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LINK PREDICTION USING TENSOR DECOMPOSITION

Abstract. In recent years, tensor decomposition has gained increasing interest in the field of link prediction, which aims to
estimate the likelihood of new connections forming between nodes in a network. This study highlights the potential of the
Canonical Polyadic tensor decomposition in enhancing link prediction in complex networks. It suggests effective tensor
decomposition algorithms that not only take into account the structural characteristics of the network but also its temporal
evolution. During the process of tensor decomposition, the initial tensor is decomposed into two-way tensors, also known
as factor matrices, representing different modes of the data. These factor matrices capture the underlying patterns or
relationships within the network, providing insights into the structure and dynamics of the network. For evaluation, we
examine a dataset derived from the WSDM. After preprocessing, the data is represented as a multi-way tensor, with each
mode representing different aspects such as users, items, and time. Our primary objective is to make precise predictions
about the links between users and items within specific time periods. The experimental results demonstrate that our
approach significantly improves prediction accuracy for evolving networks, as measured by the AUC.
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TEH3OPIBIK bIIbIPAY APKbL/Ibl BAHJIAHBICTHI BOJIKAY

Amngarna. Kazipri yakpITTa TeH30PIBIH BLABIPAYBI JKENIIETi TYHIHIEp apachlHAa jKaHa KOCBUIBICTapABIH Maiina 0oy
BIKTHUMAJIIBIFBIH OaFaliayFa OarbITTalFaH OalTaHbICTap Il O0JIKAY CaTaChIHa KBI3BIFYIIBUIBIKTEI apTTRIpYAa. byt seprrey
KYpJeli skeniyepaeri OaimaHsicTapapl OOIKaynbl kakcapTy ymriH Kanoumsik [lommaankanbIK TEH30D BIIBIPAyBIHBIH
KOJITaHBICEIH Kepceremi. COHBIMEH Karap JKCINiHIH KYPBUIBIMIBIK CHIIATTaAMANAphIH FaHA €MEC, OHBIH YaKbITIIA
IBOITIOIISICHIH J1a €CKEPETIH THIMII TSH30PIIBIK BIABIPAY aITOPUTMACP] YCHIHBUTFaH. TeH30pABIH BIABIpAY MPOIIeCi Ke3iH/e
GacTarkpl TEH30p JAEPEKTEPIiH SPTYPIIi peKUMIIEpiH OUTIIpEeTiH (GaKTOPIBIK MaTpUIIaIap JIeTl Te aTajJaThiH €Ki oJIImeM/ I
TEH30pJIapFa BIABIpaiinbl. by ¢akxTop Marpumanmapsl KeTiHIH KYPBUIBIMBI MEH TUHAMUKACHI Typajbl TYCIHIKTEpIi
KaMTaMachl3 €Te OTBHIPHIN, JKEeNi IMIHAETi HETi3ri 3aHABUIBIKTapAbl HeMece KaTbhlHacTapasl Kepceremi. Momenbi
Oaranay ymriH 013 WSDM-nieH aJlbIHFaH MOTIMETTEp JKUBIHTHIFBIH KapacTHIPIBIK. AJIBIH aja oHJICYIeH KeHiH IepeKTep
KON JICHTCIIII TCH30p PETiHJC YCHIHBUINBL, Op PEKUM IMaiAaTaHylIbUIap, JIEMEHTTEP JKOHE YaKbIT CHSIKTBI OpTYpIIi
acmekrinepai ounaipemni. bi3miy 6acThl MaKcaThIMBI3-0CNTiIi Oip YaKbIT apajbIFbIH/IA TaliJalaHyIIBUIAp MEH dJICMEHTTEP
apachIHaFrb! OailylaHbIcTapFa KaThICThI HAKTHI O0JDKamIap skacay. DKCIepUMEHTTIK HaTrKemnep 0131iH Tocimimizain AUC
APKBUTHI OJIIICHETIH YaKbIT OOWBIHINA ©3TePETiH KETIIep Il 00Ky TONIITiH alTapiIbIKTall )KaKcapTaThIHBIH KOPCETE/I.

