theorem is proved.

Note that every finite family of computably enumerable (c.e.) sets has a principal computable numbering.

Theorem (Badaev, Goncharov, [2]). For every set A , where $^{\emptyset'} \leq_{T} ^{A}$, a finite family S of A -c.e. sets has an A -computable principal numbering if and only if S contains the least set under inclusion.

Theorem (Badaev, Goncharov, [2]). For every set A , there is an infinite A -computable family S of sets with pairwise disjoint elements such that S has an A -computable principal numbering.

Compare with the results in [6].

An infinite set A is hyperimmune if and only if no recursive function majorizes A , [7].

Theorem (Miller, Martin), [8].

- (a) If \boldsymbol{a} is hyperimmune and $\boldsymbol{a} < \boldsymbol{b}$ then \boldsymbol{b} is hyperimmune.
 - (b) a is hyperimmune iff some function of

degree $\leq a$ is majorized by no recursive function.

- (c) If $(\exists a)[a < b < a']$, then **b** is hyperimmune.
- (d) Every nonzero degree comparable with **0**' is hyperimmune.

Theorem (Issakhov, [5]). Let **A** be a hyperimmune set. If **A**-computable family **F** of total functions contains at least two elements, then **F** has no principal **A**-computable numbering.

Proof. Let α be an A-computable numbering of the family F, and f and g be two different functions from F. Then there exists a number a such that

$$f(a) \neq g(a)$$

Construct β such that $\beta \leq \alpha$, i.e. for any $e \in \omega$: $\beta \neq \alpha \varphi_{\varepsilon}$. Let

$$\beta(\langle 0,e,x\rangle) = \begin{cases} g, if \ \alpha \varphi_{e,h(x)}(\langle 0,e,x\rangle)(a) = f(a) \\ f, & otherwise \end{cases}$$

where h is a non-majorized A-computable function. And

$$\beta(\langle n, e, x \rangle) = \alpha(\langle e, x \rangle)$$

for all n > 0, i.e. β is the numbering of the family F.

If φ_{ϵ} is not total, then

$$\beta(x) \neq \alpha \varphi_a(x)$$

for some $x \in \omega$. If φ_{ε} is total, then

 $\hat{h}(x) = \min\{s : \varphi_{s,s}(\langle 0, e, x \rangle) \downarrow\}$

$$h(x) = \min\{s : \varphi_{e,s}((0,e,x)) \downarrow\}$$

$$A_0 = \{a_{00}, a_{01}, \dots, a_{0m_0} | f_0(a_{00}) \neq f_1(a_{00}), f_0(a_{01}) \neq f_2(a_{01}), \dots, f_0(a_{0m_0}) \neq f_n(a_{0m_0}) \}$$

$$A_1 = \{a_{10}, a_{11}, \dots, a_{1m_1} | f_1(a_{10}) \neq f_0(a_{10}), f_1(a_{11}) \neq f_2(a_{11}), \dots, f_1(a_{1m_1}) \neq f_n(a_{1m_1}) \}$$

$$A_n = \left\{ a_{n0}, a_{n1}, \dots, a_{nm_n} \middle| f_n(a_{n0}) \neq f_0(a_{n0}), f_n(a_{n1}) \neq f_1(a_{n1}), \dots, f_n(a_{nm}) \neq f_{n-1}(a_{nm_n}) \right\}$$

where $m_0, m_1, \dots, m_n \leq n$

Denote by $\Phi_{\mathfrak{s}}^{A}(x,y)$ all A-computable binary

is computable function.

Since h is a non-majorized A-computable function, then there exists a number $b \in \omega$ such that $\hat{h}(b) < h(b)$. Therefore

$$\varphi_{e,h(b)}(\langle 0,e,b\rangle)\downarrow$$

and

$$\beta(\langle 0, e, b \rangle) \neq \alpha \varphi_{\alpha}(\langle 0, e, b \rangle)$$

Theorem is proved.

Theorem (Issakhov, [5]). If Turing degree of a set *A* is hyperimmune-free then every *A* -computable finite family of total functions has an *A*-computable principal numbering.

Proof. Note that a degree \boldsymbol{a} is hyperimmune if and only if some function of degree $\leq \boldsymbol{a}$ is majorized by no recursive function. Therefore a degree \boldsymbol{a} is hyperimmune-free if and only if for any function \boldsymbol{f} of degree $\leq \boldsymbol{a}$ there exists computable function \boldsymbol{g} such that $\boldsymbol{f}(n) \leq \boldsymbol{g}(n)$ for all $n \in \omega$.

