PORE-SCALE MODELLING OF FLUID FLOW IN PENETRABLE SPHERES USING THE PROJECTION METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

AKASHEVA ZH.K.1, KUDAIKULOV A.A.1, ASSILBEKOV B.K.1, BOLYSBEK D.A.1,2
1Satbayev University, 050000, Almaty, Kazakhstan
2Al-Farabi Kazakh National University, 050000, Almaty, Kazakhstan

Abstract. The direct numerical simulation (DNS) is an effective and useful tool in the two-phase fluid flow studying. The projection method on the staggered grid was applied in this paper to solve the incompressible Navier-Stokes equations in irregular domains at the pore-scale level (irregular boundary is presented by its level-set function). The permeability of porous medium which was constructed by the random positioning of penetrable spheres of equal radii were numerically calculated and validated by comparing with theoretical estimations of permeability based on the numerical solution of the lattice-Boltzmann equation in irregular domains in previous works. All numerical calculations were performed using P ARIS simulator.

Keywords: Navier-Stokes equations, projection method, porous medium, permeability, porosity

SYГЫЛМАЙТЫН НАВЬЕ-СТОКС ТЕНДЕУІНЕ АРНАЛГАН ПРОЕКЦИОНДЫ ӘДІСІТІ ҚОЛДАНА ОТЫРЫП ОТПЕЛІ СФЕРАЛАРДАН ОТЫНІ АҒЫНДЫ КЕУЕК МАСШТАБЫНДА МОДЕЛЬДЕУ

АКАШЕВА Ж. К.1, КУДАЙКУЛОВ А. А.1, АСЫЛБЕКОВ Б. К.1, БОЛЫСБЕК Д. А.1,2
1Қ. И. Сәтбаев атындағы Қазақ Ұлттық техникалық зерттеу университеті, 050000, Алматы, Қазақстан
2Ал-Фараби атындағы Қазақ Ұлттық университеті, 050000, Алматы, Қазақстан

Аңдатпа. Тікелей сандық модельдеу (DNS) суықтықтық үшін өткізілген және өткізілмейтін фазалықтың зерттеуіне арналған әдіс болып табылады. Бұл әдіс бойынша үшін қосылған өткізгіш сфераларын қосылған ағынын динамикасы бойынша түсінік береді. Бұлақы ағыны суықтық үшін қосылған өткізгіш сфераларының қосылғаны жағдайында таралады. Бұл әдіс бойынша қосылған өткізгіш сфераларының қосылғаның динамикасы бойынша түсіндіру әдісін қолдауға болады.

Түйінің сөздер: Навье-Стокс теңдеулері, проекциялау әдісі, уақыттық әрекет, кеуектілік
Introduction

There exist many numerical models of the fluid flow in porous media at pore-scale level such as: pore network modelling [1, 2], lattice-Boltzmann method [3, 4] and numerical solution of the Navier-Stokes equations using Finite-Difference, Finite-Element or Finite-Volume method [5, 6, 7].

The most popular approach for computing single and multiphase flow directly on pore-space images is the lattice Boltzmann method. This is a particle-based technique that simulates the motion and collision of particles on a grid; the averaged behavior can be shown to approximate the governing Navier–Stokes equation. The method is relatively easy to code and is ideally suited for parallel computing platforms. Its main disadvantage is computational efficiency, even with a massively parallel implementation. The run time scales approximately as the inverse of real flow rate, which makes it difficult to capture accurately capillary controlled displacement on sufficiently large samples to make reliable predictions of relative permeability. For multiphase flow, network modelling still offers the quickest and most proven approach to predicting relative permeability and capillary pressure [8].

Definition of the problem and numerical methodology

There are no exact analytical solutions for porous media which was constructed by the random positioning of penetrable spheres of equal radii, but in this case there are upper and lower estimations of the permeability of these porous media [13, 15]. For the case when the value of the porosity is close to 1, the Brinkman’s estimation can be used to obtain exact solution [14].

