
ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №2 (65), 2023

92

КОМПЬЮТЕРНЫЕ НАУКИ
UDC 004.048
IRSTI 28.23.25
https://doi.org/10.55452/1998-6688-2023-20-2-92-102

ALITURLIYEVA A.E
Kazakh-British Technical University, 050000, Almaty, Kazakhstan

E-mail: a_aliturliyeva@kbtu.kz

LINK PREDICTION USING TENSOR DECOMPOSITION

Abstract. In recent years, tensor decomposition has gained increasing interest in the field of link prediction, which aims to
estimate the likelihood of new connections forming between nodes in a network. This study highlights the potential of the
Canonical Polyadic tensor decomposition in enhancing link prediction in complex networks. It suggests effective tensor
decomposition algorithms that not only take into account the structural characteristics of the network but also its temporal
evolution. During the process of tensor decomposition, the initial tensor is decomposed into two-way tensors, also known
as factor matrices, representing different modes of the data. These factor matrices capture the underlying patterns or
relationships within the network, providing insights into the structure and dynamics of the network. For evaluation, we
examine a dataset derived from the WSDM. After preprocessing, the data is represented as a multi-way tensor, with each
mode representing different aspects such as users, items, and time. Our primary objective is to make precise predictions
about the links between users and items within specific time periods. The experimental results demonstrate that our
approach significantly improves prediction accuracy for evolving networks, as measured by the AUC.

Key words: link prediction, CP decomposition, Jennrich’s algorithm, ALS algorithm, exponential smoothing, BiLSTM.

АЛИТУРЛИЕВА А.Е
Казақстан-Британ техникалық университет, 050000, Алматы қ., Қазақстан

E-mail: a_aliturliyeva@kbtu.kz

ТЕНЗОРЛЫҚ ЫДЫРАУ АРҚЫЛЫ БАЙЛАНЫСТЫ БОЛЖАУ

Аңдатпа. Қазіргі уақытта тензордың ыдырауы желідегі түйіндер арасында жаңа қосылыстардың пайда болу
ықтималдығын бағалауға бағытталған байланыстарды болжау саласында қызығушылықты арттыруда. Бұл зерттеу
күрделі желілердегі байланыстарды болжауды жақсарту үшін Канондық Полиадикалық тензор ыдырауының
қолданысын көрсетеді. Сонымен қатар желінің құрылымдық сипаттамаларын ғана емес, оның уақытша
эволюциясын да ескеретін тиімді тензорлық ыдырау алгоритмдері ұсынылған. Тензордың ыдырау процесі кезінде
бастапқы тензор деректердің әртүрлі режимдерін білдіретін факторлық матрицалар деп те аталатын екі өлшемді
тензорларға ыдырайды. Бұл фактор матрицалары желінің құрылымы мен динамикасы туралы түсініктерді
қамтамасыз ете отырып, желі ішіндегі негізгі заңдылықтарды немесе қатынастарды көрсетеді. Модельді
бағалау үшін біз WSDM-ден алынған мәліметтер жиынтығын қарастырдық. Алдын ала өңдеуден кейін деректер
көп деңгейлі тензор ретінде ұсынылды, әр режим пайдаланушылар, элементтер және уақыт сияқты әртүрлі
аспектілерді білдіреді. Біздің басты мақсатымыз-белгілі бір уақыт аралығында пайдаланушылар мен элементтер
арасындағы байланыстарға қатысты нақты болжамдар жасау. Эксперименттік нәтижелер біздің тәсіліміздің AUC
арқылы өлшенетін уақыт бойынша өзгеретін желілерді болжау дәлдігін айтарлықтай жақсартатынын көрсетеді.

Тірек сөздер: байланысты болжау, СP-декомпозиция, Генрих алгоритм, ALS алгоритм, экспоненциалды тегістеу,
BiLSTM.

