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Abstracts. This study provides a detailed analysis and prediction of power generation at wind farms in Germany using
Lasso, LightGBM, and CatBoost machine learning models. Feature Engineering was used on the data, which allowed
the extraction of more detailed data, which was used to improve the quality of the models. Through Extensive Data
Analysis (EDA), the authors identify and develop lagged and moving features from the energy production time series,
under the assumption that accurate predictions can significantly improve the stability of energy systems, especially in the
context of increasing dependence on renewable energy sources. The performance of each model is evaluated based on the
Mean Absolute Error(MAE), Mean Squared Error(MSE), and Root Mean Squared Error(RMSE) metrics, with CatBoost
exhibiting the highest accuracy. In conclude, pointing to opportunities for further research aimed at optimizing these
models and adapting them to other regions, emphasizing the comprehensive and long-term potential of this study in the
context of energy field.
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KEJ QHEPTUACBIHBIH OHAIPICIH BOJIKAYJIATBI I9JIAIKTI ZKAKCAPTY YIIIH
YAKBIT KATAPJTAPBI HET'I3IHJAEI'T TOCIJIIEP

Amnparna. by zeprreyne 6i3 Lasso, LightGBM sxene CatBoost MammHanbIK OKbITY MOZGNEPIH NaliaagaHa OTHIPHII,
I'epMaHMsAAFsl KeJ AJIEKTP CTAHIMSIApPBIHIA IEKTP SHEPTUSICHIH OHAIPYAl emKeH-TerKeHil Tanaay MeH OoInKay/Isl
YCBIHIBIK. JlepekTepni eHaey YHIIH MOJENbJICpPAIH CarachlH >KaKkcapTy MaKcaThlHAa HalajaHblIFaH EHAIK JKoHE
YaKBITTBIK aKIapar apKbUIbl erKeH-TerKelni qepeKTep/i aiyra MyMKinaik Oepetin Feature Engineering aaici KonaHbI,
JKaHa JIepeKNeH TONThIpsUIasl. JKerinmipinren nepexrepai tangay (Extensive data Analysis, EDA) apkpuisl 613 1on
OoypKaMaap/blH canachblH HaKTHIPAK AHEPreTHUKAJBIK KYHeJIepliH TYpaKTBUIBIFBIH, dcCipece >KaHAPThIIATHIH 3HEPIus
Ke3/lepiHe TOYeJIUIIKTIH apTybl JKarjaiiblHOa alTapibIKTail JKakcapTa alaTbIHIBIFbIHA CYHEHE OTBHIPBIN, JHEpPrus
OHJIIPY/IIH YaKbIT CEPUSICHIHAH KEIIITy JKOHE KbUDKBIMAJIBI OeriIepal aHbIKTABIK JKOHE MOJICTICPAiH cana KOpCeTKIIIiH
JKaKCapTTHIK. OpOip MonenaiH eHiMIuir oprama adcomorti Kare (MAE), opramia kBaznparTsik Kare (MSE) xxone TyOip
acTel oprama kBaaparThlK Kate (RMSE) crarucTukansk kepceTkimTepi Herisinne Oaramanaabl. Ockl MOJETbICPAIH
imiage CatBoost GapIibIK KepceTKimTep OOMBIHINA eH JKOFaphl JOIMIKTI KepceTeni. KOpBITBIHIBIAA OCBI MOACTBACPII
OHTaMIaHBIPYyFa )KoHE oJap bl OacKa aiiMakTapra Oelimeyre OarbITTalFaH api KapaifFsl 3epTTeyaepaid MyMKIHAIKTepi
KepCeTijel, JHEPreTHKAJIbIK cala KOHTEKCTIH/IE OCHI 3ePTTEY/IH KeIIeH Il KaHe y3aK Mep3iM/Ii aJIeyeTi aTar oTiuIe/l.