Tipek co3nep: OaitnanbicTsl Oowkay, CP-gexommosunus, ['enpux anropurm, ALS anroput™, sSKCIIOHEHIMANIBI TETICTEY,
BiLSTM.
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MPOTrHO3 CBSA3U C UCIIOJIb30OBAHUEM TEH30PHOM JEKOMITIO3UIIANA

AnHoTanusi. B nocieanue roas! TeH30pHas IEKOMIIO3UIINS BEI3BIBAET BCE OOJIBIIHI HHTEPEC B 00IaCTH IPOTHO3UPOBAHNUS
CBSI3€H, LIeNIbI0 KOTOPOTO SIBIISIETCS OIIEHKA BEPOSITHOCTH 00PA30BaHMs HOBBIX COCAMHEHUI MEXy Y31aMH B CETH. JTO
HCCIIeIoBaHNe NoAuepKkuBaeT noreHuan Kanonnueckoit Ilonnaguueckoil TEH30pHOH AEKOMIIO3ULIMU AJISL YIIy4YIIEHUS
IpeCKa3aHus CBsI3€H B CIIOXKHBIX CETAX. B mpouecce TeH30pHON NEKOMIO3MLUU HUCXOAHBIM TEH30p pas3jlaraercs Ha
JIByMEpHBIE TEH30PHBI, TaK)Ke U3BECTHBIE KaK MaTPHIBI (PaKTOPOB, MPEACTABIISIONINE Pa3INdHble PSKUMBI JaHHBIX. DTH
(axTopHbIe MaTPUIBl (PUKCHPYIOT 0a30BbIe 3AKOHOMEPHOCTH WJIM OTHOIICHHUSI BHYTPH CETH, 0OECIIeunBasl IIOHNMaHNe
CTPYKTYpPbI M JTUHAMHKH ceTH. B Hem mpemnararorcst 3pdheKTHBHBIC alTOPUTMBI TEH30PHOH JIEKOMITO3HIINH, KOTOpPbIE
YUUTBIBAIOT HE TOJIBKO CTPYKTYPHBIE XapaKTEPUCTHKH CETH, HO U €€ BPEMEHHYIO BOJIOIMIO. [{/1 OLlEHKH MBI U3y4aeM
HaOop naHHBIX, monydeHHBIE Ha WSDM. Ilocrne mpensapurenbHOil 00paOOTKM JaHHBIE NPEICTABISIOTCS B BUJE
MHOTOYPOBHEBOI'O TE€H30pa, MPUYEM KaXK[Iblil PEXUM IMPEICTABISAET Pa3IUUYHbIE ACIEKThI, TaKHE KAK I0JIb30BAaTEINH,
JNIeMEHTHI U BpeMsl. Hamna ocHOBHAas Lesb — clieNnaTh TOUYHbIE IPOTHO3bI OTHOCUTENIBHO CBA3EH MEXKTy M0JIb30BaTEIIMU
U TOBapaMH B TEUEHUE ONPEIEIECHHBIX IEPUOJOB BPeMEHHU. DKCIIEPUMEHTAIbHbIE PE3YIbTaThl JEMOHCTPUPYIOT, UTO HAalll
MOJXOJ 3HAUUTEIBHO MOBBIIIAET TOYHOCTh IPOTHO3UPOBAHUS I pa3BUBAIOIUXCS ceTeil, uamepsemyo AUC.

KuoueBble cioBa: npejackazanue cBsizu, CP-nekomnosunus, anroputM [eHpuxa, anroputm ALS, skcrioHeHIManbHOE
criaxkuBanue, BiILSTM.

Introduction

“Tensor” was first introduced in 1927 [1], and the idea of using more than two matrices in factor analysis
has been widely accepted since the 1960s in various domains [2]. Complex interactions among input features
can be captured using a tensor form, which is impossible with flattened data. However, any analysis on a
full tensorial representation is often accompanied by a so-called curse-of-dimensionality challenge, with the
complexity increasing exponentially with the tensor order. This is where tensor decompositions play a crucial
role, allowing for lessening the data representation's complexity without significantly affecting its ability to
capture correlations in the data. Similar to their matrix counterpart, tensor decompositions break down high-
dimensional tensors into a sum of lower-dimensional factors. In addition to their direct use in processing multi-
way input data, tensors are frequently used as a core component of machine learning models. In later years,
tensor decomposition has gained increasing interest in various fields, including computer vision and social
network analysis [3].