The fluid flows through this porous medium by the gravitational force and the permeability of these porous medium is numerically calculated and compared with existing theoretical estimations. All numerical calculations were performed using PARIS simulator [16] on the numerical mesh with sizes 256x256x256 and spheres with equal radius $R=0.0625$ are considered.

The Darcy's law for permeability calculation during the fluid flow through porous medium is:

$$\mathbf{U} = \frac{K}{\mu} \nabla (p + \rho gz)$$

(1)

where K is the permeability of porous medium, μ is the fluid viscosity, \mathbf{U} is the flow rate, p is the pressure in the porous medium and ρgz is the hydrostatic pressure.

The model is based on the numerical solution of the Navier-Stokes equations for incompressible fluid flow through porous medium:

$$\rho \left(\frac{\partial \mathbf{u}(\mathbf{x}, t)}{\partial t} + (\mathbf{u}(\mathbf{x}, t) \cdot \nabla) \mathbf{u}(\mathbf{x}, t) \right) =$$

$$\rho g - \nabla p(\mathbf{x}, t) + \mu \nabla^2 \mathbf{u}(\mathbf{x}, t), \mathbf{x} \in D$$

(2)

$$\nabla \cdot \mathbf{u}(\mathbf{x}, t) = 0, \mathbf{x} \in D_0$$

(3)
No-slip boundary conditions are applied on the pore-matrix interface ∂D_0:

$$\vec{u}(\vec{x},t) = 0, \vec{x} \in \partial D_0$$

Cubic porous medium domain D with size a is considered (square domain for 2D case) and the periodic boundary conditions are applied on its faces:

$$\vec{u}\left(\vec{x}_c - \frac{a}{2},t\right) = \vec{u}\left(\vec{x}_c + \frac{a}{2},t\right)$$

where \vec{x}_c is the position of the center of cubic domain D.

In order to find the permeability of the porous medium the steady state solution of the equations (2), (3) with boundary conditions (4), (5) is found and this solution is averaged over the porous medium domain:

$$\overline{U} = \frac{\int_D \vec{u}(\vec{x})dV}{V}$$

and then the Reynolds number ($Re = \frac{\rho U L}{\mu}$, where L is the characteristic length) is found below which the fluid flow in porous medium obeys Darcy’s law. When the fluid flow obeys Darcy law, the permeability of the porous medium is numerically calculated using equation (1).

Staggered grid and solid surface are presented on figure 1. Here, cells with same sizes are circumscribed (green dashed lines) around each mesh node.

The theoretical value of the porosity of porous medium which was constructed by the random positioning of penetrable spheres of equal radii is [15]:

$$\varphi = \exp\left(-\frac{2}{3} \pi R^3 N\right)$$

where N is the number of spheres and R is the radius of a sphere. The theoretical value of the solid surface is:

$$S = 4\pi R^2 N\varphi$$

The theoretical estimation of permeability by Brinkman [14] is:

$$K_1^* = \frac{K}{R^2} = \frac{1}{6\pi R^2 N}\left(1 + \frac{3\psi}{4}\left(1 - \sqrt{\frac{8}{\psi}} - 3\right)\right)$$

where $\psi = 1 - \varphi$ is the volume fraction of the solid phase.

The theoretical estimation of permeability by Weissberg and Prager [13] is:

$$K_2^* = \frac{K}{R^2} = \frac{\varphi}{6\pi R^2 N}$$

Results and discussion

The results of numerical solution of the Navier-Stokes equations (2, 3) with boundary conditions (4, 5) for fluid flow through the porous media are presented. The following parameters are used: fluid density $\rho=1$, fluid viscosity $\mu=1$, domain size $a=1$.

The relation between flow rate and number of mesh nodes for a fluid flow through porous medium which was constructed by random positioning of penetrable spheres of equal radii $R=0.0625$ is shown in the table 1.

