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LINK PREDICTION USING TENSOR DECOMPOSITION

Abstract. In recent years, tensor decomposition has gained increasing interest in the field of link prediction, which aims to 
estimate the likelihood of new connections forming between nodes in a network. This study highlights the potential of the 
Canonical Polyadic tensor decomposition in enhancing link prediction in complex networks. It suggests effective tensor 
decomposition algorithms that not only take into account the structural characteristics of the network but also its temporal 
evolution. During the process of tensor decomposition, the initial tensor is decomposed into two-way tensors, also known 
as factor matrices, representing different modes of the data. These factor matrices capture the underlying patterns or 
relationships within the network, providing insights into the structure and dynamics of the network. For evaluation, we 
examine a dataset derived from the WSDM. After preprocessing, the data is represented as a multi-way tensor, with each 
mode representing different aspects such as users, items, and time. Our primary objective is to make precise predictions 
about the links between users and items within specific time periods. The experimental results demonstrate that our 
approach significantly improves prediction accuracy for evolving networks, as measured by the AUC.
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ТЕНЗОРЛЫҚ ЫДЫРАУ АРҚЫЛЫ БАЙЛАНЫСТЫ БОЛЖАУ

Аңдатпа. Қазіргі уақытта тензордың ыдырауы желідегі түйіндер арасында жаңа қосылыстардың пайда болу 
ықтималдығын бағалауға бағытталған байланыстарды болжау саласында қызығушылықты арттыруда. Бұл зерттеу 
күрделі желілердегі байланыстарды болжауды жақсарту үшін Канондық Полиадикалық тензор ыдырауының 
қолданысын көрсетеді. Сонымен қатар желінің құрылымдық сипаттамаларын ғана емес, оның уақытша 
эволюциясын да ескеретін тиімді тензорлық ыдырау алгоритмдері ұсынылған. Тензордың ыдырау процесі кезінде 
бастапқы тензор деректердің әртүрлі режимдерін білдіретін факторлық матрицалар деп те аталатын екі өлшемді 
тензорларға ыдырайды. Бұл фактор матрицалары желінің құрылымы мен динамикасы туралы түсініктерді 
қамтамасыз ете отырып, желі ішіндегі негізгі заңдылықтарды немесе қатынастарды көрсетеді. Модельді 
бағалау үшін біз WSDM-ден алынған мәліметтер жиынтығын қарастырдық. Алдын ала өңдеуден кейін деректер 
көп деңгейлі тензор ретінде ұсынылды, әр режим пайдаланушылар, элементтер және уақыт сияқты әртүрлі 
аспектілерді білдіреді. Біздің басты мақсатымыз-белгілі бір уақыт аралығында пайдаланушылар мен элементтер 
арасындағы байланыстарға қатысты нақты болжамдар жасау. Эксперименттік нәтижелер біздің тәсіліміздің AUC 
арқылы өлшенетін уақыт бойынша өзгеретін желілерді болжау дәлдігін айтарлықтай жақсартатынын көрсетеді.

Тірек сөздер: байланысты болжау, СP-декомпозиция, Генрих алгоритм, ALS алгоритм, экспоненциалды тегістеу, 
BiLSTM. 
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ПРОГНОЗ СВЯЗИ С ИСПОЛЬЗОВАНИЕМ ТЕНЗОРНОЙ ДЕКОМПОЗИЦИИ

Аннотация. В последние годы тензорная декомпозиция вызывает все больший интерес в области прогнозирования 
связей, целью которого является оценка вероятности образования новых соединений между узлами в сети. Это 
исследование подчеркивает потенциал Канонической Полиадической тензорной декомпозиции для улучшения 
предсказания связей в сложных сетях. В процессе тензорной декомпозиции исходный тензор разлагается на 
двумерные тензоры, также известные как матрицы факторов, представляющие различные режимы данных. Эти 
факторные матрицы фиксируют базовые закономерности или отношения внутри сети, обеспечивая понимание 
структуры и динамики сети. В нем предлагаются эффективные алгоритмы тензорной декомпозиции, которые 
учитывают не только структурные характеристики сети, но и ее временную эволюцию. Для оценки мы изучаем 
набор данных, полученный на WSDM. После предварительной обработки данные представляются в виде 
многоуровневого тензора, причем каждый режим представляет различные аспекты, такие как пользователи, 
элементы и время. Наша основная цель – сделать точные прогнозы относительно связей между пользователями 
и товарами в течение определенных периодов времени. Экспериментальные результаты демонстрируют, что наш 
подход значительно повышает точность прогнозирования для развивающихся сетей, измеряемую AUC.

Ключевые слова: предсказание связи, CP-декомпозиция, алгоритм Генриха, алгоритм ALS, экспоненциальное 
сглаживание, BiLSTM.

Introduction
“Tensor” was first introduced in 1927 [1], and the idea of using more than two matrices in factor analysis 

has been widely accepted since the 1960s in various domains [2]. Complex interactions among input features 
can be captured using a tensor form, which is impossible with flattened data. However, any analysis on a 
full tensorial representation is often accompanied by a so-called curse-of-dimensionality challenge, with the 
complexity increasing exponentially with the tensor order. This is where tensor decompositions play a crucial 
role, allowing for lessening the data representation's complexity without significantly affecting its ability to 
capture correlations in the data. Similar to their matrix counterpart, tensor decompositions break down high-
dimensional tensors into a sum of lower-dimensional factors. In addition to their direct use in processing multi-
way input data, tensors are frequently used as a core component of machine learning models. In later years, 
tensor decomposition has gained increasing interest in various fields, including computer vision and social 
network analysis [3].

Some existing studies compared tensor decomposition-based link prediction methods with other popular 
graph-based link prediction methods in multi-relational data. For analysis of temporal multi-relational data, 
Bader et al. [7] employ a  decomposition method called ASALSAN related to RESCAL. As noted by Nickel 
et al. [8], this decomposition method has shown suboptimal performance on previous benchmarks. Ma et al. 
[9] proposed another generalization of RESCAL called the ConT decomposition method for temporal link 
prediction. The core tensor indices are contracted in this method, lowering the computational complexity. Evrim 
et al. [10] explore various matrix and tensor decomposition methods for solving link prediction problems. They 
consider author-conference relationships in bibliometric data called DBLP and propose an extension of the 
matrix-based Katz method, which employs truncated SVD for approximation. However, the authors conclude 
that the tensor-based decomposition methods are much better than matrix-based decomposition methods. 
Because temporal latent trends are not entirely derived via matrix-based decomposition from evolving data.

Lin et al. [11] offer a decomposition approach for community extraction on multi-relational and multi-
dimensional social data. Their coupled factorization method includes CANDECOMP and PARAFAC 
decomposition methods and divergence-based cost function. Furthermore, Narita et al. propose a joint 
factorization method based on Tucker and CP decomposition methods and utilize a Euclidian distance-based 
loss function. Finally, Liang et al. [12] implement the Bayesian Probabilistic Tensor Factorization (BPTF) 
algorithm for temporal relational data. BPTF can capture the overall evolution of latent features by imposing a 
smoothness constraint on those features and incorporating additional time features. Sheng et al. [13] proposed 
a new method called Link Pattern Prediction Tensor (LPPT) based on Tucker Decomposition, which captures 
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interaction patterns in multi-relational networks. Chi and Kolda [14] presented the CP Alternating Poisson 
Regression (CP-APR), suitable for handling weighted time-evolving networks because it is made for sparse 
count data. The primary concept of the TensorCast method proposed by Araujo et al. [15] is using non-negative 
coupled tensor decomposition and standard models to forecast the time component.

Main provisions
Several popular tensor decomposition methods, including Canonical Polyadic (CP) and Tucker 

decomposition, decompose tensor-formed multidimensional data into low-order tensors and identify underlying 
trends of decomposed tensors. Tucker decomposition aims to decompose a tensor into a core tensor with the 
same order and low-order factor tensors [4].  In contrast, the CP decomposition represents an observed tensor 
as a sum of rank-one tensors. The CP decomposition methods first found applications in psychometrics [5] 
and linguistics [6], where they were referred to as Canonical Decomposition and Parallel Factor models, 
respectively. In this study, we use CP decomposition algorithms to recover the factor matrices model to make 
predictions about potential edge connections within a given network. Furthermore, our approach captures 
temporal trends within a tensor, where time is treated as a separate dimension.

Tensor decomposition has drawn more interest recently in link prediction, which estimates the possibility 
of new connections forming between network nodes. Numerous research has concentrated on the static features 
of single graph snapshots, which do not reveal the behavior of networks. Tracking patterns over time that 
are impacted by adding and deleting nodes to forecast links is essential. The topic of collaborative filtering, 
which aims to recommend new things to a user, is closely connected to link prediction. In this problem, 
the input is a partially observed matrix of (user, item) preference scores. In collaborative filtering, users and 
items are represented by nodes, and edges pairing nodes are weighted by the preference score. The dataset 
we examine is derived from Amazon, which was published in WSDM 2022 Cup. After preprocessing, it is 
represented as a multi-way tensor where each mode corresponds to different aspects of the data, such as users, 
items, and time. Our main objective is to make accurate predictions about the links between users and items 
in specific time periods. The results show that our approach yields significant improvements in prediction 
accuracy for evolutionary networks, as measured by AUC. Overall, this research demonstrates the potential of 
the CP decomposition method in improving link prediction in complex networks. This paper suggests effective 
tensor decomposition methods for temporal link prediction for large-scale, complicated networks considering 
temporal data.

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a tensor order. 

The order of a tensor is an important property, as it determines how it behaves under several types of 
transformations. For convenience, we use a three-dimensional tensor as an example throughout this paper, but 
the notation can extend to tensors of higher dimensions in most cases.  The notation is primarily based on the 
reviews by Kolda et a,l. [3] In this paper higher-order tensors are denoted by underlined uppercase letters, e.g., 
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Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to 
vectorization, matricization is useful when working with algorithms that need matrix inputs. The 
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this 
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).  

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer 
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(𝑛𝑛) (3) 

This represents that the corresponding elements from the related vectors are multiplied to create 
each tensor component. 
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Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to vectorization, 
matricization is useful when working with algorithms that need matrix inputs. The mode-n matricization of a 
tensor, also known as unfolding or flattening, is indicated as X(n). In this process, the mode-n fibers of X are 
converted into the columns of X(n). 
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𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖
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𝑖𝑖=1
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(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
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Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
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2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

. Therefore, a 3-order rank-r tensor can be written as:

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

                                                           (4)

The general n-order form is provided as follows:

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

	                      (5)
 

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors from 
the rank-one components as columns. Therefore, the factor matrices 

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

 takes the shape:

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

                                                                                      (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is essential to 
grasp these matrix operations:

1.	 Kronecker product. The Kronecker product expands the concept of the vector outer product to matrices. 
This operation between  two matrices 

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

 and 

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

 can be described as follows:

КОМПЬЮТЕРНЫЕ НАУКИ



ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №2 (65), 2023

96

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

                                               (7)

1.	 Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

 and 

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

is a matrix with the size 

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

. It is defined by:
2.	

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

                                              (8)

3.	 Hadamard product. A elementwise product of two same-sized matrices is known as the Hadamard 
product. Given two matrices 

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

 and 

Figure 1 – Rank-one 3-order tensor. 

 

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X 
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( 𝑋𝑋). Therefore, a 3-order rank-r tensor can be written 
as: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4) 

The general n-order form is provided as follows: 

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘  𝑢𝑢𝑖𝑖
(2) ∘ … ∘  𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5) 

  

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors 
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑛𝑛 takes the 
shape: 

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6) 

 

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is 
essential to grasp these matrix operations: 

1. Kronecker product. The Kronecker product expands the concept of the vector outer product 
to matrices. This operation between  two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be 
described as follows: 

U ⨂ V =  
[
 
 
 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮       ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑉𝑉]

 
 
 

(7) 

= [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯  𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1   𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿] 
 

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑘𝑘, 𝑗𝑗). It is defined by: 

𝑈𝑈 ⊙  𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1  𝑢𝑢1⨂ 𝑣𝑣2  ⋯    𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8) 

 
3. Hadamard product. A elementwise product of two same-sized matrices is known as the 

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their 
Hadamard product is represented by  𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗) 
and defined by: 

 is of size (i, j), their Hadamard product is represented 
by U*V. The result is also matrix with the same size (i, j) and defined by:

 

𝑈𝑈 ∗ 𝑉𝑉 ∶= [
𝑢𝑢11𝑣𝑣11 𝑢𝑢12𝑣𝑣12 ⋯ 𝑢𝑢1𝐽𝐽𝑣𝑣1𝐽𝐽
𝑢𝑢21𝑣𝑣21 𝑢𝑢22𝑣𝑣22 ⋯ 𝑢𝑢2𝐽𝐽𝑣𝑣2𝐽𝐽

⋮
𝑢𝑢𝐼𝐼1𝑣𝑣𝐼𝐼1

⋮
𝑢𝑢𝐼𝐼2𝑣𝑣𝐼𝐼2

⋱ ⋮
⋯ 𝑢𝑢𝐼𝐼𝐼𝐼𝑣𝑣𝐼𝐼𝐼𝐼

] (9) 

 

The approach used in this work significantly differs from standard link prediction methods that 
proceed without dimensionality reduction: we use tensor decomposition to map 3-order tensor to 
several 2-order tensors and then apply time-series forecasting methods to solve the task. The main 
idea of this approach is based on the work of Acar et al. [16] and was extended with CP 
decomposition algorithms.  Firstly, we capture temporal trends present in the data using time factor 
W derived from CP decomposition.  Two alternative algorithms are used for CP decomposition: 
Jennrich’s algorithm and ALS. Then we employ time-series forecasting methods to the temporal 
factor matrix W to predict future points in time while node factors U and V remain unchanged.  
Time-series forecasting was done using exponential smoothing and Long Short-Term Memory 
(LSTM), which has been gaining popularity in making forecasts in recent years. Finally, we can 
reconstruct the tensor with predicted links in the following T time instants by extracted factors U, V, 
and extrapolated factor W. Figure 2 shows the link prediction proposed approach’s block diagram.  
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3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find  𝑤𝑤𝑖𝑖 and finally get the 
tensor factor matrices U, V, W. 
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𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇,  𝐷𝐷𝑎𝑎 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get: 

 

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17) 

 

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18) 

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively. 

 

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find  𝑤𝑤𝑖𝑖 and finally get the 
tensor factor matrices U, V, W. 
 

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing 
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and 
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly 
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of 
approximation. The steps of the ALS algorithm for 3-order tensor: 
 

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖ 

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19) 

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖ 

The optimal solution for the minimization is obtained by: 

𝑈̂𝑈 =  𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† =  𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)† 

𝑉̂𝑉 =  𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† =  𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)  

𝑊̂𝑊 =  𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† =  𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† 

 

Exponential smoothing. An exponential smoothing time series forecasting method uses 
weighted averages of previous observations. Recent data points are given more weight while the 
significance of earlier observations is gradually reduced. An exponential decay factor is used to 
produce this weighting technique, assigning more weight to recent observations. The formula for 
exponential smoothing is as follows: 

𝑠𝑠𝑡𝑡 =  𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21) 

 and we can get:

𝑋𝑋 𝑏𝑏 =  ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16) 

2. Compute the eigen-decomposition of  𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and  

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇,  𝐷𝐷𝑎𝑎 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get: 

 

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17) 

 

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18) 

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively. 

 

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find  𝑤𝑤𝑖𝑖 and finally get the 
tensor factor matrices U, V, W. 
 

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing 
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and 
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly 
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of 
approximation. The steps of the ALS algorithm for 3-order tensor: 
 

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖ 

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19) 

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖ 

The optimal solution for the minimization is obtained by: 

𝑈̂𝑈 =  𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† =  𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)† 

𝑉̂𝑉 =  𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† =  𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)  

𝑊̂𝑊 =  𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† =  𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† 

 

Exponential smoothing. An exponential smoothing time series forecasting method uses 
weighted averages of previous observations. Recent data points are given more weight while the 
significance of earlier observations is gradually reduced. An exponential decay factor is used to 
produce this weighting technique, assigning more weight to recent observations. The formula for 
exponential smoothing is as follows: 

𝑠𝑠𝑡𝑡 =  𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21) 

                                    (17)
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𝑋𝑋 𝑏𝑏 =  ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16) 

2. Compute the eigen-decomposition of  𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and  

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇,  𝐷𝐷𝑎𝑎 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get: 

 

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17) 

 

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18) 

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively. 

 

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find  𝑤𝑤𝑖𝑖 and finally get the 
tensor factor matrices U, V, W. 
 

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing 
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and 
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly 
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of 
approximation. The steps of the ALS algorithm for 3-order tensor: 
 

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖ 

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19) 

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖ 

The optimal solution for the minimization is obtained by: 

𝑈̂𝑈 =  𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† =  𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)† 

𝑉̂𝑉 =  𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† =  𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)  

𝑊̂𝑊 =  𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† =  𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† 

 

Exponential smoothing. An exponential smoothing time series forecasting method uses 
weighted averages of previous observations. Recent data points are given more weight while the 
significance of earlier observations is gradually reduced. An exponential decay factor is used to 
produce this weighting technique, assigning more weight to recent observations. The formula for 
exponential smoothing is as follows: 

𝑠𝑠𝑡𝑡 =  𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21) 

                                          (18)

where the columns of U and V are ui and vi respectively.
2.	 Given ui and vi, we can solve the linear system of equations to find wi and finally get the tensor factor 

matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing CP 
decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and then optimize 
the non-fixed factor matrix. Each factor matrix goes through this process repeatedly until a stopping criterion 
is satisfied, signifying convergence or obtaining the required level of approximation. The steps of the ALS 
algorithm for 3-order tensor:

𝑋𝑋 𝑏𝑏 =  ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16) 

2. Compute the eigen-decomposition of  𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and  

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇,  𝐷𝐷𝑎𝑎 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get: 

 

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17) 

 

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18) 

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively. 

 

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find  𝑤𝑤𝑖𝑖 and finally get the 
tensor factor matrices U, V, W. 
 

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing 
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and 
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly 
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of 
approximation. The steps of the ALS algorithm for 3-order tensor: 
 

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖ 

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19) 

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖ 

The optimal solution for the minimization is obtained by: 

𝑈̂𝑈 =  𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† =  𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)† 

𝑉̂𝑉 =  𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† =  𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)  

𝑊̂𝑊 =  𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† =  𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† 

 

Exponential smoothing. An exponential smoothing time series forecasting method uses 
weighted averages of previous observations. Recent data points are given more weight while the 
significance of earlier observations is gradually reduced. An exponential decay factor is used to 
produce this weighting technique, assigning more weight to recent observations. The formula for 
exponential smoothing is as follows: 

𝑠𝑠𝑡𝑡 =  𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21) 

                                                           (19)

The optimal solution for the minimization is obtained by:

𝑋𝑋 𝑏𝑏 =  ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16) 

2. Compute the eigen-decomposition of  𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and  

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇,  𝐷𝐷𝑎𝑎 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get: 

 

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
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where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively. 

 

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find  𝑤𝑤𝑖𝑖 and finally get the 
tensor factor matrices U, V, W. 
 

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing 
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and 
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly 
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of 
approximation. The steps of the ALS algorithm for 3-order tensor: 
 

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖ 
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Exponential smoothing. An exponential smoothing time series forecasting method uses 
weighted averages of previous observations. Recent data points are given more weight while the 
significance of earlier observations is gradually reduced. An exponential decay factor is used to 
produce this weighting technique, assigning more weight to recent observations. The formula for 
exponential smoothing is as follows: 

𝑠𝑠𝑡𝑡 =  𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21) 
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Exponential smoothing. An exponential smoothing time series forecasting method uses 
weighted averages of previous observations. Recent data points are given more weight while the 
significance of earlier observations is gradually reduced. An exponential decay factor is used to 
produce this weighting technique, assigning more weight to recent observations. The formula for 
exponential smoothing is as follows: 

𝑠𝑠𝑡𝑡 =  𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)                                                                         (21)

where  𝛽𝛽 - smoothing parameter, 𝑠𝑠𝑡𝑡 – smoothed value, 𝑥𝑥𝑡𝑡 - observed value 

In our approach for link prediction, we use simple exponential smoothing to predict future values of 
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for 
factor matrix W can be expressed as: 

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 +  𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ +   𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22) 

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 ,  𝑇𝑇 – time period to predict 

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating 
the potential links that may be formed within L timestamps, as indicated by formula (23): 

𝑋̂𝑋 𝐿𝐿+𝑇𝑇 =  ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿+𝑇𝑇⟧ (23) 

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning 
activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other 
neural network designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method 
for temporal factor matrix W retrieved from CP decomposition. BiLSTM analyzes the historical 
context of the time series by performing a forward pass on the historical observations. By examining 
the future observations made through the backward pass, it also takes the future context into 
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data 
by merging these two information streams. To maximize prediction accuracy by reducing the 
difference between the expected values and the actual observations, the model learns to modify its 
parameters throughout training. The backward pass aids in learning long-term dependencies and 
identifying future trends while also providing helpful information for gradient computing. The 
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the 
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with 
BiLSTM:  

1. CP decomposition of observed data with rank-R 
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧ 
3. Train each column of the temporal factor 𝑊𝑊𝐿𝐿 with BiLSTM and predict 𝑊𝑊𝐿𝐿+𝑡𝑡 , where 𝑡𝑡 =

1, . . , 𝑇𝑇  
4. Concatenate 𝑊𝑊𝐿𝐿 and 𝑊𝑊𝐿𝐿+𝑇𝑇 
5. Reconstruct CP decomposition with formula (23) 

 
Results and Discussion 
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup. 

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage, 
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the 
second dimension (j) represents the item node, and the third dimension (k) captures the date of 
interaction. For evaluation, we split the data into a training set and a test set, with 80% of the data 
allocated for training and 20% for testing. 
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designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method for temporal factor 
matrix W retrieved from CP decomposition. BiLSTM analyzes the historical context of the time series by 
performing a forward pass on the historical observations. By examining the future observations made through 
the backward pass, it also takes the future context into account. BiLSTM can offer a more thorough insight into 
the temporal patterns and trends in the data by merging these two information streams. To maximize prediction 
accuracy by reducing the difference between the expected values and the actual observations, the model learns 
to modify its parameters throughout training. The backward pass aids in learning long-term dependencies 
and identifying future trends while also providing helpful information for gradient computing. The employed 
architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the ADAM optimizer. The 
algorithm of temporal link prediction via tensor decomposition with BiLSTM: 

1.	 CP decomposition of observed data with rank-R
2.	 Get factor matrices 
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In our approach for link prediction, we use simple exponential smoothing to predict future values of 
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for 
factor matrix W can be expressed as: 

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 +  𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ +   𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22) 

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 ,  𝑇𝑇 – time period to predict 
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activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other 
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the future observations made through the backward pass, it also takes the future context into 
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data 
by merging these two information streams. To maximize prediction accuracy by reducing the 
difference between the expected values and the actual observations, the model learns to modify its 
parameters throughout training. The backward pass aids in learning long-term dependencies and 
identifying future trends while also providing helpful information for gradient computing. The 
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the 
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with 
BiLSTM:  

1. CP decomposition of observed data with rank-R 
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧ 
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Results and Discussion 
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup. 

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage, 
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the 
second dimension (j) represents the item node, and the third dimension (k) captures the date of 
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3.	 Train each column of the temporal factor WL with BiLSTM and predict WL+t, where t=1,..,T
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5.	 Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup. This dataset 

represents a user-item time-evolving network of Amazon. After the preprocessing stage, the data is represented 
as a 3-order tensor. The first dimension (i) corresponds to the user node, the second dimension (j) represents the 
item node, and the third dimension (k) captures the date of interaction. For evaluation, we split the data into a 
training set and a test set, with 80% of the data allocated for training and 20% for testing.

We use the area under the receiver operating characteristic curve (AUC) as a metric to evaluate the 
performance of our methods in temporal link prediction. AUC is selected due to its robustness in handling 
imbalanced data, which is crucial in our case as the training dataset contains a small fraction (less than 0.5%) of 
actual links compared to all possible links. Firstly, in order to assess the performance of tensor decomposition 
and its reconstruction, only the CP decomposition part of the model was evaluated.
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          Figure 4 – AUC and ROC of the CP decomposition algorithms 

Figure 4 displays the ROC curves, which provide a comprehensive view of the tensor 
decomposition performance. It can be seen that Jennrich’s algorithm demonstrates slightly lower 
performance than the ALS algorithm for 0.01 (0.95 vs. 0.96).  

In Figure 5, the bar chart provides valuable insights into the link prediction performance 
using AUC as the evaluation metric. Among all the methods, Jennrich’s CP decomposition algorithm 
with BiLSTM algorithm achieves the highest AUC score (0.95). However, the ALS algorithm with 
the same forecasting model yields the lowest AUC score (0.83). The ROC of these models is 
presented in Figure 8. But with exponential smoothing in the prediction part, the AUC score of the 
method increases by 0.5 (0.88). With two alternative forecasting methods in the prediction part, 
Jennrich’s algorithm performs exceptionally well in link prediction with the time-evolving dataset. It 
can be assumed that.  
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Jennrich’s CP decomposition effectively retrieves latent temporal trends from an observed tensor to the 
temporal factor matrix of the CP decomposition where the prediction part is held.  
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(a) 𝑇𝑇 = 1 
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Figure 6 – AUC and ROC of the Jennrich’algorithm with exponential smoothing 

The impact of increasing T on the change in AUC is illustrated in separate graphics, as 
shown in Figure 6-7. The outcomes measured by ROC and AUC of Jennrich’s algorithm with 
exponential smoothing are depicted in Figure 6. The AUC of this model decreases from 0.93 to 0.88 
when T is increased from 1 to 30, indicating a relatively lower performance as the time period 
increases. In Figure 7, a similar assumption can be applied to the results of the ALS decomposition 
with a simple exponential smoothing as a forecasting method.   
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Figure 7 – The ALS algorithm with exponential smoothing (AUC and ROC) 
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the results of the ALS decomposition with a simple exponential smoothing as a forecasting method.  

 

Figure 5 – AUC of link prediction models 

Jennrich’s CP decomposition effectively retrieves latent temporal trends from an observed tensor to 
the temporal factor matrix of the CP decomposition where the prediction part is held.   
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Figure 6 – AUC and ROC of the Jennrich’algorithm with exponential smoothing 

The impact of increasing T on the change in AUC is illustrated in separate graphics, as 
shown in Figure 6-7. The outcomes measured by ROC and AUC of Jennrich’s algorithm with 
exponential smoothing are depicted in Figure 6. The AUC of this model decreases from 0.93 to 0.88 
when T is increased from 1 to 30, indicating a relatively lower performance as the time period 
increases. In Figure 7, a similar assumption can be applied to the results of the ALS decomposition 
with a simple exponential smoothing as a forecasting method.   
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Figure 7 – The ALS algorithm with exponential smoothing (AUC and ROC) 

 

Figure 7 – The ALS algorithm with exponential smoothing (AUC and ROC)
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(a) Jennrich’s algorithm 

 

(b) ALS algorithm 

Figure 8 – The CP algorithms with BiLSTM (AUC and ROC) 

Conclusion 
In this work, we present a method for link prediction in large-scale time-evolving networks, 

which completely differs from standard graph-based methods. This method is a combination of 
tensor decomposition and time-series forecasting. The dataset that we used to evaluate our approach 
is derived from WSDM.  In data preprocessing, the dataset is converted to a three-way tensor. In the 
tensor decomposition part, the observed tensor is decomposed to two-way tensors, which are factor 
matrices of each mode that give a relative pattern of the network. As a tensor decomposition model, 
we used two alternative algorithms of CP decomposition such as Jennrich’s algorithm and the ALS 
algorithm. The results show that Jennrich’s algorithm is more efficient in problems considering the 
temporal trend. In forecasting, we utilized the third mode factor matrix of decomposed tensor and 
predicted new links via BiLSTM and exponential smoothing. By comparing the AUC of each 
method, we conclude that the combination of the Jennrich algorithm and BiLSTM shows the best 
performance. In future work, we aim to investigate other decomposition algorithms in link 
prediction, such as Tucker and Tensor Train decomposition methods with a dataset presented as a 
multi-way tensor. 
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