Some existing studies compared tensor decomposition-based link prediction methods with other popular
graph-based link prediction methods in multi-relational data. For analysis of temporal multi-relational data,
Bader et al. [7] employ a decomposition method called ASALSAN related to RESCAL. As noted by Nickel
et al. [8], this decomposition method has shown suboptimal performance on previous benchmarks. Ma et al.
[9] proposed another generalization of RESCAL called the ConT decomposition method for temporal link
prediction. The core tensor indices are contracted in this method, lowering the computational complexity. Evrim
et al. [10] explore various matrix and tensor decomposition methods for solving link prediction problems. They
consider author-conference relationships in bibliometric data called DBLP and propose an extension of the
matrix-based Katz method, which employs truncated SVD for approximation. However, the authors conclude
that the tensor-based decomposition methods are much better than matrix-based decomposition methods.
Because temporal latent trends are not entirely derived via matrix-based decomposition from evolving data.

Lin et al. [11] offer a decomposition approach for community extraction on multi-relational and multi-
dimensional social data. Their coupled factorization method includes CANDECOMP and PARAFAC
decomposition methods and divergence-based cost function. Furthermore, Narita et al. propose a joint
factorization method based on Tucker and CP decomposition methods and utilize a Euclidian distance-based
loss function. Finally, Liang et al. [12] implement the Bayesian Probabilistic Tensor Factorization (BPTF)
algorithm for temporal relational data. BPTF can capture the overall evolution of latent features by imposing a
smoothness constraint on those features and incorporating additional time features. Sheng et al. [13] proposed
a new method called Link Pattern Prediction Tensor (LPPT) based on Tucker Decomposition, which captures
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interaction patterns in multi-relational networks. Chi and Kolda [14] presented the CP Alternating Poisson
Regression (CP-APR), suitable for handling weighted time-evolving networks because it is made for sparse
count data. The primary concept of the TensorCast method proposed by Araujo et al. [15] is using non-negative
coupled tensor decomposition and standard models to forecast the time component.

Main provisions

Several popular tensor decomposition methods, including Canonical Polyadic (CP) and Tucker
decomposition, decompose tensor-formed multidimensional data into low-order tensors and identify underlying
trends of decomposed tensors. Tucker decomposition aims to decompose a tensor into a core tensor with the
same order and low-order factor tensors [4]. In contrast, the CP decomposition represents an observed tensor
as a sum of rank-one tensors. The CP decomposition methods first found applications in psychometrics [5]
and linguistics [6], where they were referred to as Canonical Decomposition and Parallel Factor models,
respectively. In this study, we use CP decomposition algorithms to recover the factor matrices model to make
predictions about potential edge connections within a given network. Furthermore, our approach captures
temporal trends within a tensor, where time is treated as a separate dimension.

Tensor decomposition has drawn more interest recently in link prediction, which estimates the possibility
of new connections forming between network nodes. Numerous research has concentrated on the static features
of single graph snapshots, which do not reveal the behavior of networks. Tracking patterns over time that
are impacted by adding and deleting nodes to forecast links is essential. The topic of collaborative filtering,
which aims to recommend new things to a user, is closely connected to link prediction. In this problem,
the input is a partially observed matrix of (user, item) preference scores. In collaborative filtering, users and
items are represented by nodes, and edges pairing nodes are weighted by the preference score. The dataset
we examine is derived from Amazon, which was published in WSDM 2022 Cup. After preprocessing, it is
represented as a multi-way tensor where each mode corresponds to different aspects of the data, such as users,
items, and time. Our main objective is to make accurate predictions about the links between users and items
in specific time periods. The results show that our approach yields significant improvements in prediction
accuracy for evolutionary networks, as measured by AUC. Overall, this research demonstrates the potential of
the CP decomposition method in improving link prediction in complex networks. This paper suggests effective
tensor decomposition methods for temporal link prediction for large-scale, complicated networks considering
temporal data.