Table 1. The relation between the flow rate and number of mesh nodes

<table>
<thead>
<tr>
<th>Number of mesh nodes</th>
<th>Flow rate ($N=1200, \varphi=0.337$)</th>
<th>Flow Rate ($N=1600, \varphi=0.234$)</th>
<th>Flow Rate ($N=2400, \varphi=0.12$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16x16x16</td>
<td>0.193168</td>
<td>0.193168</td>
<td>0.193168</td>
</tr>
<tr>
<td>32x32x32</td>
<td>0.008309</td>
<td>0.008309</td>
<td>0.008309</td>
</tr>
<tr>
<td>64x64x64</td>
<td>0.006023</td>
<td>0.006023</td>
<td>0.006023</td>
</tr>
<tr>
<td>128x128x128</td>
<td>0.005619</td>
<td>0.005619</td>
<td>0.005619</td>
</tr>
<tr>
<td>256x256x256</td>
<td>0.005348</td>
<td>0.005348</td>
<td>0.005348</td>
</tr>
</tbody>
</table>
The comparison of numerical and theoretical values of the porosity and solid surface of porous medium which was constructed by random positioning of penetrable spheres of equal radii are shown in the figures 2 and 3, respectively.

As can be seen from figure 2 the numerical value of the porosity begins to deviate from the theoretical value when the number of spheres is $N=1200$ (porosity is $\varphi=0.337$ and relative error is about 10-15%).

The maximum relative error of the numerical calculation of the solid surface is about 10-15% when the number of spheres is $N=1200$ (see figure 3). These errors depend on the mesh size and to calculate these parameters more accurately it needs a very fine numerical mesh or it needs to use unstructured numerical mesh. It is also noteworthy that the relative error of the numerical calculation of the porosity is about 20-30% when the number of spheres is $N=2400$ (porosity is $\varphi=0.12$).

The comparison of numerical and theoretical values of the permeability of porous medium which was constructed by the random positioning of penetrable spheres of equal radii is shown in the figure 4. The theoretical estimation of Brinkman [14] for dilute concentration of randomly located identical spheres and the theoretical estimation of Weissberg and Prager [13] for the porous medium which was constructed by the random positioning of penetrable spheres of equal radii are considered.
As it can be seen from the figure 4 the theoretical value of Weissberg and Prager is always greater than the numerical value. The theoretical value of Brinkman begins to deviate from the numerical value when the number of spheres is $N=200$ (porosity is $\phi=0.82$).

Concluding remarks
The results of the numerical simulation of incompressible viscous fluid flow through porous medium which was constructed by the random positioning of penetrable spheres of equal radii are presented in this paper. Incompressible Navier-Stokes equations are numerically solved using projection method on staggered grids.

Acknowledgment
This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08052055), which is gratefully acknowledged by the authors.

REFERENCES

Information about authors:

1. Akasheva Zhibek Kairatovna - Deputy Head of the Research Laboratory «Computational Modeling and Information Technologies» at the non-profit JSC «KazNRTU named after K.I. Satbayev»;
 Email: zhibek_akasheva@mail.ru
 ORCID ID: https://orcid.org/0000-0001-7668-8911;

2. Kudaikulov Aziz Anarbayevich - PhD, Professor at the non-profit JSC «KazNRTU named after K.I. Satbayev»;
 Email: aziz.kudaikulov@gmail.com
 ORCID ID: https://orcid.org/0000-0002-4389-4097;

3. Assilbekov Bakytzhan Kalzhanovich – PhD, Head of the Research Laboratory «Computational Modeling and Information Technologies» at the non-profit JSC «KazNRTU named after K.I. Satbayev»;
 ORCID ID: https://orcid.org/0000-0002-0368-0131;
 Email: assilbekov@mail.ru

 ORCID ID: https://orcid.org/0000-0001-8936-3921;
 Email: bolysbek.darezhat@gmail.com