Tipek co3aep: el SHEPTHUACH], OOIDKAY, YakbIT Karapiapsl, coHFbl, LightGBM, CatBoost.
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noaxoJabl HA OCHOBE BPEMEHHBIX PAJOB JJIsAA HIOBBIIWEHUA TOYHOCTH
NPOI'HO3A BETPOOHEPI'ETUKH

AHHOTanusi. B jaHHOM WCCIEIOBaHMM MBI IIPEACTaBMIM MOAPOOHBIH aHANIW3 W TNPOrHO3MPOBAHUE BBIPAOOTKU
IEKTPOIHEPTUH HA BETPSHBIX AJIEKTPOCTAHIMAX B [ epMaHU ¢ HCIOJIB30BaHIEM MojieIel MalllMHHOTO 00y4deHus Lasso,
LightGBM u CatBoost. [{i1s1 00paboTku gaHHBIX HcTionb3oBaics Metox Feature Engineering, KoTOPBIH TO3BOJINIT H3BJIE€Yb
Oonee 1MOAPOOHBIE JAaHHBIC C /AT, UCIIOIL30BaHHBIC IS YIYYIIeHUS KadecTBa Mojeneid. C MOMOIIBIO PacIIUpEeHHOTO
ananm3a naHHbIX (Extensive Data Analysis, EDA) mMblI onpenernsieM 1 pa3padaTbIBaloM 3ama3/IbIBAIONINE U CKOJIB3SIINE
NPU3HAKW U3 BPEMEHHOTO psija MPOM3BOACTBA YHEPTHH, UCXOS M3 TOTO, YTO TOYHBIC NMPOTHO3BI MOTYT 3HAYUTEIHLHO
MOBBICUTH CTAOMIBHOCTh SHEPIeTHIECKUX CHCTEM, OCOOCHHO B KOHTEKCTE PACTYILEH 3aBUCHMOCTH OT BO30OHOBIISIEMbIX
MCTOYHUKOB 3HEepruu. [Ipon3BoIUTEIEHOCTE KaXK /101 MOJIENN OLIEHUBAETCS Ha OCHOBE IIOKa3aTelel cpeaHei abcomoTHON
ommbOku (MAE), cpenneit kBanparnunoit ommoku (MSE) u xopHeBoii cpenueii kBagparnunoit ommbdku (RMSE), npu
9TOM cpean 3Tux Mozeneit CatBoost 1eMOHCTpUpPYeT caMylo BEICOKYIO TOYHOCTB I10 BCEM ITOKa3aTelsiM. B 3akimroueHne
YKa3bIBAIOTCSI BOBMOKHOCTH ISl TAIIBHEWUIINX HMCCIICIOBAHUH, HANPABICHHBIX HAa ONTHUMM3ALMIO 3TUX MOJAENEH M MX
aJIaNTaIyIo K JPYTUM PETHOHAM, TOTYEPKUBACTCSI KOMIUIEKCHBIN U JOJTOCPOYHBIN OTEHIIMAN JTAHHOTO MCCIIEJOBaHUS
B KOHTEKCTE SHEPIreTHIECKOH c(hepsl.

KitroueBble ci10Ba: SHEprHs BeTpa, IIPOrHO3UPOBaHNE, BpeMeHHbIe psinibl, Lasso, LightGBM, CatBoost.

Introduction

Renewable energy, especially wind power, has become a significant source of energy in the modern world.
Countries around the world are actively investing in the development of wind power, as it offers a clean and
sustainable source of energy, contributing to the reduction of greenhouse gas emissions. In this study, we
focus on wind power in Germany, one of the leading countries in this field. Our goal is to develop a model
for predicting electricity generation from wind farms in Germany. To achieve this goal, we will use a dataset
containing information on power generation capacity and associated time stamps.

We will analyze the data to understand temporal trend patterns and identify possible outliers or anomalies
in power generation. In addition, we will develop new features based on lags and autocorrelation that can help
improve the quality of forecasting. We will consider several machine learning models as prediction methods,
including Lasso[1], LightGBM[2], and CatBoost[3]. We will evaluate the performance of each model using
different metrics and select the most effective model for our forecasting purposes. The results of this study
can be useful to energy companies and regulators in helping them make informed decisions about planning
and optimizing wind energy generation. More accurate forecasts will enable better management of energy
production and ensure the stability of the energy system. In the following sections, we present details of the
data analysis, a description of the methods and models used, forecasting results, and a discussion of the results.