МАТЕМАТИЧЕСКИЕ НАУКИ

93

АЛИТУРЛИЕВА А.Е
Казахстанско-Британский технический университет, 050000, г. Алматы, Казахстан

E-mail: a_aliturliyeva@kbtu.kz

ПРОГНОЗ СВЯЗИ С ИСПОЛЬЗОВАНИЕМ ТЕНЗОРНОЙ ДЕКОМПОЗИЦИИ

Аннотация. В последние годы тензорная декомпозиция вызывает все больший интерес в области прогнозирования
связей, целью которого является оценка вероятности образования новых соединений между узлами в сети. Это
исследование подчеркивает потенциал Канонической Полиадической тензорной декомпозиции для улучшения
предсказания связей в сложных сетях. В процессе тензорной декомпозиции исходный тензор разлагается на
двумерные тензоры, также известные как матрицы факторов, представляющие различные режимы данных. Эти
факторные матрицы фиксируют базовые закономерности или отношения внутри сети, обеспечивая понимание
структуры и динамики сети. В нем предлагаются эффективные алгоритмы тензорной декомпозиции, которые
учитывают не только структурные характеристики сети, но и ее временную эволюцию. Для оценки мы изучаем
набор данных, полученный на WSDM. После предварительной обработки данные представляются в виде
многоуровневого тензора, причем каждый режим представляет различные аспекты, такие как пользователи,
элементы и время. Наша основная цель – сделать точные прогнозы относительно связей между пользователями
и товарами в течение определенных периодов времени. Экспериментальные результаты демонстрируют, что наш
подход значительно повышает точность прогнозирования для развивающихся сетей, измеряемую AUC.

Ключевые слова: предсказание связи, CP-декомпозиция, алгоритм Генриха, алгоритм ALS, экспоненциальное
сглаживание, BiLSTM.

Introduction
“Tensor” was first introduced in 1927 [1], and the idea of using more than two matrices in factor analysis

has been widely accepted since the 1960s in various domains [2]. Complex interactions among input features
can be captured using a tensor form, which is impossible with flattened data. However, any analysis on a
full tensorial representation is often accompanied by a so-called curse-of-dimensionality challenge, with the
complexity increasing exponentially with the tensor order. This is where tensor decompositions play a crucial
role, allowing for lessening the data representation's complexity without significantly affecting its ability to
capture correlations in the data. Similar to their matrix counterpart, tensor decompositions break down high-
dimensional tensors into a sum of lower-dimensional factors. In addition to their direct use in processing multi-
way input data, tensors are frequently used as a core component of machine learning models. In later years,
tensor decomposition has gained increasing interest in various fields, including computer vision and social
network analysis [3].

Some existing studies compared tensor decomposition-based link prediction methods with other popular
graph-based link prediction methods in multi-relational data. For analysis of temporal multi-relational data,
Bader et al. [7] employ a decomposition method called ASALSAN related to RESCAL. As noted by Nickel
et al. [8], this decomposition method has shown suboptimal performance on previous benchmarks. Ma et al.
[9] proposed another generalization of RESCAL called the ConT decomposition method for temporal link
prediction. The core tensor indices are contracted in this method, lowering the computational complexity. Evrim
et al. [10] explore various matrix and tensor decomposition methods for solving link prediction problems. They
consider author-conference relationships in bibliometric data called DBLP and propose an extension of the
matrix-based Katz method, which employs truncated SVD for approximation. However, the authors conclude
that the tensor-based decomposition methods are much better than matrix-based decomposition methods.
Because temporal latent trends are not entirely derived via matrix-based decomposition from evolving data.

Lin et al. [11] offer a decomposition approach for community extraction on multi-relational and multi-
dimensional social data. Their coupled factorization method includes CANDECOMP and PARAFAC
decomposition methods and divergence-based cost function. Furthermore, Narita et al. propose a joint
factorization method based on Tucker and CP decomposition methods and utilize a Euclidian distance-based
loss function. Finally, Liang et al. [12] implement the Bayesian Probabilistic Tensor Factorization (BPTF)
algorithm for temporal relational data. BPTF can capture the overall evolution of latent features by imposing a
smoothness constraint on those features and incorporating additional time features. Sheng et al. [13] proposed
a new method called Link Pattern Prediction Tensor (LPPT) based on Tucker Decomposition, which captures

КОМПЬЮТЕРНЫЕ НАУКИ

ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №2 (65), 2023

94

interaction patterns in multi-relational networks. Chi and Kolda [14] presented the CP Alternating Poisson
Regression (CP-APR), suitable for handling weighted time-evolving networks because it is made for sparse
count data. The primary concept of the TensorCast method proposed by Araujo et al. [15] is using non-negative
coupled tensor decomposition and standard models to forecast the time component.

