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PORE-SCALE MODELLING OF FLUID FLOW IN PENETRABLE SPHERES
USING THE PROJECTION METHOD FOR INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS
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Abstract. The direct numerical simulation (DNS) is an effective and useful tool in the two-phase fluid flow
studying. The projection method on the staggered grid was applied in this paper to solve the incompressible
Navier-Stokes equations in irregular domains at the pore-scale level (irregular boundary is presented by its
level-set function). The permeability of porous medium which was constructed by the random positioning of
penetrable spheres of equal radii were numerically calculated and validated by comparing with theoretical
estimations of permeability based on the numerical solution of the lattice-Boltzmann equation in irregular
domains in previous works. All numerical calculations were performed using PARIS simulator.
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Anoamna. Tixenei canoviy mooenvoey (DNS) cyiivikmolxmoiy exi (hazanvbl ablHLIH 3epmmeyee apHaleaH
Muimoi dcane natoanwl Kypan ooasin madwiiadvl. byn maxarada waxmam mopoln KOAOAHBIN NPOEKYUSIAY
20ici Keyek MacumabwbiHOa MYpaKmol emec atmMakmapoagvl ColeblIMalmelt cyubikmolk yulin Hagve-Cmokc
meHOeynepin weuty yulin Koroausliaovl. Paduycel 6ipoei emxizeiut cghepanapovl ke30elicox OpHAIACmbIPy
APKBLIbL CAILIHEAH KeYeKMI OPMAaHbIY, OmKi3eiumici CaHOblK mypoe ecenmeioi dcane OACKa HCYMblcmapoagsl
Bonvyman mopnvl menoeyiniy Oipkenxi emec aumakmapoagbl CaHObIK uewimMine He2i30eleeH OmKI3eIUmiKmiy

MEeOPUSILIK  DALANAYIAPLIMEH  CATLICIbIPY  apKblabl  pacmanovl. bapnvik canowvi ecenmeyiep PARIS
CUMYTIAMOPbL OOUBIHULA HCYPIZINOL.
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Annomauusa. llpsmoe uucnennoe moodenuposanue (DNS) - sgpghexmuensviti u nonesuviti uncmpymenm O
uzyuenus 08yxghasnoco meuenus xcuokocmu. B daumnoii cmamve npumensemcsa npoekyuonHwlli Memoo ¢
UCNONb308AHUEM WAXMAMHOU cemKu 05 pewenus ypasnenull Hasve-Cmoxca 015 necorcumaemou HcudKocmu
6 Hepe2YNAPHbIX 0ONACMAX HA NOPOMACUMAOHOM YPOGHe (Hepe2VIApHAs epanuya npeocmaesiena QynKyuer
yemanosku ypoens). Ilponuyaemocmv nopucmotl cpedvl, Komopas Ovlia HOCMPOeHd HYymeM CAVHauHo20
PACNONOdCEHUS NPOHUYAEMBIX Chep PABHO20 paduycd, Oblid pacCHumana YUcieHHo U NOOMEePHcOeHa nymem
CpagHenUs ¢ meopemudecKUMy OYeHKaAMU NPOHUYAEMOCMU, OCHOBAHHBIMU HA YUCTICHHOM PeuleHul yPasHeHUs.
pewemku-bonvymana 6 HepeyIsApHLIX 00nacmax 6 npeovioywux pabomax. Bce uuciennvie pacuemuvl
nPOBOOUNUCH ¢ UCNOTb308aHUem cumynamopa PARIS.

Knrwouesvie cnosa: ypasnenus Hasve-Cmorca, npoekyuonnsiii Memoo, nopucmas cpeod, npoHUyaemocmby,

nopucmocmnib.

Introduction

There exist many numerical models of the
fluid flow in porous media at pore-scale level
such as: pore network modelling [1, 2], lattice-
Boltzmann method [3, 4] and numerical solution
of the Navier-Stokes equations using Finite-
Difference, Finite-Element or Finite-Volume
method [5, 6, 7].

The most popular approach for computing
single and multiphase flow directly on pore-
space images is the lattice Boltzmann method.
This is a particle-based technique that simulates
the motion and collision of particles on a grid; the
averaged behavior can be shown to approximate
the governing Navier— Stokes equation. The
method is relatively easy to code and is ideally
suited for parallel computing platforms. Its main
disadvantage is computational efficiency, even
with a massively parallel implementation. The
run time scales approximately as the inverse of
real flow rate, which makes it difficult to capture
accurately capillary controlled displacement on
sufficiently large samples to make reliable predic-
tions of relative permeability. For multiphase
flow, network modelling still offers the quickest
and most proven approach to predicting relative
permeability and capillary pressure [§].

The simulation in this paper is based on the
numerical solution of the incompressible Navier-
Stokes equations in irregular domains, where the
irregular boundary is represented by its level-set
function [9, 10, 11]. When the fluid flow obeys
Darcy law, the permeability of these porous
media was numerically calculated and compared
with the previous works based on the numerical
solution of the lattice-Boltzmann equation in
irregular domains [12].

Definition of the problem and numerical
methodology

There are no exact analytical solutions for
porous media which was constructed by the ran-
dom positioning of penetrable spheres of equal
radii, but in this case there are upper and lower
estimations of the permeability of these porous
media [13, 15]. For the case when the value of the
porosity is close to 1, the Brinkman's estimation
can be used to obtain exact solution [14].

The fluid flows through this porous medium
by the gravitational force and the permeability of
theseporousmediumisnumerically calculatedand
compared with existing theoretical estimations.
All numerical calculations were performed using
PARIS simulator [16] on the numerical mesh
with sizes 256x256x256 and spheres with equal
radius R=0.0625 are considered.

