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Abstract. The direct numerical simulation (DNS) is an effective and useful tool in the two-phase fluid flow 
studying. The projection method on the staggered grid was applied in this paper to solve the incompressible 
Navier-Stokes equations in irregular domains at the pore-scale level (irregular boundary is presented by its 
level-set function). The permeability of porous medium which was constructed by the random positioning of 
penetrable spheres of equal radii were numerically calculated and validated by comparing with theoretical 
estimations of permeability based on the numerical solution of the lattice-Boltzmann equation in irregular 
domains in previous works. All numerical calculations were performed using PARIS simulator.
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Аңдатпа.  Тікелей сандық модельдеу (DNS) сұйықтықтың екі фазалы ағынын зерттеуге арналған 
тиімді және пайдалы құрал болып табылады. Бұл мақалада шахмат торын қолданып проекциялау 
әдісі кеуек масштабында тұрақты емес аймақтардағы сығылмайтын сұйықтық үшін Навье-Стокс 
теңдеулерін шешу үшін қолданылады. Радиусы бірдей өткізгіш сфераларды кездейсоқ орналастыру 
арқылы салынған кеуекті ортаның өткізгіштігі сандық түрде есептелді және басқа жұмыстардағы 
Больцман торлы теңдеуінің біркелкі емес аймақтардағы сандық шешіміне негізделген өткізгіштіктің 
теориялық бағалауларымен салыстыру арқылы расталды. Барлық сандық есептеулер PARIS 
симуляторы бойынша жүргізілді.
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Introduction
There exist many numerical models of the 

fluid flow in porous media at pore-scale level 
such as: pore network modelling [1, 2], lattice-
Boltzmann method [3, 4] and numerical solution 
of the Navier-Stokes equations using Finite-
Difference, Finite-Element or Finite-Volume 
method [5, 6, 7].

The most popular approach for computing 
single and multiphase flow directly on pore-
space images is the lattice Boltzmann method. 
This is a particle-based technique that simulates 
the motion and collision of particles on a grid; the 
averaged behavior can be shown to approximate 
the governing Navier– Stokes equation. The 
method is relatively easy to code and is ideally 
suited for parallel computing platforms. Its main 
disadvantage is computational efficiency, even 
with a massively parallel implementation. The 
run time scales approximately as the inverse of 
real flow rate, which makes it difficult to capture 
accurately capillary controlled displacement on 
sufficiently large samples to make reliable predic
tions of relative permeability. For multiphase 
flow, network modelling still offers the quickest 
and most proven approach to predicting relative 
permeability and capillary pressure [8]. 

The simulation in this paper is based on the 
numerical solution of the incompressible Navier-
Stokes equations in irregular domains, where the 
irregular boundary is represented by its level-set 
function [9, 10, 11]. When the fluid flow obeys 
Darcy law, the permeability of these porous 
media was numerically calculated and compared 
with the previous works based on the numerical 
solution of the lattice-Boltzmann equation in 
irregular domains [12]. 

Definition of the problem and numerical 
methodology

There are no exact analytical solutions for 
porous media which was constructed by the ran
dom positioning of penetrable spheres of equal 
radii, but in this case there are upper and lower 
estimations of the permeability of these porous 
media [13, 15]. For the case when the value of the 
porosity is close to 1, the Brinkman's estimation 
can be used to obtain exact solution [14]. 

The fluid flows through this porous medium 
by the gravitational force and the permeability of 
these porous medium is numerically calculated and 
compared with existing theoretical estimations. 
All numerical calculations were performed using 
PARIS simulator [16] on the numerical mesh 
with sizes 256x256x256 and spheres with equal 
radius R=0.0625 are considered.

The Darcy's law for permeability calculation 
during the fluid flow through porous medium is:
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𝜇𝜇 ∇(𝑝𝑝 + 𝜌𝜌𝜌𝜌𝜌𝜌)      (1) 

where K is the permeability of porous medium, µ is the fluid viscosity, 𝑈⃗⃗𝑈  is the flow rate, p is the 
pressure in the porous medium and ρgz is the hydrostatic pressure.  

The model is based on the numerical solution of the Navier-Stokes equations for 
incompressible fluid flow through porous medium: 

𝜌𝜌 (𝜕𝜕𝑢⃗⃗𝑢 (𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝜕𝜕 + (𝑢⃗𝑢 (𝑥𝑥 , 𝑡𝑡) ∙ ∇)𝑢⃗𝑢 (𝑥𝑥 , 𝑡𝑡)) = 𝜌𝜌𝑔𝑔 − ∇𝑝𝑝(𝑥𝑥 , 𝑡𝑡) + 𝜇𝜇∇2𝑢⃗𝑢 (𝑥𝑥 , 𝑡𝑡), 𝑥𝑥 ∈ 𝐷𝐷0  (2) 

∇ ∙ 𝑢⃗𝑢 (𝑥𝑥 , 𝑡𝑡) = 0, 𝑥𝑥 ∈ 𝐷𝐷0      (3) 
 

No-slip boundary conditions are applied on the pore-matrix interface ∂D0: 
𝑢⃗𝑢 (𝑥𝑥 , 𝑡𝑡) = 0, 𝑥𝑥 ∈ 𝜕𝜕𝜕𝜕0       (4) 

 
Cubic porous medium domain D with size a is considered (square domain for 2D case) and the 

periodic boundary conditions are applied on its faces: 
𝑢⃗𝑢 (𝑥𝑥𝐶𝐶⃗⃗⃗⃗ − 𝑎𝑎

2 , 𝑡𝑡) = 𝑢⃗𝑢 (𝑥𝑥𝐶𝐶⃗⃗⃗⃗ + 𝑎𝑎
2 , 𝑡𝑡)    (5) 

where 𝑥𝑥𝐶𝐶⃗⃗⃗⃗  is the position of the center of cubic domain D.  
In order to find the permeability of the porous medium the steady state solution of the 

equations (2), (3) with boundary conditions (4), (5) is found and this solution is averaged over the 
porous medium domain: 

			   (1)

where K is the permeability of porous medium, 
µ is the fluid viscosity, 
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and then the Reynolds number (𝑅𝑅𝑅𝑅 = 𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇 , where L is the characteristic length) is found below which 

the fluid flow in porous medium obeys Darcy’s law. When the fluid flow obeys Darcy law, the 
permeability of the porous medium is numerically calculated using equation (1). 

Staggered grid and solid surface are presented on figure 1. Here, cells with same sizes are 
circumscribed (green dashed lines) around each mesh node. 

 

 
Figure 1 - Representation of staggered grid and solid surface 

 
The theoretical value of the porosity of porous medium which was constructed by the random 

positioning of penetrable spheres of equal radii is [15]: 
𝜑𝜑 = 𝑒𝑒𝑒𝑒𝑒𝑒 (− 4
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where N is the number of spheres and R is the radius of a sphere. The theoretical value of the solid 
surface is: 

𝑆𝑆 = 4𝜋𝜋𝑅𝑅2𝑁𝑁𝑁𝑁       (9) 
 

The theoretical estimation of permeability by Brinkman [14] is: 
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6𝜋𝜋𝑅𝑅3𝑁𝑁 (1 + 3𝜓𝜓

4 (1 − √8
𝜓𝜓 − 3))    (10) 

where 𝜓𝜓 = 1 − 𝜑𝜑 is the volume fraction of the solid phase. 
The theoretical estimation of permeability by Weissberg and Prager [13] is: 

𝐾𝐾2
∗ = 𝐾𝐾

𝑅𝑅2 = 𝜑𝜑
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Results and discussion 
The results of numerical solution of the Navier-Stokes equations (2, 3) with boundary 

conditions (4, 5) for fluid flow through the porous media are presented. The following parameters are 
used: fluid density ρ=1, fluid viscosity µ=1, domain size a=1.  

The relation between flow rate and number of mesh nodes for a fluid flow through porous 
medium which was constructed by random positioning of penetrable spheres of equal radii R=0.0625 
is shown in the table 1.  
 
Table 1. The relation between the flow rate and number of mesh nodes  

Number of 
mesh nodes 

Flow rate  
N=1200, φ=0.337 

Flow Rate  
N=1600, φ=0.234  

Flow Rate 
N=2400, φ=0.12 

16x16x16 0.193168 0.104666 0.038771 
32x32x32 0.008309 0.00155 3.08241E-19 
64x64x64  0.006023 0.001621  6.09677E-05 
128x128x128 0.005619 0.001588 0.000108 
256x256x256  0.005348 0.001496  0.000116 
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The comparison of numerical and theoretical values of the porosity and solid surface of porous 
medium which was constructed by random positioning of penetrable spheres of equal radii are shown 
in the figures 2 and 3, respectively.  
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As can be seen from figure 2 the numerical value of the porosity begins to deviate from the 

theoretical value when the number of spheres is N=1200 (porosity is φ=0.337 and relative error is 
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in the figures 2 and 3, respectively.  

 
Figure 2 - Comparison of the numerical and theoretical values of the porosity  

 
As can be seen from figure 2 the numerical value of the porosity begins to deviate from the 

theoretical value when the number of spheres is N=1200 (porosity is φ=0.337 and relative error is 
about 10-15%). 

 
Figure 3 - Comparison of the numerical and theoretical values of solid surface  

 
The maximum relative error of the numerical calculation of the solid surface is about 10-15% 

when the number of spheres is N=1200 (see figure 3). These errors depend on the mesh size and to 
calculate these parameters more accurately it needs a very fine numerical mesh or it needs to use 
unstructured numerical mesh. It is also noteworthy that the relative error of the numerical calculation 
of the porosity is about 20-30% when the number of spheres is N=2400 (porosity is φ=0.12). 

The comparison of numerical and theoretical values of the permeability of porous medium 
which was constructed by the random positioning of penetrable spheres of equal radii is shown in the 
figure 4. The theoretical estimation of Brinkman [14] for dilute concentration of randomly located 
identical spheres and the theoretical estimation of Weissberg and Prager [13] for the porous medium 
which was constructed by the random positioning of penetrable spheres of equal radii are considered.  

 
Figure 4 - Comparison of the numerical and theoretical values of the permeability 

Figure 4 - Comparison of the numerical and theoretical values of the permeability
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