Materials and Methods

A tensor is a generalization of multi-way arrays. The number of dimensions determines a tensor order.
The order of a tensor is an important property, as it determines how it behaves under several types of
transformations. For convenience, we use a three-dimensional tensor as an example throughout this paper, but
the notation can extend to tensors of higher dimensions in most cases. The notation is primarily based on the
reviews by Kolda et a,l. [3] In this paper higher-order tensors are denoted by underlined uppercase letters, e.g.,

K € R(ilx"Xi"), n > 3. For convenience, we use lower case letters to denote vectors x € Rt and upper
case to matrices X € R(iXJ). The wmr stand for the number certain of elements in each dimension. To better
understand the structure of tensors, we can look at their subfields such as fibers and slices. Fibers defined by
fixing all but one index and givenas X;;. , Xjp , Xij

Vectorization is the process of transforming a given matrix into a vector by vertically stacking the columns
of matrix X € R/, The final vector contains every component of the initial matrix; therefore, its dimension
will be (i X j, 1). It can be helpful when we need to restructure the data for specific mathematical operations
or algorithms that demand vector inputs. The vectorization of a matrix X is represented as vec(X):

vec(X) = (xn,x21, ...,xl-j)T (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to vectorization,
matricization is useful when working with algorithms that need matrix inputs. The mode-n matricization of a
tensor, also known as unfolding or flattening, is indicated as X(n). In this process, the mode-n fibers of X are
converted into the columns of X(n).
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Rank — one tensor. When a higher-order tensor X € R(ixx-Xin) can be represented as outer product of

N vectors, it means that it is a rank-one tensor. The 3-order X € R (ixjXk) rank-one tensor can be expressed
as follows:

X=uovow ()

In this context, the outer vector product is denoted as the symbol " o ". Figure 1 shows a visual illustration
of the rank-one idea. By extending this concept to the general n-order tensor:

= @D 2 M wi o =, @) () (n)
X=u"ouo. .ouw® with x;;, ; =u; u’ U Uy (3)
This represents that the corresponding elements from the related vectors are multiplied to create each
tensor component.

[><

Figure 1 — Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X through their
summation, given as r = rank( X). Therefore, a 3-order rank-r tensor can be written as:

r
K=Zliui°vi°Wi=[/1;U,V,W] “4)
i=1

The general n-order form is provided as follows:

L

r
X = zli 1o u@ o o u™ = [1,UD,y@, Y@, . y@] 5)
i=1
The factor matrices in tensor decomposition are constructed by placing the combinations of vectors from
the rank-one components as columns. Therefore, the factor matrices U/, j = 1, ..., n takes the shape:
U = [uy, uy, us, ..., Uy (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is essential to
grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product to matrices.
This operation between two matrices U € R @1 and V € R®*D can be described as follows:
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up VoouVo o ule
UV = u21.V uz.zV uz.]V
u,;V u,.zV u,.]V

=[wu®v; LRV, -+ WV, W VL] (7

1. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices [y ¢ R(i*/) andy € R(**))
is a matrix with the size (i * k, j). It is defined by:
2.
UOV=[w®v v, -+ ux® vkl ®)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the Hadamard
product. Given two matrices [J ¢ R(*)) and V € R s of size (i, j), their Hadamard product is represented
by U*V. The result is also matrix with the same size (i, j) and defined by:

Up1V1g UgpVyp 0 Wyl
UsV iz |W21Var Ua2V2z 77 H2sV2)
Uy Uplp 7 Ugly )

The approach used in this work significantly differs from standard link prediction methods that proceed
without dimensionality reduction: we use tensor decomposition to map 3-order tensor to several 2-order tensors
and then apply time-series forecasting methods to solve the task. The main idea of this approach is based on
the work of Acar et al. [16] and was extended with CP decomposition algorithms. Firstly, we capture temporal
trends present in the data using time factor W derived from CP decomposition. Two alternative algorithms are
used for CP decomposition: Jennrich’s algorithm and ALS. Then we employ time-series forecasting methods
to the temporal factor matrix W to predict future points in time while node factors U and V remain unchanged.
Time-series forecasting was done using exponential smoothing and Long Short-Term Memory (LSTM), which
has been gaining popularity in making forecasts in recent years. Finally, we can reconstruct the tensor with
predicted links in the following 7 time instants by extracted factors U, V, and extrapolated factor W. Figure 2
shows the link prediction proposed approach’s block diagram.