Let α be an A-computable numbering of the finite family

$$F = \{f_0, f_1, \dots, f_n\}$$

of total functions. Define distinguishing sets A_0, A_1, \dots, A_n of the functions f_0, f_1, \dots, f_n which satisfy the next two conditions:

- (1) $A_i = \{a_{in}, a_{i1}, \dots, a_{im}\}$ for some $m \leq n$,
- (2) for any $j \le n$ there exists $k \le m$ such that

if
$$j \neq i$$
 then $f_i(a_{ik}) \neq f_j(a_{ik})$.

It means

functions by
$$e \in \omega$$
. Then there exists e such that $\Phi_e^A(x)(y) = \Phi_e^A(x,y) \equiv \alpha(x)(y)$.

and the same for any numbering. Let

$$\beta(\langle e,x,s\rangle)(y) = \begin{cases} f_i(y), & \text{if } \exists i \leq n \ \Big(f_i(a_{ik}) = \Phi_{e,s}^A(x)(a_{ik})\Big) \ \text{for all } k \leq |A_i| \\ f_0(y), & \text{otherwise} \end{cases}$$

From construction it is easy to see that β is A-computable numbering of the family F. We show that β is A-computable principal numbering of F.

Let γ be an A-computable numbering of the family F. Then there exists $e_1 \in \omega$ such that

$$\gamma(x) = \Phi_{e_1}^A(x)$$

for any $x \in \omega$. Let

$$g(x) = \min \left\{ s : \exists i \le n \left(f_i(a_{ik}) = \right) \right\}$$

$$= \Phi_{e_1,s}^A(x)(a_{ik}) \Big) \ for \ all \ k \le |A_i| \Big\}.$$

g(x) is an A-computable total function, where Turing degree of the set A is hyperimmune-free. Therefore, there exists a computable function f such that $g(x) \le f(x)$ for any $x \in \omega$. Then

$$\beta(\langle e_1, x, f(x) \rangle)(y) = f_i(y) =$$

$$= f_i(y) = \Phi_{e_1}^A(x)(y) = \gamma(x)(y)$$

for all $y \in \omega$, i.e.

$$\beta(\langle e_1, x, f(x) \rangle) = \gamma(x)$$

which means $\gamma \leq \beta$.

Theorem is proved.

Note that the Rogers semilattice of the family from previous theorem is not trivial, since

Theorem (Issakhov, [5]). Let $\emptyset <_T A$. Then any A-computable non-trivial finite family of total functions has at least two non-equivalent A-computable numberings.

Proof. Let
$$F = \{f_0, f_1, \dots, f_n\},$$
 where $n > 0$,
$$\alpha(i) = \begin{cases} f_i, & \text{if } i \leq n \\ f_0, & \text{if } i > n \end{cases}$$

and
$$\beta(i) = \begin{cases} f_i, & \text{if } i \leq n \\ f_0, & \text{if } i > n \text{ and } i \in A \\ f_1, & \text{if } i > n \text{ and } i \notin A \end{cases}$$

We show that $\alpha \not\equiv \beta$. Assume $\alpha \equiv \beta$, then there exists a computable function g such that $\beta(x) = \alpha(g(x))$. Note that

$$x \in A \setminus [0; n] \Leftrightarrow (x > n) \text{ and } (g(x) = 0 \text{ or } g(x) > n)$$

Since the right part is computable then $A\setminus[0;n]$ is also computable. Therefore A is computable too, contradiction.

Theorem is proved.

Main result

Theorem. There exists an infinite A-computable family F of total functions, where Turing degree of the set A is hyperimmune-free, such that F has an A-computable principal numbering.

Proof. Let's remind that a is hyperimmune-free degree if and only if for any $f \leq_T a$ there exists computable function g such that

$$f(n) \le g(n)$$

for all $n \in \omega$.

Assume that the infinite A-computable family F of total functions consists of only constant functions $f_0, f_1, ..., f_n$, ... where

$$f_i(x) = i$$

for all $x \in \omega$. Denote by $\Phi_{\varepsilon}^{A}(x,y)$ all A -computable binary functions by $\varepsilon \in \omega$. Let α be an arbitrary A-computable numbering of the family F. Then there exists a number ε such that

$$\alpha(x)(y) = \Phi_{\varepsilon}^{A}(x, y)$$

Let
$$\beta(\langle e, x, s \rangle)(y) = \begin{cases} f_i(y), & \text{if } \exists i \left(f_i(k) = f_i(y) \right) \end{cases}$$

$$=\Phi_{e,s}^{A}(x)(k)\Big) \ for \ all \ k \leq s$$

$$otherwise$$

From construction of β it is easy to see that β is an A-computable numbering of the family F. Let's show that β is a principal numbering of the family F.

Take any numbering γ of the family F and show that $\gamma \leq \beta$. Since γ is a numbering of the family F, there exists a number $e_1 \in \omega$ such that

$$\gamma(x) = \Phi_{s_1}^A(x)$$
for any $x \in \omega$.
$$g(x) = \min \left\{ s: \exists i \left(f_i(k) = \Phi_{s_1,s}^A(x)(k) \right) \text{ for all } k \leq s \right\}$$

g is an A-computable total function, where Turing degree of the set A is hyperimmune-free. Therefore, there exists computable function f such that $g(x) \le f(x)$ for any $x \in \omega$. It means that

$$\beta(\langle e_1, x, f(x) \rangle)(y) = f_i(y) = \Phi_{e_1, s}^A(x)(y) = \gamma(x)(y)$$
 for all $y \in \omega$, i.e.

$$\gamma(x) = \beta(\langle e_1, x, f(x) \rangle)$$
.
Therefore $\gamma \leq \beta$.
Theorem is proved.

Conclusion

Note that, [4, 9], if an A-computable family F of total functions contains at least two elements, where A is a hyperimmune set, then F has no A-computable principal numbering; but if Turing degree of the oracle set A is hyperimmune free then any finite A-computable family F of total functions has an A-computable principal numbering, and also now there exists an infinite A-computable family F of total functions such that F has an F-computable principal numbering.

Question. Is there an infinite A -computable family of total functions, where Turing degree of the set A is hyperimmune free, with no A -computable principal numbering?

REFERENCES

- 1. Yu.L. Ershov. Theory of numberings \\ Handbook of Computability Theory. North-Holland; Amsterdam: Stud. Log. Found. Math., 1999, Vol. 140, pp. 473-503.
- 2. S.A. Badaev and S.S. Goncharov, Generalized computable universal numberings, Algebra and Logic, vol. 53 (2014), no. 5, pp. 355-364.
- 3. A.A. Issakhov, Ideals without minimal elements in Rogers semilattices, Algebra and Logic, vol. 54 (2015), no. 3, pp. 197-203.
- 4. A.A. Issakhov, A-computable numberings of the families of total functions, The Bulletin of Symbolic Logic, vol. 22 (2016), no. 3, p. 402.
- 5. Assylbek Issakhov, Hyperimmunity and A-computable universal numberings, AIP Conference Proceedings, vol. 1759, 020106 (2016); doi: 10.1063/1.4959720.
- 6. M.Kh. Faizrakhmanov, Universal generalized computable numberings and hyperimmunity, Algebra and Logic, vol. 56 (2017), no. 4, pp. 337-347.
- 7. Soare R.I., Recursively enumerable sets and degrees. Berlin; Heidelberg; New York: Springer-Verlag, 1987. 437 p.
- 8. Miller W., Martin D.A., The degree of hyperimmune sets \\ Z. Math. Logik Grundlag. Math., 1968, Vol. 14, pp. 159-166.
- 9. Issakhov A.A., Rakymzhankyzy F., Hyperimmunity and *A*-computable numberings \\ The Bulletin of Symbolic Logic, 2018, Vol. 24, No. 2, pp. 248-249.

Information about authors:

- 1. Assylbek A. Issakhov PhD Doctor, Head and Professor of the Scientific and Educational Center of Mathematics and Cybernetics KBTU, Kazakh-British Technical University, st. Tole bi 59 ORCID ID: https://orcid.org/0000-0001-7020-7988 Email: a.isakhov@kbtu.kz
- 2. Fariza Rakymzhankyzy Master of Science, PhD student, Scientific and Educational Center for Mathematics and Cybernetics, Kazakh-British Technical University, st. Tole bi 59

ORCID ID: https://orcid.org/0000-0002-6517-5560

Email: fariza.rakymzhankyzy@gmail.com

3. Uldana B. Ostemirova – PhD student, tutor of the Scientific and Educational Center of Mathematics and Cybernetics, Kazakh-British Technical University, st. Tole bi 59 Email: u.ostemirova@kbtu.kz