The Darcy's law for permeability calculation
during the fluid flow through porous medium is:

i7=K
U="V(p+pgz) )

where K is the permeability of porous medium,
u is the fluid viscosity, U is the flow rate, p is
the pressure in the porous medium and pgz is the
hydrostatic pressure.

The model is based on the numerical solution
ofthe Navier-Stokes equations for incompressible
fluid flow through porous medium:

p(ZE2+ @G, 0 - WA, ) =

= pg —Vp(E,t) + uVAi(%,t), X €Dy (2)
©)

V-i(%t) =0,% €D,
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No-slip boundary conditions are applied on
the pore-matrix interface 0D,

u(x,t) =0,x € dD, 4)

Cubic porous medium domain D with size
a is considered (square domain for 2D case) and
the periodic boundary conditions are applied on
its faces:

ﬂ(xT—%,t)zfi(ﬁ+%,t) (5)

where X is the position of the center of cubic
domain D.

In order to find the permeability of the
porous medium the steady state solution of the
equations (2), (3) with boundary conditions (4),
(5) is found and this solution is averaged over the
porous medium domain:

~ [, d@av
U= (©)
and then the Reynolds number (Re = pTUL, where
L is the characteristic length) is found below
which the fluid flow in porous medium obeys
Darcy’s law. When the fluid flow obeys Darcy
law, the permeability of the porous medium is
numerically calculated using equation (1).
Staggered grid and solid surface are
presented on figure 1. Here, cells with same sizes
are circumscribed (green dashed lines) around
each mesh node.

Pore nodes
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Figure 1 - Representation of staggered grid and solid surface

The theoretical value of the porosity of
porous medium which was constructed by the
random positioning of penetrable spheres of
equal radii is [15]:

@ = exp (—gnR3N) ®)

where N is the number of spheres and R is the
radius of a sphere. The theoretical value of the
solid surface is:

— 2
S =4nR N(p (9)

The theoretical estimation of permeability
by Brinkman [14] is:

K __ 1 3% _’E_
Kl_RZ_Gn:R3N(1+4(1 P 3))

where v =1-¢ is the volume fraction of the
solid phase.

The theoretical estimation of permeability
by Weissberg and Prager [13] is:

(10)

K*_ﬁ'_'w
2 7 R2 T 6nR3N

(11

Results and discussion

The results of numerical solution of the
Navier-Stokes equations (2, 3) with boundary
conditions (4, 5) for fluid flow through the porous
media are presented. The following parameters
are used: fluid density p=1, fluid viscosity u=1,
domain size a=1.

The relation between flow rate and number
of mesh nodes for a fluid flow through porous
medium which was constructed by random
positioning of penetrable spheres of equal radii
R=0.0625 is shown in the table 1.

Table 1. The relation between the flow rate
and number of mesh nodes

Number of Flow rate | Flow Rate Flow Rate

mesh nodes N=1200, | N=1600, N=2400, p=0.12
©=0.337 | 9p=0.234

16x16x16 0.193168 | 0.104666 0.038771

32x32x32 0.008309 | 0.00155 3.08241E-19

64x64x64 0.006023 | 0.001621 6.09677E-05

128x128x128 | 0.005619 | 0.001588 0.000108

256x256x256 | 0.005348 | 0.001496 0.000116
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The comparison of numerical and theoretical
values of the porosity and solid surface of porous
medium which was constructed by random

positioning of penetrable spheres of equal radii
are shown in the figures 2 and 3, respectively.
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Figure 2 - Comparison of the numerical and theoretical values of the porosity

As can be seen from figure 2 the numerical
value of the porosity begins to deviate from the
theoretical value when the number of spheres is

N=1200 (porosity is ¢=0.337 and relative error is
about 10-15%).

e th‘fmeficgl value of surface

T T T
Theoretical value of surface

14 oo .," '.‘.-._.“

ol | ; |

0 500 1000 1500

2000

N

2500 3000 3500 4000

Figure 3 - Comparison of the numerical and theoretical values of solid surface

The maximum relative error of the numerical
calculation of the solid surface is about 10-
15% when the number of spheres is N=1200
(see figure 3). These errors depend on the mesh
size and to calculate these parameters more
accurately it needs a very fine numerical mesh
or it needs to use unstructured numerical mesh.
It is also noteworthy that the relative error of the
numerical calculation of the porosity is about
20-30% when the number of spheres is N=2400
(porosity is ¢=0.12).

The comparison of numerical and theoretical
values of the permeability of porous medium
which was constructed by the random positioning
of penetrable spheres of equal radii is shown in the
figure 4. The theoretical estimation of Brinkman
[14] for dilute concentration of randomly located
identical spheres and the theoretical estimation
of Weissberg and Prager [13] for the porous
medium which was constructed by the random
positioning of penetrable spheres of equal radii
are considered.
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Figure 4 - Comparison of the numerical and theoretical values of the permeability

As it can be seen from the figure 4 the
theoretical value of Weissberg and Prager is
always greater than the numerical value. The
theoretical value of Brinkman begins to deviate
from the numerical value when the number of
spheres is N=200 (porosity is ¢=0.82).

Concluding remarks

The results of the numerical simulation of
incompressible viscous fluid flow through porous
medium which was constructed by the random

positioning of penetrable spheres of equal radii
are presented in this paper. Incompressible
Navier-Stokes equations are numerically solved
using projection method on staggered grids.
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