Yy

[ Vv |
cP L cP ]
—— | secomposition reconsinction —’]

U, ' T xLﬂ’

Wit

Forecasting |
method

Figure 2 — The proposed approach’s block diagram

Canonical Polyadic Decomposition. CP decomposition was first proposed by Hitchcock [1] in 1927. The
fundamental idea of CP decomposition is to represent a tensor as a sum of rank-one tensors, where each rank-
one tensor corresponds to a latent factor. The 3-order CP decomposition case is formalized as follows:

min||X — X||, where X € R®W/*®and

r
XZ Zui ovVioWw; = HU,V,W]]
i=1
This concept is illustrated in Figure 4.
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Figure 3 — Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-one
tensors. The matricized versions of (10) are:

Xy =W oW
Xony=wowyvr
Xy =W onwr’ (1)

In general case:

X =AU O .0 UEDY O U*D ... oub)y®r (12)
where: A = diag(})
The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.
Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and W in (10).
This straightforward approach was first disclosed in a paper by Harshman [6], with the author crediting Dr.

Robert Jennrich. When the tensor components are guaranteed to be orthogonal, this algorithm stays effective.

1. X € Rmx'nxp, choose a random unit-length (or Gaussian) g, b € RP and get X wX b

p
Xo=) aX(,:0 (14)
i=1

Where X and X, can be formulated as follows:

Xa= ) (uiov){w,a) (15)
2
Xy = ) (o v)(wi,b) (16)
i=1

1. Compute the eigen-decomposition of X a({ b)T and X b(K a)Jr. Where X, =UD,VT and
X, =UDV", D, = diag({{w;, @)};), D, = diag({{w, b)};) and we can get:

.l.
Xa(Xp) =UDVT(VT)D,'UT = UD, D" a7
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Xp(X )" = VTD,UUD, V™)t = V7DD, (VT (18)

where the columns of U and V are u, and v, respectively.
2. Given u, and v, we can solve the linear system of equations to find w, and finally get the tensor factor
matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing CP
decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and then optimize
the non-fixed factor matrix. Each factor matrix goes through this process repeatedly until a stopping criterion
is satisfied, signifying convergence or obtaining the required level of approximation. The steps of the ALS
algorithm for 3-order tensor:

U« argmin Xy — w ownuT|

V< arngin Xy — W oV

W « argmin X — (v O nwT| (19)
The optimal solution for the minimization is obtained by:

U= XplW oW = XuyW OVWTW «VTV)t
V=XalWou = XoW O UW™W «UT0)!
W= XelVOUT = XgW O U@V -UTU)t (20)
Exponential smoothing. An exponential smoothing time series forecasting method uses weighted averages
of previous observations. Recent data points are given more weight while the significance of earlier observations

is gradually reduced. An exponential decay factor is used to produce this weighting technique, assigning more
weight to recent observations. The formula for exponential smoothing is as follows:

Se = Bxe+ (1 —a)s—4 (21)

where f§ - smoothing parameter, s,— smoothed value, x - observed value

In our approach for link prediction, we use simple exponential smoothing to predict future values of the
temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for factor matrix W
can be expressed as:

Wi = BWei + BA = BIWe_q1; +

B —BYW pit+ -+ B(A— LYWz +

ot (1= p) Wy, (22)
Where: i = 1,...,Rand 0 < ,3 <1,t =1,..,L+T, T —time period to predict

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating the
potential links that may be formed within L timestamps, as indicated by formula (23):

r

Xior = Z u;ovyow; = UL, Vi, Wyirl (23)

i=1

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning activity
patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other neural network
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designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method for temporal factor
matrix W retrieved from CP decomposition. BILSTM analyzes the historical context of the time series by
performing a forward pass on the historical observations. By examining the future observations made through
the backward pass, it also takes the future context into account. BILSTM can offer a more thorough insight into
the temporal patterns and trends in the data by merging these two information streams. To maximize prediction
accuracy by reducing the difference between the expected values and the actual observations, the model learns
to modify its parameters throughout training. The backward pass aids in learning long-term dependencies
and identifying future trends while also providing helpful information for gradient computing. The employed
architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the ADAM optimizer. The
algorithm of temporal link prediction via tensor decomposition with BILSTM:

1. CP decomposition of observed data with rank-R
Get factor matrices [Uy, V;, W]
Train each column of the temporal factor #, with BILSTM and predict W, , where t=1,..,T
Concatenate W, and W,
Reconstruct CP decomposition with formula (23)

nuhwb

Results and Discussion

The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup. This dataset
represents a user-item time-evolving network of Amazon. After the preprocessing stage, the data is represented
as a 3-order tensor. The first dimension (i) corresponds to the user node, the second dimension (j) represents the
item node, and the third dimension (k) captures the date of interaction. For evaluation, we split the data into a
training set and a test set, with 80% of the data allocated for training and 20% for testing.

We use the area under the receiver operating characteristic curve (AUC) as a metric to evaluate the
performance of our methods in temporal link prediction. AUC is selected due to its robustness in handling
imbalanced data, which is crucial in our case as the training dataset contains a small fraction (less than 0.5%) of
actual links compared to all possible links. Firstly, in order to assess the performance of tensor decomposition
and its reconstruction, only the CP decomposition part of the model was evaluated.
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Figure 4 — AUC and ROC of the CP decomposition algorithms

Figure 4 displays the ROC curves, which provide a comprehensive view of the tensor decomposition
performance. It can be seen that Jennrich’s algorithm demonstrates slightly lower performance than the ALS
algorithm for 0.01 (0.95 vs. 0.96).

In Figure 5, the bar chart provides valuable insights into the link prediction performance using AUC as the
evaluation metric. Among all the methods, Jennrich’s CP decomposition algorithm with BiLSTM algorithm
achieves the highest AUC score (0.95). However, the ALS algorithm with the same forecasting model yields the
lowest AUC score (0.83). The ROC of these models is presented in Figure 8. But with exponential smoothing
in the prediction part, the AUC score of the method increases by 0.5 (0.88). With two alternative forecasting
methods in the prediction part, Jennrich’s algorithm performs exceptionally well in link prediction with the
time-evolving dataset. It can be assumed that.
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P Jennrich with €S

Figure 5 — AUC of link prediction models

Jennrich’s CP decomposition effectively retrieves latent temporal trends from an observed tensor to the
temporal factor matrix of the CP decomposition where the prediction part is held.
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Figure 6 — AUC and ROC of the Jennrich’algorithm with exponential smoothing

The impact of increasing T on the change in AUC is illustrated in separate graphics, as shown in Figure 6-7.
The outcomes measured by ROC and AUC of Jennrich’s algorithm with exponential smoothing are depicted
in Figure 6. The AUC of this model decreases from 0.93 to 0.88 when T is increased from 1 to 30, indicating a
relatively lower performance as the time period increases. In Figure 7, a similar assumption can be applied to
the results of the ALS decomposition with a simple exponential smoothing as a forecasting method.
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Figure 7 — The ALS algorithm with exponential smoothing (AUC and ROC)
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Figure 8 — The CP algorithms with BILSTM (AUC and ROC)
Conclusion

In this work, we present a method for link prediction in large-scale time-evolving networks, which
completely differs from standard graph-based methods. This method is a combination of tensor decomposition
and time-series forecasting. The dataset that we used to evaluate our approach is derived from WSDM. In data
preprocessing, the dataset is converted to a three-way tensor. In the tensor decomposition part, the observed
tensor is decomposed to two-way tensors, which are factor matrices of each mode that give a relative pattern
of the network. As a tensor decomposition model, we used two alternative algorithms of CP decomposition
such as Jennrich’s algorithm and the ALS algorithm. The results show that Jennrich’s algorithm is more
efficient in problems considering the temporal trend. In forecasting, we utilized the third mode factor matrix
of decomposed tensor and predicted new links via BiLSTM and exponential smoothing. By comparing the
AUC of each method, we conclude that the combination of the Jennrich algorithm and BiLSTM shows the best
performance. In future work, we aim to investigate other decomposition algorithms in link prediction, such as
Tucker and Tensor Train decomposition methods with a dataset presented as a multi-way tensor.
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