Literature review

In this part of the study, a review of scientific papers devoted to time series forecasting was conducted.
Scientific articles and publications devoted to methods and models of time series forecasting were studied. One
of the significant studies in this field is the work of Tibshirani [1]. In his work, the author presents the Lasso
(Least Absolute Shrinkage and Selection Operator) method, which allows reducing the dimensionality of the
feature space and selecting the most important features for prediction. The author describes the properties and
advantages of the Lasso method as well as its applicability in the context of time series forecasting. Another
important study in this area was performed by Ke et al. [2]. In their work, they considered the application of
the LightGBM model, which is a highly efficient gradient-based solver tree boosting. The authors describe
the working principle of the LightGBM model, its advantages and potential in time series forecasting. Also an
important study is the work of Prokhorenkova et al. [3]. In their work the authors present the CatBoost model,
which has a unique ability to process categorical features without preprocessing. The authors investigate
the properties of the CatBoost model and demonstrate its application to various tasks, including time series
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forecasting. These studies represent important contributions to the field of time series forecasting and will be
used in this study to develop predictive models and evaluate their performance.

Tibshirani [1] identified the problems associated with the application of the Lasso method for time series
prediction, including the choice of the optimal value of the regularization parameter and the stability of the
model to the presence of strongly correlated predictors. The paper by Ke, G. et al. [2] notes the need for
proper selection of the LightGBM model hyperparameters to achieve optimal performance, which may require
significant computational resources. Prokhorenkova et al. [3] point out that using CatBoost to predict time
series with categorical features requires careful adjustment of the learning rate and number of iterations, and
may also require large amounts of memory and computing resources.

Data

In this study, we used an extensive dataset of wind energy generation that includes more than 380,000
records. This amount of data provides sufficient statistical significance and allows for a more accurate analysis
and prediction of the energy generation process. The data in demonstrated in Figure 1 set consists of two
columns. The first column contains timestamps that indicate the date and time of each record. The second
column contains wind power generation capacity values in megawatts (MW).

dt Mw
2011-01-01 00:00:00 3416.0
2011-01-01 00:15:00 4755.0
2011-01-01 00:30:00 4939.0
2011-01-01 00:45:00 4939.0

2 W M =2 o

2011-01-01 01:00:00 4998.0

Figure 1 — The wind power producing data

Both columns are important variables for studying and analyzing the energy generation process. The data
collection frequency is 15 minutes, which means that measurements were taken every 15 minutes. This allows
us to account for changes in energy generation over short time intervals and identify temporal patterns. This
extensive data set provides us with an opportunity to perform a deeper and more comprehensive analysis of the
wind energy generation process and develop effective predictive models. This will help to optimize the energy
production process, improve its stability and ensure more efficient use of wind resources.

Main provisions. Methods and materials

In this section, a exploratory data analysis[14] of the wind energy data was performed using various
methods and visualizations. Having large data, we divided them into columns for analysis to make it easier
to highlight parameters. We divided the data by hours, then days, days of the week by another year, which
allowed us to graph and analyze. This analysis allowed us to gain valuable insights and discover patterns
related to wind energy generation.

In analyzing the annual generation capacity data, it was found that there was a significant increase in
energy generation by the hour in 2017 and 2019, which is given in Figure 2[13]. This may indicate special
events or factors that influenced the increase in energy production during these periods.
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Figure 2 — Discretization of power generation up to 1 hour
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Figure 3 — Power generation trend across years

We also analyzed annual generation capacity data and found that 2019 and 2020 had the highest
capacity. This may indicate increased wind farm activity and other factors contributing to increased power
generation during these periods see Figure 3.

In Figure 4 we can observe that the total energy generation on Tuesday, Thursday, Friday, and Saturday
was higher in 2021, while the total generation on Monday and Sunday was higher in 2019, which can be seen
in. This may indicate differences in energy demand on different days of the week and the corresponding impact
on wind generation.

Figure 4 — Trends of week across years.
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An analysis of the percentage growth of energy generation plotted that 2015 and 2017 saw the largest
increase in generation from the previous year by 35%. This may indicate a significant change in the development
of wind energy and its contribution to total energy generation can be seen in Figure 5[12].

30
20
10

]

% Increase from previous

2011 2012 2013 2014 2015 2016 2017 Z0E 201 2020 2021

w

Figure 5 — Annual growth in electricity production

In addition, emissions in the data were evaluated and it was found that power values above 10,000 MW
were emissions. These emissions could be the result of anomalous situations or errors in the data, one might
consider.

We conducted a process of feature engineering[6][7] to improve the data set. Feature engineering is the
creation of new features from existing data, in order to expand the information and capture important patterns
and dependencies. Using datetime information we extracted several parameters described in Figure 6 such as
the order of the month, time of day divided into categories, which describes that it is night, afternoon, sunset,
morning, dawn.

datetime power b weekday month year hour QR OUTLIER FLAG monthOrder isNight isDawn  isMorning  isAfternoon

0 2011-01-01 0000000 34160 1 Sawnday Janusry 2011 0 False 1 0 1] 0 ]
1 2011-01-01 01500 47550 2 Sawrday January 2011 0 False 1 o 1 0 o
2 2011-01-01 003000 49300 3 Sawrday January 2011 DD False 1 0 1 0 ]
3 2011-01-01 (Mra5:00 49390 4 Satlurday January 2011 e False 1 L 1 0 o
4 2011-01-01 0L00:00 49980 5 Sawnday Janusry 2011 0l False 1 0 1] 0 ]

Figure 6 — New features extraction

One of the main aspects of feature engineering in this paper is the creation of lagged features[8]. Lagged
features allow us to account for consistent dependence and cyclicality in the time series. In this case, lagged
features were created with lags of 1, 12, 24, 48, and 72 time blocks in the "power" variable. This allows
the model to account for the influence of previous periods on the current power value. Additionally, rolling
features, such as the rolling average, were selected. Rolling features are a power average over a certain time
window. In this case, rolling averages with a window of 4 and 24 time blocks were chosen. These signs help
to average temporal fluctuations and reveal general trends in the data. After feature engineering, a correlation
analysis was performed, which allowed us to identify the most strongly associated features with the "power"
variable. In particular, the attributes "lagged power 1", "lagged power 12", "rolling 4 power mean" and
"rolling_24 power mean" connect high correlation with power. This indicates a significant influence of
previous periods and averaged values on current wind power generation, observed in Figure 7.
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Figure 7 — Correlation(Heat) map

Thus, the process of feature engineering has expanded and enriched the original data set to include
additional features that capture temporal dependencies and cyclicality in the time series. This allows the model
to more accurately predict wind energy generation given the important characteristics and patterns highlighted
in the data. For example, lagged features help account for the influence of previous periods on current wind
generation. This is especially useful for analyzing time dependencies and cyclicality in the data. Creating
lagged features with different lags, such as 1, 12, 24, 48 and 72 time blocks, allows the model to account for
the influence of previous periods on the current generation capacity. In addition, additional rolling features,
such as a rolling average, have been selected. Rolling features are averages of power values over a certain time
window. In this case, we chose a rolling average with a window of 4 and 24 time blocks. These signs allow
you to capture general trends and smooth out temporal fluctuations in the data. A correlation analysis was
performed to assess the relationship between the signs and the "power" variable. The results observes that the
traits "lagged power 1", "lagged power 12", "rolling 4 power mean" and "rolling 24 power mean" are
highly correlated with power. This suggests that previous power values and averages play an important role in
predicting current wind power generation. We have included the significant data in Table Figure 8.

lagged power 1 lagged power 12 lagged power 24 lagged power 48 lagged power 72 rolling 4_power mean rolling 24 power mean

54380 34156.0 3416.0 3416.0 3416.0 5240.25 4376 250000
55090 3416.0 3416.0 3416.0 3416.0 5368.00 4946, 555556
5638.0 3416.0 3416.0 3416.0 3416.0 548150 S015. 700000
55682.0 3416.0 3416.0 3416.0 3416.0 B541.75 S06T.181818
ST92.0 34156.0 3416.0 34156.0 3416.0 5E30.25 5127.583333

Figure 8 — Added Lagged features

Finally, the process of feature engineering has enriched the original data set with new features that account
for temporal dependencies and cyclicality in the time series. his allows the model to better understand and
predict wind energy generation by accounting for important characteristics and patterns identified in the data.

def regression_metrics(y_test,y_pred):
print(“MAE :\t", round(mean_absolute_error(y_test,y_pred), 4))
print(“MSE:\t", round{mean_squared_error(y_test,y_pred),4))
print(“"RMSE:\t", round{np.sqrt(mean_squared_error(y_test,y_pred)), 4))

Figure 9 — Metrics of evaluation models
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Various metrics are used to evaluate the performance of predictive models, including mean absolute error
(MAE)[10], root mean square error (MSE), and root mean square error (RMSE)[11] observe in Figure 9. MAE
measures the average absolute deviation between predicted and actual values and provides an estimate of the
mean of the prediction error. MSE measures the root mean square deviation and pays more attention to large
deviations. RMSE is the root of MSE and allows you to compare model performance on the raw data scale.
The smaller the MAE, MSE, and RMSE values, the better the performance of the models in predicting power
generation.