Main provisions
Several popular tensor decomposition methods, including Canonical Polyadic (CP) and Tucker

decomposition, decompose tensor-formed multidimensional data into low-order tensors and identify underlying
trends of decomposed tensors. Tucker decomposition aims to decompose a tensor into a core tensor with the
same order and low-order factor tensors [4]. In contrast, the CP decomposition represents an observed tensor
as a sum of rank-one tensors. The CP decomposition methods first found applications in psychometrics [5]
and linguistics [6], where they were referred to as Canonical Decomposition and Parallel Factor models,
respectively. In this study, we use CP decomposition algorithms to recover the factor matrices model to make
predictions about potential edge connections within a given network. Furthermore, our approach captures
temporal trends within a tensor, where time is treated as a separate dimension.

Tensor decomposition has drawn more interest recently in link prediction, which estimates the possibility
of new connections forming between network nodes. Numerous research has concentrated on the static features
of single graph snapshots, which do not reveal the behavior of networks. Tracking patterns over time that
are impacted by adding and deleting nodes to forecast links is essential. The topic of collaborative filtering,
which aims to recommend new things to a user, is closely connected to link prediction. In this problem,
the input is a partially observed matrix of (user, item) preference scores. In collaborative filtering, users and
items are represented by nodes, and edges pairing nodes are weighted by the preference score. The dataset
we examine is derived from Amazon, which was published in WSDM 2022 Cup. After preprocessing, it is
represented as a multi-way tensor where each mode corresponds to different aspects of the data, such as users,
items, and time. Our main objective is to make accurate predictions about the links between users and items
in specific time periods. The results show that our approach yields significant improvements in prediction
accuracy for evolutionary networks, as measured by AUC. Overall, this research demonstrates the potential of
the CP decomposition method in improving link prediction in complex networks. This paper suggests effective
tensor decomposition methods for temporal link prediction for large-scale, complicated networks considering
temporal data.

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a tensor order.

The order of a tensor is an important property, as it determines how it behaves under several types of
transformations. For convenience, we use a three-dimensional tensor as an example throughout this paper, but
the notation can extend to tensors of higher dimensions in most cases. The notation is primarily based on the
reviews by Kolda et a,l. [3] In this paper higher-order tensors are denoted by underlined uppercase letters, e.g.,

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

. For convenience, we use lower case letters to denote vectors

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

 and upper
case to matrices

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

. The шт stand for the number certain of elements in each dimension. To better
understand the structure of tensors, we can look at their subfields such as fibers and slices. Fibers defined by
fixing all but one index and given as

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

Vectorization is the process of transforming a given matrix into a vector by vertically stacking the columns
of matrix

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

. The final vector contains every component of the initial matrix; therefore, its dimension
will be

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

. It can be helpful when we need to restructure the data for specific mathematical operations
or algorithms that demand vector inputs. The vectorization of a matrix Х is represented as vec(X):

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to vectorization,
matricization is useful when working with algorithms that need matrix inputs. The mode-n matricization of a
tensor, also known as unfolding or flattening, is indicated as X(n). In this process, the mode-n fibers of X are
converted into the columns of X(n).

МАТЕМАТИЧЕСКИЕ НАУКИ

95

Rank – one tensor. When a higher-order tensor

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

 can be represented as outer product of
N vectors, it means that it is a rank-one tensor. The 3-order

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

 rank-one tensor can be expressed
as follows:

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

 (2)

In this context, the outer vector product is denoted as the symbol

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

. Figure 1 shows a visual illustration
of the rank-one idea. By extending this concept to the general n-order tensor:

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

 (3)

This represents that the corresponding elements from the related vectors are multiplied to create each
tensor component.

Materials and Methods
A tensor is a generalization of multi-way arrays. The number of dimensions determines a

tensor order. The order of a tensor is an important property, as it determines how it behaves under
several types of transformations. For convenience, we use a three-dimensional tensor as an example
throughout this paper, but the notation can extend to tensors of higher dimensions in most cases.
The notation is primarily based on the reviews by Kolda et a,l. [3] In this paper higher-order tensors
are denoted by underlined uppercase letters, e.g., 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛), n ≥ 3. For convenience, we use
lower case letters to denote vectors x ∈ 𝑅𝑅𝑖𝑖 and upper case to matrices X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The 𝑖𝑖𝑛𝑛 stand for
the number certain of elements in each dimension. To better understand the structure of tensors, we
can look at their subfields such as fibers and slices. Fibers defined by fixing all but one index and
given as 𝑋𝑋𝑖𝑖𝑗𝑗:  ,  𝑋𝑋𝑖𝑖:𝑘𝑘 ,  𝑋𝑋:𝑗𝑗𝑘𝑘.   

Vectorization is the process of transforming a given matrix into a vector by vertically
stacking the columns of matrix X ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗). The final vector contains every component of the initial
matrix; therefore, its dimension will be (𝑖𝑖 × 𝑗𝑗, 1). It can be helpful when we need to restructure the
data for specific mathematical operations or algorithms that demand vector inputs. The vectorization
of a matrix X is represented as vec(𝑋𝑋):

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = (𝑥𝑥11, 𝑥𝑥21, … , 𝑥𝑥𝑖𝑖𝑗𝑗)𝑇𝑇 (1)

Matricization is the process of rearranging an N-order tensor into a matrix. Analogous to
vectorization, matricization is useful when working with algorithms that need matrix inputs. The
mode-n matricization of a tensor, also known as unfolding or flattening, is indicated as 𝑋𝑋(𝑛𝑛). In this
process, the mode-n fibers of 𝑋𝑋 are converted into the columns of 𝑋𝑋(𝑛𝑛).

Rank – one tensor. When a higher-order tensor 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖1×..×𝑖𝑖𝑛𝑛) can be represented as outer
product of N vectors, it means that it is a rank-one tensor. The 3-order 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) rank-one tensor
can be expressed as follows:

𝑋𝑋 = 𝑢𝑢 ∘ 𝑣𝑣 ∘ 𝑤𝑤 (2)

In this context, the outer vector product is denoted as the symbol " ∘ ". Figure 1 shows a visual
illustration of the rank-one idea. By extending this concept to the general n-order tensor:

𝑋𝑋 = 𝑢𝑢(1) ∘ 𝑢𝑢(2) ∘ … ∘ 𝑢𝑢(𝑛𝑛), with 𝑥𝑥𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛 = 𝑢𝑢𝑗𝑗1
(1)𝑢𝑢𝑗𝑗2

(2)𝑢𝑢𝑗𝑗3
(3) … 𝑢𝑢𝑗𝑗𝑛𝑛

(𝑛𝑛) (3)

This represents that the corresponding elements from the related vectors are multiplied to create
each tensor component.

 

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X through their
summation, given as

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

. Therefore, a 3-order rank-r tensor can be written as:

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 (4)

The general n-order form is provided as follows:

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors from
the rank-one components as columns. Therefore, the factor matrices

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 takes the shape:

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is essential to
grasp these matrix operations:

1.	 Kronecker product. The Kronecker product expands the concept of the vector outer product to matrices.
This operation between two matrices

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 and

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 can be described as follows:

КОМПЬЮТЕРНЫЕ НАУКИ

ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №2 (65), 2023

96

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 (7)

1.	 Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 and

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

is a matrix with the size

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

. It is defined by:
2.	

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 (8)

3.	 Hadamard product. A elementwise product of two same-sized matrices is known as the Hadamard
product. Given two matrices

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉,𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 and

Figure 1 – Rank-one 3-order tensor.

Tensor rank. Tensor rank is the least number of rank-one tensors needed to produce X
through their summation, given as 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋). Therefore, a 3-order rank-r tensor can be written
as:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖 = [𝜆𝜆; 𝑈𝑈, 𝑉𝑉, 𝑊𝑊] (4)

The general n-order form is provided as follows:

𝑋𝑋 = ∑𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖=1
𝑢𝑢𝑖𝑖

(1) ∘ 𝑢𝑢𝑖𝑖
(2) ∘ … ∘ 𝑢𝑢𝑖𝑖

(𝑛𝑛) = [𝜆𝜆; 𝑈𝑈(1), 𝑈𝑈(2), 𝑈𝑈(3), … , 𝑈𝑈(𝑛𝑛)] (5)

The factor matrices in tensor decomposition are constructed by placing the combinations of vectors
from the rank-one components as columns. Therefore, the factor matrices 𝑈𝑈𝑗𝑗, 𝑗𝑗 = 1,… , 𝑟𝑟 takes the
shape:

𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, … , 𝑢𝑢𝑟𝑟] (6)

Matrix operations. To comprehend the ideas and calculations of tensor decomposition, it is
essential to grasp these matrix operations:

1. Kronecker product. The Kronecker product expands the concept of the vector outer product
to matrices. This operation between two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑙𝑙) can be
described as follows:

U ⨂ V =
[

 𝑢𝑢11𝑉𝑉
𝑢𝑢21𝑉𝑉

𝑢𝑢12𝑉𝑉
𝑢𝑢22𝑉𝑉 ⋯

⋯
𝑢𝑢1𝐽𝐽𝑉𝑉
𝑢𝑢2𝐽𝐽𝑉𝑉

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝐼𝐼1𝑉𝑉 𝑢𝑢𝐼𝐼2𝑉𝑉 ⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑉𝑉]

(7)

= [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿−1 𝑢𝑢𝐽𝐽⨂ 𝑣𝑣𝐿𝐿]

2. Khatri-Rao product. The outcome of the Khatri-Rao product of two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and
𝑉𝑉 ∈ 𝑅𝑅(𝑘𝑘∗𝑗𝑗) is a matrix with the size (𝑖𝑖 ∗ 𝑟𝑟, 𝑗𝑗). It is defined by:

𝑈𝑈 ⊙ 𝑉𝑉 = [𝑢𝑢1⨂ 𝑣𝑣1 𝑢𝑢1⨂ 𝑣𝑣2 ⋯ 𝑢𝑢𝐾𝐾⨂ 𝑣𝑣𝐾𝐾] (8)

3. Hadamard product. A elementwise product of two same-sized matrices is known as the

Hadamard product. Given two matrices 𝑈𝑈 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) and 𝑉𝑉 ∈ 𝑅𝑅(𝑖𝑖∗𝑗𝑗) is of size (𝑖𝑖, 𝑗𝑗), their
Hadamard product is represented by 𝑈𝑈 ∗ 𝑉𝑉. The result is also matrix with the same size (𝑖𝑖, 𝑗𝑗)
and defined by:

 is of size (i, j), their Hadamard product is represented
by U*V. The result is also matrix with the same size (i, j) and defined by:

𝑈𝑈 ∗ 𝑉𝑉 ∶= [
𝑢𝑢11𝑣𝑣11 𝑢𝑢12𝑣𝑣12 ⋯ 𝑢𝑢1𝐽𝐽𝑣𝑣1𝐽𝐽
𝑢𝑢21𝑣𝑣21 𝑢𝑢22𝑣𝑣22 ⋯ 𝑢𝑢2𝐽𝐽𝑣𝑣2𝐽𝐽

⋮
𝑢𝑢𝐼𝐼1𝑣𝑣𝐼𝐼1

⋮
𝑢𝑢𝐼𝐼2𝑣𝑣𝐼𝐼2

⋱ ⋮
⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑣𝑣𝐼𝐼𝐽𝐽

] (9)

The approach used in this work significantly differs from standard link prediction methods that
proceed without dimensionality reduction: we use tensor decomposition to map 3-order tensor to
several 2-order tensors and then apply time-series forecasting methods to solve the task. The main
idea of this approach is based on the work of Acar et al. [16] and was extended with CP
decomposition algorithms. Firstly, we capture temporal trends present in the data using time factor
W derived from CP decomposition. Two alternative algorithms are used for CP decomposition:
Jennrich’s algorithm and ALS. Then we employ time-series forecasting methods to the temporal
factor matrix W to predict future points in time while node factors U and V remain unchanged.
Time-series forecasting was done using exponential smoothing and Long Short-Term Memory
(LSTM), which has been gaining popularity in making forecasts in recent years. Finally, we can
reconstruct the tensor with predicted links in the following T time instants by extracted factors U, V,
and extrapolated factor W. Figure 2 shows the link prediction proposed approach’s block diagram.

Figure 2 – The proposed approach’s block diagram

Canonical Polyadic Decomposition. CP decomposition was first proposed by Hitchcock [1]
in 1927. The fundamental idea of CP decomposition is to represent a tensor as a sum of rank-one
tensors, where each rank-one tensor corresponds to a latent factor. The 3-order CP decomposition
case is formalized as follows:
min‖𝑋𝑋 − �̂�𝑋‖ , where 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) and

 �̂�𝑋 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈, 𝑉𝑉, 𝑊𝑊⟧ (10)

This concept is illustrated in Figure 4.

 (9)

The approach used in this work significantly differs from standard link prediction methods that proceed
without dimensionality reduction: we use tensor decomposition to map 3-order tensor to several 2-order tensors
and then apply time-series forecasting methods to solve the task. The main idea of this approach is based on
the work of Acar et al. [16] and was extended with CP decomposition algorithms. Firstly, we capture temporal
trends present in the data using time factor W derived from CP decomposition. Two alternative algorithms are
used for CP decomposition: Jennrich’s algorithm and ALS. Then we employ time-series forecasting methods
to the temporal factor matrix W to predict future points in time while node factors U and V remain unchanged.
Time-series forecasting was done using exponential smoothing and Long Short-Term Memory (LSTM), which
has been gaining popularity in making forecasts in recent years. Finally, we can reconstruct the tensor with
predicted links in the following T time instants by extracted factors U, V, and extrapolated factor W. Figure 2
shows the link prediction proposed approach’s block diagram.

𝑈𝑈 ∗ 𝑉𝑉 ∶= [
𝑢𝑢11𝑣𝑣11 𝑢𝑢12𝑣𝑣12 ⋯ 𝑢𝑢1𝐽𝐽𝑣𝑣1𝐽𝐽
𝑢𝑢21𝑣𝑣21 𝑢𝑢22𝑣𝑣22 ⋯ 𝑢𝑢2𝐽𝐽𝑣𝑣2𝐽𝐽

⋮
𝑢𝑢𝐼𝐼1𝑣𝑣𝐼𝐼1

⋮
𝑢𝑢𝐼𝐼2𝑣𝑣𝐼𝐼2

⋱ ⋮
⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑣𝑣𝐼𝐼𝐽𝐽

] (9)

The approach used in this work significantly differs from standard link prediction methods that
proceed without dimensionality reduction: we use tensor decomposition to map 3-order tensor to
several 2-order tensors and then apply time-series forecasting methods to solve the task. The main
idea of this approach is based on the work of Acar et al. [16] and was extended with CP
decomposition algorithms. Firstly, we capture temporal trends present in the data using time factor
W derived from CP decomposition. Two alternative algorithms are used for CP decomposition:
Jennrich’s algorithm and ALS. Then we employ time-series forecasting methods to the temporal
factor matrix W to predict future points in time while node factors U and V remain unchanged.
Time-series forecasting was done using exponential smoothing and Long Short-Term Memory
(LSTM), which has been gaining popularity in making forecasts in recent years. Finally, we can
reconstruct the tensor with predicted links in the following T time instants by extracted factors U, V,
and extrapolated factor W. Figure 2 shows the link prediction proposed approach’s block diagram.

Figure 2 – The proposed approach’s block diagram

Canonical Polyadic Decomposition. CP decomposition was first proposed by Hitchcock [1]
in 1927. The fundamental idea of CP decomposition is to represent a tensor as a sum of rank-one
tensors, where each rank-one tensor corresponds to a latent factor. The 3-order CP decomposition
case is formalized as follows:
min‖𝑋𝑋 − �̂�𝑋‖ , where 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) and

 �̂�𝑋 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈, 𝑉𝑉, 𝑊𝑊⟧ (10)

This concept is illustrated in Figure 4.

Figure 2 – The proposed approach’s block diagram

Canonical Polyadic Decomposition. CP decomposition was first proposed by Hitchcock [1] in 1927. The
fundamental idea of CP decomposition is to represent a tensor as a sum of rank-one tensors, where each rank-
one tensor corresponds to a latent factor. The 3-order CP decomposition case is formalized as follows:

𝑈𝑈 ∗ 𝑉𝑉 ∶= [
𝑢𝑢11𝑣𝑣11 𝑢𝑢12𝑣𝑣12 ⋯ 𝑢𝑢1𝐽𝐽𝑣𝑣1𝐽𝐽
𝑢𝑢21𝑣𝑣21 𝑢𝑢22𝑣𝑣22 ⋯ 𝑢𝑢2𝐽𝐽𝑣𝑣2𝐽𝐽

⋮
𝑢𝑢𝐼𝐼1𝑣𝑣𝐼𝐼1

⋮
𝑢𝑢𝐼𝐼2𝑣𝑣𝐼𝐼2

⋱ ⋮
⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑣𝑣𝐼𝐼𝐽𝐽

] (9)

The approach used in this work significantly differs from standard link prediction methods that
proceed without dimensionality reduction: we use tensor decomposition to map 3-order tensor to
several 2-order tensors and then apply time-series forecasting methods to solve the task. The main
idea of this approach is based on the work of Acar et al. [16] and was extended with CP
decomposition algorithms. Firstly, we capture temporal trends present in the data using time factor
W derived from CP decomposition. Two alternative algorithms are used for CP decomposition:
Jennrich’s algorithm and ALS. Then we employ time-series forecasting methods to the temporal
factor matrix W to predict future points in time while node factors U and V remain unchanged.
Time-series forecasting was done using exponential smoothing and Long Short-Term Memory
(LSTM), which has been gaining popularity in making forecasts in recent years. Finally, we can
reconstruct the tensor with predicted links in the following T time instants by extracted factors U, V,
and extrapolated factor W. Figure 2 shows the link prediction proposed approach’s block diagram.

Figure 2 – The proposed approach’s block diagram

Canonical Polyadic Decomposition. CP decomposition was first proposed by Hitchcock [1]
in 1927. The fundamental idea of CP decomposition is to represent a tensor as a sum of rank-one
tensors, where each rank-one tensor corresponds to a latent factor. The 3-order CP decomposition
case is formalized as follows:
min‖𝑋𝑋 − �̂�𝑋‖ , where 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) and

 �̂�𝑋 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈, 𝑉𝑉, 𝑊𝑊⟧ (10)

This concept is illustrated in Figure 4.

and

𝑈𝑈 ∗ 𝑉𝑉 ∶= [
𝑢𝑢11𝑣𝑣11 𝑢𝑢12𝑣𝑣12 ⋯ 𝑢𝑢1𝐽𝐽𝑣𝑣1𝐽𝐽
𝑢𝑢21𝑣𝑣21 𝑢𝑢22𝑣𝑣22 ⋯ 𝑢𝑢2𝐽𝐽𝑣𝑣2𝐽𝐽

⋮
𝑢𝑢𝐼𝐼1𝑣𝑣𝐼𝐼1

⋮
𝑢𝑢𝐼𝐼2𝑣𝑣𝐼𝐼2

⋱ ⋮
⋯ 𝑢𝑢𝐼𝐼𝐽𝐽𝑣𝑣𝐼𝐼𝐽𝐽

] (9)

The approach used in this work significantly differs from standard link prediction methods that
proceed without dimensionality reduction: we use tensor decomposition to map 3-order tensor to
several 2-order tensors and then apply time-series forecasting methods to solve the task. The main
idea of this approach is based on the work of Acar et al. [16] and was extended with CP
decomposition algorithms. Firstly, we capture temporal trends present in the data using time factor
W derived from CP decomposition. Two alternative algorithms are used for CP decomposition:
Jennrich’s algorithm and ALS. Then we employ time-series forecasting methods to the temporal
factor matrix W to predict future points in time while node factors U and V remain unchanged.
Time-series forecasting was done using exponential smoothing and Long Short-Term Memory
(LSTM), which has been gaining popularity in making forecasts in recent years. Finally, we can
reconstruct the tensor with predicted links in the following T time instants by extracted factors U, V,
and extrapolated factor W. Figure 2 shows the link prediction proposed approach’s block diagram.

Figure 2 – The proposed approach’s block diagram

Canonical Polyadic Decomposition. CP decomposition was first proposed by Hitchcock [1]
in 1927. The fundamental idea of CP decomposition is to represent a tensor as a sum of rank-one
tensors, where each rank-one tensor corresponds to a latent factor. The 3-order CP decomposition
case is formalized as follows:
min‖𝑋𝑋 − �̂�𝑋‖ , where 𝑋𝑋 ∈ 𝑅𝑅(𝑖𝑖×𝑗𝑗×𝑘𝑘) and

 �̂�𