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COMPARISON AND ANALYSIS OF DIFFERENT MACHINE LEARNING METHODS
ON ASTEROID DIAMETER PREDICTIONS BASED ON THE NASA SMALL CELESTIAL
BODIES DATABASE

Abstract. The database of small celestial bodies NASA is provided by the Jet Propulsion Laboratory and represents the
collected information about asteroids and comets, describing their parameters available for observation and determination,
including physical ones, as well as their classification and data on the number and duration of observation. Many of these
celestial techs have an incomplete description of their properties, which makes it difficult to predict their behavior and
potential interaction with other objects in space, including man-made ones. This study proposes a solution to a certain
part of the problems of asteroid exploration by finding a prediction of the diameter of asteroids based on information from
the NASA database and the results of machine learning methods on processed data from the source. For this research,
some of the most commonly used algorithms for implementing such prediction models have been selected, such as
KNN, linear regression, random forest, decision trees, and gradient boosting. Applied machine learning algorithms were
evaluated based on the results of diameter prediction accuracy, speed of training and prediction process, and square mean
error rates. The study will help to choose the most optimal approach for predicting this feature of asteroids, describe the
process of data pre-processing, while achieving the best performance of the model, and analyze the correlations between
the properties of these celestial bodies.

Key words: machine learning, asteroid, prediction model, KNN, linear regression, random forest, decision tree, gradient
boosting.

Introduction

The Solar System and space beyond are inhabited by plenty of small body objects that float in different
directions and collide with other objects, which may result in the creation of potentially hazardous situations
for our planet[7]. Hence numerous researchers track and collect data about asteroids to identify those objects
that are the most threatening to the Earth. In 2009, the University of Glasgow proposed a paper “Multicriteria
Comparison Among Several Mitigation Strategies for Dangerous Near-Earth Objects” with properties of
objects that may help to evaluate and assess effective methods of identifying such. This paper contains about
90 variables that are taken into account to predict and define mathematics models for identifying dangerous
near-Earth objects[16]. None of the proposed strategies used machine learning algorithms. In another article
“Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning” the authors
used supervised machine learning techniques such as differential evolution algorithm, gaussian process
regression to evaluate the trajectories of asteroids[17].

Our research is based on the current database of small celestial bodies presented by the Jet Propulsion
Laboratory of California Institute of Technology consists of hundreds of thousands of asteroids and comets,
and while some of them are well studied, some objects miss many valuable parameters, which can describe
their future interactions with other bodies, while also assisting in prediction possible behavioral patterns[11].
Correlation with several attributes, such as categorical values of Potentially Hazardous Asteroids (PHA)[3] or
semi-major axis, may help researchers to predict possible threats of previously unknown or under-researched
asteroids or generally identify characteristics of their orbits[20]. However, it is worth considering that an
asteroid's diameter also has a direct correlation with its mass. Mass is not one of the features we are taking
into account in our study, but the distribution of masses of asteroids is a more complex topic due to the nature
of mass measurement techniques, but the various mass distribution prediction methods have been applied for
closely located asteroids for many decades now[9].
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Table 1 — The embeddings for each column

name Name of asteroid

a Semi-major axis, in AU

e Eccentricity

i Inclination, in degrees

om Longitude of the ascending node, in degrees
Argument of perihelion, in degrees

q Perihelion distance, in AU

ad Apbhelion distance, in AU

per y Orbital period, in years

data_arc Number of days spanned by the data arc, in days

condition_code Orbit condition code

n_obs_used Number of observations used

H Absolute magnitude parameter

neo Near-Earth Object flag, yes or no

pha Potentially Hazardous Asteroid flag, yes or no

diameter Object diameter, in kilometers

extent Object tri-axial ellipsoid dimensions, in kilometers

albedo Albedo

rot_per Rotation period, in hours

GM Product of the mass (M) multiplied by the gravitational constant (G)

BV Color index B-V magnitude difference

UB Color index U-B magnitude difference

IR Color index I-R magnitude difference

spec B Spectral taxonomic type (SMASSII)

spec T Spectral taxonomic type (Tholen)

G Magnitude slope parameter

moid Earth minimum orbit intersection distance, in AU

class Orbit class

n Mean motion, in degrees/days

per Orbital period, in days

ma Mean anomaly, in degrees

Literature review

Basu(2019) used the Multilayer Perceptron algorithm to predict the diameter of asteroids[21]. It analyzed
its performance, utilizing other machine learning methods on the same dataset, as in this paper. It appears that
the methods that were used for comparison differ from the methods that will be used in this paper.

Recently Hossain & Zabed(2023) produced a comparison of machine learning algorithms for the
classification and diameter prediction of asteroids[22]. For the task of diameter, predictions used the same
machine-learning algorithms. However, only parameters of absolute magnitude H and albedo were used as
inputs and it seems that no proper process of finding data correlation between parameters was conducted, for
the task of diameter prediction.

It is clear that a thorough analysis of the dataset features correlation is needed for a more accurate forecast
of asteroid diameter and comparison of the performance of machine learning algorithms. Moreover, studies
involving this particular NASA dataset and forecasting models for diameter prediction are not that frequent
and mostly set their objectives in other areas.

Main provisions

The main goal of the analysis of this particular dataset consists of data preprocessing [1] and feature
identification through the profound examination of the correlation between the diameter and each of the
columns.
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Figure 1 — Relationship between data arc and diameter
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Figure 2 — Relationship between n_obs_used and diameter

Data

The dataset has 839736 entries and 27 columns. Out of all columns and their descriptions, which are
depicted in Table 1., initially we dropped only 3 features: name, data_arc, and n_obs_used because all these
fields will either result in overly biased results, in the case of data_arc or n_obs_used or just be useless in
prediction since they are manually assigned names, in case of name. n_obs_used column represents the total
number of observations of the distinct asteroid. At the same time, the data arc feature refers to the total
amount of days between the first and the last observation of an asteroid. Even though both fields have a high
correlation with diameter, shown in Figure 1. for data_arc, and in Figure 2. for n_obs_used, they represent
historical human activity. They will not contribute to predictions for newly discovered celestial objects.
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Figure 3 — Correlation heatmap for all numerical and categorical features

After this step, we began analyzing other numerical and categorical attributes by plotting the correlation
heatmap for all features in order to find the most appropriate features for diameter prediction, depicted in Figure 3.
To plotthe correlation heatmap we used Pandas built-in .corr method which can use Pearson(standard) correlation
coefficient [12], Kendall Tau correlation coefficient [15], and Spearman rank correlation [8]. According to
this data, 11 out of 24 columns have a pairwise correlation between -0.1 and 0.1, which demonstrates their
insignificance for the forecasting process, thus they were dropped alongside. Those fields are e (Eccentricity),
ad (Aphelion distance), i (Inclination), om (Longitude of the ascending node), w (Argument of perihelion),
per_y (Orbital period), rot_per (Rotation period), G (Magnitude slope parameter), per (Orbital period), pha
(Potentially Hazardous Asteroid) and ma (Mean anomaly). Low correlation values for the aforementioned
attributes may be related to the nature of asteroid formation or events that occurred before measurements were
taken. Nonetheless, those features were excluded from further testing, improving overall prediction accuracy.
Furthermore, we dropped all items with unidentified diameters, since in this research we are trying to train
models with predefined desired prediction parameters for testing, resulting in dropping 702100 rows from the
initial dataset, leaving 137636 items in the final iteration of a dataset.

Table 2 — Number of asteroids with missing values for given attributes

Column Rows with NaN value
a 0

q 0

747

UB 136671

BV 136631

GM 137622

moid 0
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diameter 0
albedo 1230

n 0

IR 137635

During the next phase of preprocessing, we counted all the asteroids with missing values for all remaining
features. As demonstrated in Table 2., UB (Color index U-B magnitude difference), BV (Color index B-V
magnitude difference), GM (Product of the mass (M) multiplied by a gravitational constant (G)), and IR
(Color index I-R magnitude difference) fields have only 965, 1005, 14, and 1 non-missing values presented,
correspondingly. While we may fill empty UB, GM, and BV cells with mean values of these columns since
they have at least some amount of rows filled with data, it will negatively impact the mean square error during
prediction, which is shown in Table 3. Thus, we are removing these columns from further processing and
testing, alongside rows, which contain NaN values in remaining attributes, which means out of 11 columns,
the resulting dataset only includes 7. After the deletion of all items with missing values, the total number of
removed rows reached 1230, which is a maximum between H and albedo.

Correlation between features in cleaned dataset

Figure 4 — Correlation heatmap for all numerical and categorical features after optimization

Outliers deletion is the final step in data standardization to achieve the most optimal accuracy rates for
all the models this research uses as prediction models for the diameter of asteroids. Outliers were identified
by calculating Z-score for every value inside the features and using list-wise deletion [10] with an absolute
Z-score exceeding the value of 3, which equals 5333 deleted rows, and 130800 left after this step. Number
3 was taken as an arbitrary value, often used by models to find unusual entries in datasets. Z-score can be
described as a statistical measurement, which depicts the connection between a value and a set of values mean
[2]. Standard deviations from the mean are used to measure Z-score. Score formula:

Z=(x—-uw /o, (D

where is the standard score, is the observed value, is the mean of the sample, is the standard deviation of
the sample. In this case, the mean of the sample represents the average data on the column, while the standard
deviation of the sample is the root-mean square of the difference between the given observation and the sample
mean [14].
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The new correlation heatmap depicted in Figure 4. shows far greater pairwise correlation values for diameter,
implying our preprocessing had a significant effect on the prediction capabilities of our model.

Methods

During the training and prediction phases of this study, we were able to test several popular machine
learning techniques as regressors, such as K-nearest neighbors (KNN) [4], linear regression [13], decision tree
[5], random forests [6], and gradient boosting [18].

KNN: the KNN algorithm is a supervised learning classifier that utilizes proximity by producing
classifications or predictions about how a particular data point will be grouped. It is non-parametric.

Linear regression: as for linear regression, and its application as the classifier, it can be characterized as
a method, in which a variable's value can be predicted using linear regression analysis based on the value of
another variable. The dependent variable is the one you want to be able to forecast. The independent variable
is the one you're using to predict the value of the other variable.

Decision Tree: by constructing a decision tree, the decision tree classifier [19] develops the classification
model. A test on an attribute is specified by each node in the tree, and each branch descending from that node
represents one of the possible values for that property.

Random forests: as an ensemble learning technique for classification and regression, random forests build
a large number of decision trees during the training phase. The class that the majority of the trees choose is the
output of the random forest for classification problems. The mean or average forecast of each tree is returned
for regression tasks. The tendency of decision trees to overfit their training set is corrected by random decision
forests.

Gradient boosting: this estimator allows for the optimization of any differentiable loss function and
constructs an additive model in a forward stage-wise manner. A regression tree is fitted on the negative gradient
of the provided loss function at each level.

Table 3 — R2 score, Root MSE (Mean Square Error), and execution time for each method (UB, GM, and BV)

Method (Regressor) R2 R2 score, Root | Root MSE, Execution | Execution time,
score | outliers removed | MSE | outliers removed| time, in ms | outliers removed, in ms
Linear regression 0.55 | 0.78 6.90 | 1.39 6.30 4.06
Decision tree 0.92 | 0.93 291 | 0.77 127.65 105.53
KNN 0.77 | 0.95 498 | 0.63 1357.18 72.94
Random forest 0.94 | 0.96 2.53 | 0.57 9528.88 7997.67
Gradient boosting 0.93 | 0.96 2.58 | 0.57 3057.80 2934.02

Table 4 — R2 score, Root MSE (Mean Square Error), and execution time for each method

Method (Regressor) R2 score Root Mean Square Error Execution time, in ms
Linear regression 0.78 1.39 4.06

Decision tree 0.93 0.77 105.53

KNN 0.95 0.63 72.94

Random forest 0.96 0.57 7997.67

Gradient boosting 0.96 0.57 2934.02

Results and Discussion

In order to achieve a better understanding of per-model performance we conducted 3 separate sets of testing,
in which predictions were made based on datasets with both UB, GM, and BV features removed and remained,
then there was a removal of any outliers with Z-index score higher than 3. In this study, the authors use the
R2 score as an indicator of accuracy. Authors can observe the difference between forecasting results of data
before and after outlier removal with UB, GM, and BV attributes in Tables 3 and 4. Outliers had a significant
impact on R2 score, which is calculated as the R2 score, which is a coefficient of determination, used as a
regression score function, for some methods, such as linear regression and KNN, while other techniques only
had improvement in root mean square error. Also, we have a major improvement in execution times. The most
noticeable execution time inequality is represented by the difference in KNN execution times before and after
outlier removal, from 1357.18 ms to 72.94 ms, which can be explained by a significant reduction in the total
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number of rows. Overall, as shown in Table 3, with given initial input data, the decision tree and KNN have the
best R2 score per execution time ratio, while gradient boosting and random forest both demonstrate very high
R2 score and execution time, but lower root square mean error in comparison with other algorithms.

On the other hand, as Table 4. depicts, removing UB, GM, and BV columns, which almost fully consist of
mean sample data values of the initial few items, resulted in a comparable performance, but a significantly
better root mean square error indicator. Comparing all the methods in our final testing, all the methods except
linear regression had a great R2 score in forecasting asteroid diameters. Linear regression, while being the
least accurate one, still has the acceptable root mean square error value, and substantially lower execution
time. KNN achieved the best overall performance, reaching a value of 0.95 for R2 score, which is 0.01 lower
in comparison with random forest and gradient boosting, and had a reasonable execution time of 72.94, while
the aforementioned random forest and gradient boosting exceed 2500 ms each.

Conclusion

This paper presented a profound description of building a model for forecasting asteroid diameters based
on NASA's small body database. The main idea of the research was to identify pairwise correlations between
dataset features and diameter and analyze several approaches to diameter prediction with the help of various
machine learning algorithms.

With the given results, we may potentially forecast the diameters of many currently understudied asteroids
and newly discovered ones. Applications to such predicted data can improve the identification of potentially
hazardous asteroids, and generally enhance our understanding of the behavior of many small bodies we can not
study due to technological limitations.
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KIIIT ACITAH JEHEJIEPI TYPAJIBI NASA JEPEKKOPBI HET'I3IHAE ACTEPOUATAPIBIH
JUAMETPIH BOJIZKAY YIUIH 9PTYPII MAIIIMHAJIBIK OKBITY 9IICTEPIH CAJIBICTBIPY
7KIOHE TAJIIAY

Anparma. NASA ximmi acnian neHenepiHig aepekkopsiH Jet Propulsion Laboratory ychiHaIBI )KoHE 01 aCTEPOUATAP MECH
KOMEeTanap Typaibl )KUHAIFAH aK[aparThl, ONap/bl 0aKbUIdy KOHE AHBIKTAY YIIIH KOJI JKETIMJII TTapaMeTpliep/ii, COHbIH
immiHge (QU3UKaIBIK apaMeTpIIepIi, COHIai-aK OJapAbIH KIKTelyi, OaKplIay CaHBI MEH Y3aKTBIFBI TYPaJbl IEePEeKTepIl
KaMmTuabl. Byt acman neHenepiHiH 0achIM KOMIIUTITHIH KACHSTTEP1 TONBIK CHIIaTTaIIMaFaH, Oy OJapIblH MiHE3-KYJIKbIH
JKOHE FapBIIITaFbl 0acka OOBCKTUICPMEH, COHBIH IMIiHAC KONIAaH KacallFaH 3aTTapMCEH ©3apa OpeKeTTeCyiH OOKay/Isl
KMBIHAATa bl by 3eprTey actepounrapasl 3eprrey Macenenepinin oenrii 6ip 6emirin NASA nepekkopblHaH albIHFaH
aKrapar rneH 0acTarKbl KO3/IeH OHJICNIIeH JAePEKTep Il Mak/1anana OThIPbII, MAIIUHAIBIK OKBITY 9JIICTEPiHIH HOTIKEIEePi
HETi31H/Ie aCTepOUATAPIbIH THAMETPIiHIH O0KaMbIH Taly apKbUIBI MICITY/II YCHIHAIBL. Byir sKyMbICTa OChIHIAM OoIKay
MOJIENTBACPIH JKY3eTe achlpy VIIiH eH kui KomnaneuatelH KNN, linear regression, random forest, decision tree »xoHe
gradient boosting cusKTBI arOpUTMIEP TaH 1A AbL. [aii1anaHbUIFaH MAIIUHATIBIK OKBITY AITOPUTMIEPI AUaMeTp/Ii O0InKay
TOIIITIHIH, )KYMBIC XBUITAMIBIFBIHBIH KOHE OpTalla KBAaJIPaTTHIK KAaTENIK KOPCETKIMITEPiHIH HOTIXKeNepi OOMBIHIIA
OarayaH/bl. 3epTTEy acTepOHITAPIBIH OCpLIreH KOPCETKINIIH OOJDKayIbIH CH OHTAIIIBI TOCITIH TaHIayFa KOMEKTECEi,
MOJICITBIIH CH KaKChI KOPCETKIMITePiHe KO KETKI3Y YIIiH IepeKTepIi aJIIbIH aJia OHJIEY IIPOICCIH CHITATTalIbI KOHE OCHI
acraH JICHEeNIePiHiH KaCHeTTepl apachlH/arbl KOPPEISIUSHbI TallIaiIbL.

Tipek ce3mep: MamMHAIBIK OKHITY, acTepoun, Oomkay moxeni, KNN, linear regression, random forest, decision tree,
gradient boosting.

Hyiicex B.E.*, Capcem6un JI./1., Ad0nypa3zak K.A.

Kazaxcrancko-bpuranckuit texunueckuit yausepcutet, 050000, r. Anmatsl, Kazaxcran
*E-mail: be_duisek@kbtu.kz

CPABHEHHUE U AHAJIN3 PASJIMYHBIX METOJOB MAILIMHHOI'O OBYYEHUS
HA IMPEACKA3SAHUAX TUAMETPOB ACTEPONJI0B HA OCHOBE BA3bI JAHHBIX MAJIBIX
HEBECHBIX TEJI NASA

Annoranus. ba3a nanapix Maneix HeOecHBIX Ten NASA mpenocrasisercs Jet Propulsion Laboratory u mpeacrasmisier
coboii coOpaHHyI0 HH(pOopMAIHIO 00 acTeponIax U KOMETaX, OIMCHIBAs MX JOCTYITHBIC [T HAONFONCHUS U ONPEICIICHIUS
apaMeTphl, B TOM YHCIIE PU3NIECKUE, TAKIKE NX KIaCCH(UKAIINIO U TAHHBIC [T KOJIMYCSCTBY U JUTUTEIIEHOCTH HAOTFOICHUH.
MHOKeCcTBO ITHX HEOSCHBIX TEX UMEIOT HEIMOJTHOE OITMCAHHUE WX CBOWCTB, UTO JENIACT 3aTPYAHUTEIBHBIM MIPECKa3aHme
WX MOBEJCHHUS W TIOTCHIHAIBHOE B3aMMOJCHCTBUE C IPYTUMH OOBEKTaMU B KOCMOCE, B TOM YHUCIIC W PYKOTBOPHBIMH.
JlaHHOE WCCIeOBaHKE IMpeUlaracT PeIICHUE OMPEHCICHHON 4YacTh MpoOIeM IO HCCIICAOBAHHUIO aCTCPOHIOB ITyTEM
HAXOXKJICHUSI TIPEICKA3aHus JUaMeTpa aCTePOUIOB, OCHOBBIBAsICH Ha HH(OopManuu U3 6a3sl qaHHBIX NASA u pesynsraTax
paboTBl METOJIOB MAIIMHHOTO OOYYeHHUsS MO 00pabOTaHHBIM JaHHBIM W3 M3HAYAIBHOTO MCTOYHHUKA. J[1s1 3TOW paboThI
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ObUTH BBHIOpAHBI HEKOTOPHIC W3 HamOOJIee YacTO WCIOIB3yeMBIX AJITOPHUTMOB IS pealln3alliil MOJXOOHBIX MOICINeH
npenckazanus, Takue kak: KNN, linear regression, random forest, decision tree u gradient boosting. Vcrons30BaHHbIC
QITOPUTMBI MAIIMHHOTO OOYYEHHUsS OBUIM OLICHCHBI IO pe3yJbraTaM TOYHOCTU IMPEICKA3aHUH JAHAMETpPa, CKOPOCTH
paboTHI M TOKa3aTesiM CPEIHCKBAJAPATUYHBIX OMIMOOK. lccinenoBaHue MOMOXKET BBIOpaTh HAaMOOJEe ONTHMAJBHBIN
MTOJIXO/ JUTSL TIPEICKa3aHus TaHHOTO IOKA3aTeisi aCTEPOUIOB, OIUILET MPOLECC MPEIBAPUTEIFHON 00paOOTKH TaHHBIX
JUTSL TOCTHKCHUS Y UIIUX ITOKA3aTeJIe MOJICIIH U IPOAHAIN3UPYET KOPPEISAIUH MEKIY CBOMCTBAMHE 3TUX HEOCCHBIX TEI.

KiroueBble cioBa: MalmHHOE O6y‘lCHI/Ie, acTepoul, MOACIb IMpCACKa3aHud, JIMHEHHAS perpeccus, cnyqaﬁﬂmﬁ JIeC,
ACPEBO pCHIeHPIfI, IMOBBIIIICHUE I'PAIUCHTA.
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