The Least Absolute Shrinkage and Selection Operator is a regression method used in statistics and machine
learning to predict data. The main feature of Lasso is the use of L1-regularization, which helps to reduce the
number of features in the model by zeroing out the weights of some features. This feature makes Lasso very
useful when there are a large number of features and there is a need for feature selection. Lasso regression is
formulated as follows:

For the data (X, y) where X - input data matrix of size (n, p) (n - the number of examples, p - number of
features), and y - is a vector of output data of dimension (n, /), the Lasso regression problem is to minimize
the following loss function:

1
Loss = minimize ||%y — XB113 + 218111

Where:

= |I- 1|2 denotes the Euclidean norm (L2-norm),

— ||-1]1 denotes the L1-norm,

—p - vector of regression coefficients of dimension (p, 1),

—A- is a non-negative regularization parameter.

The second term in this function is the L1-regulator, which is controlled by the parameter A. It penalizes
large values of the coefficients 8, which leads to their reduction or even zeroing. This ensures the selection of
features in the Lasso-regression. Because of this property, Lasso-regression is often used when working with
data with a large number of features, when it is necessary to simplify the model and make it interpretable.

Light Gradient Boosting Machine (LightGBM)[2] is a machine learning algorithm based on the method
of gradient boosting. This algorithm was developed and introduced by Microsoft Research in 2017. The model
differs from most other boosting algorithms in that it uses a "leaf-wise" learning strategy instead of the usual
"level-wise" learning strategy, which allows it to achieve higher efficiency while maintaining model accuracy.
The gradient-busting algorithm on which LightGBM is based can usually be described as follows:

Given:

- Learning sample {(x))l, Y1) (o v 3,

- Loss function L(y,F),

- number of iterations M.

Form =11to M:

1. Calculate pseudo-residuals:

_ oLy F(xD)
e OF(x)

F(x)=Fp-1(x)

_[oL(y F(x)
Tm =T TRy

F(x)=Fp_1(x)

In the context of LightGBM, each h,,(x) - is a decision tree, and these trees are built using a "leaf-
wise" strategy. Instead of developing the tree level by level (level-wise), LightGBM chooses the leaf with the
maximum loss to split and continues to split it, allowing more tree depth and providing more accuracy, while
controlling overlearning. However, the "leaf-wise" strategy can lead to overtraining with a large number of
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leaves, so it is important to apply regularization by adding a summand to the loss function that increases with
the number of leaves. In LightGBM this is achieved using the following condition for splitting:

1 Zi Gi2 {(Zl Gi + Gnew)z} {Gr%ew}
z {ZiHi + A} - {ZiHi + Hnew + A} B {Hnew + /1} B

Gain = y

Where:

- G, u H - gradients and hessians of the loss function,

-G, nH  -gradients and hessians added by the new sheet,

- A is a regularization parameter controlling the magnitude of the penalty for increasing the number of
leaves,

- v - additional regularization parameter, which adds a fixed penalty for each new splitting.

Thus, LightGBM strikes a balance between the speed of learning and the accuracy of predictions, allowing
efficient models to be built even on large data sets.

CatBoost is a machine learning algorithm designed to handle categorical features efficiently. It uses
gradient-based boosting and is based on decision tree learning. CatBoost[3] applies an ordered-target learning
technique, which significantly improves the learning process compared to standard categorical feature learning
approaches. Let us give you the formulas used in this algorithm. The basic equation for the gradient boosting

model:
M
Fu() = ) ol (3)
m=1

— F _M(x) - is the prediction of the model after M iterations,

—h_m(x) - the base algorithm (in our case a decision tree),

—rho_ - the coefficient determining the contribution of each decision tree.

However, CatBoost uses a slightly modified version of the gradient-busting algorithm, which uses
learning with ordered targets. When the tree is trained on a dataset, it treats objects in random order. When
an object is predicted, it uses the average of its previous values to encode categorical variables. This is done
to avoid leakage of target values, which is often the case when processing categorical features. As with most
other boosting algorithms,

CatBoost uses a loss function that is minimized at each iteration. The loss function is chosen depending
on the problem. For example, Logloss is often used for classification and RMSE for regression. CatBoost
uses common regularization approaches, similar to those used in other gradient-busting algorithms, to avoid
overtraining the model.

Results and discussion

In the research paper, we calculated the results of the forecast models for the target variable - electricity
power with a forecast for 8 time blocks ahead. The Lasso, LightGBM, and CatBoost models resulted in
predictions for each of the Figure 10, Figure 11, and Figure 12 models.

param_grid = {'learning_rate’:[8.1], "num_iterations’: [18888), "n_estimators’: [25], 'num_leaves': [4@8], °verbo

1], 'colsample_bytree':[8.4], “subsample’: [08.4], "max_depth': [9]}

[9998] walid ®'s rmse: 1356.27 valid_@'s 12: 1.83946e+86
[9999] walid_8's rmse: 1356.3 walid_ 8's 12: 1.83955e+86
[1e08@] valid_@'s rmse: 1356.33 valid 8's 12: 1.83964e+86
Mean Squared Error 131349, 50948637384

-r¢|]I1J_I'!IJ metrics:

MAE : 224 4869

MSE: 131349 .50%94

RMSE: 362 .4217

Figure 10 — Indicators of the Lasso model metrics
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lasso = Lasso(alpha =8.0005, random_state=28)
param_grid = [{'alpha’':[0.8085, 8,867, @.885, ©.81, 8.85, 8,83, 8.1, 8.5, 1]}]

lasso_model = model_validate(lasso, param_grid, x_train, y_train, x_test, y_test, "Lasso’ k_folds=5)

Hean Squared Error = 982546.81656047069
Training setrics:

HAE : 572.5387
HSE: QE25446 . 8186
RMSE: 9917 .2346

Figure 11 — Indicators of the LightGBM model metrics

12@a: learn: 923, 8908954 TEstc 17474277758 best: 10814377750 (1286}

total: 35.61 resaindng: B.86s

1488 : learn: 918 3Z4788% gest: 1138, 7343851 best: 1037 9870688 (1350}
roral: 41.%% Fespindng: 2.93:

1499 learn: 912.9155064 Rest: 17137.2345278 best: 102X7.2348278 (1459
total: 44,38 resyining: fus

bestlest = 1737 03402
bestlteration = 149%

Figure 12 — Catboost model metrics

Comparing the models, we can note that all three models observe different prediction accuracy.
LightGBM demonstrates the best accuracy with the lowest MAE, MSE and RMSE, which indicates a lower
prediction error compared to the other models. Lasso also presents itself as a quite reliable model with
acceptable MAE and RMSE values. CatBoost, even though it has the highest RMSE value, still performed
good performance and can be a useful forecasting tool. Fiqure 13 compares the results of the test and model

values. In addition, consider Figure 14 demonstrated a time interval of 2 hours.

Figure 13 — Comparison plot of target values and models predicted values
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Figure 14 — Two hours interval prediction comparison

Discrepancies and variations between models may be due to different approaches and peculiarities of
each algorithm. For example, the CatBoost model has the ability to process categorical features without
preprocessing, which can be useful when working with electricity data. At the same time, the LightGBM
model has high speed and works effectively with sparse data.

Conclusion

In this study, modeling was performed to predict electricity generation based on weather and timing data.
Three machine learning models were used: Lasso, LightGBM, and CatBoost. Each model demonstrated its own
characteristics and advantages in forecasting. As a result of the simulations performed, the predicted values
for the target variable (power) with a prediction for 8 time blocks ahead were obtained. Analysis of the results
illustrated that all three models demonstrated good performance in forecasting power generation. The Lasso
model calculated a mean square error (MSE) 0f 982546 and a mean absolute error (MAE) of 572. The LightGBM
model performed an MSE of 131349 and an MAE of 224. The CatBoost model demonstrated an MSE of 1137.
When comparing these models, it can be noted that they all achieved good results in prediction, although
with some discrepancies. Thus, the results of this study confirm the potential of machine learning models in
predicting electricity generation. Further research and improvement of the models can lead to even more accurate
predictions, which in turn can be useful for optimizing the planning and management of electricity generation.
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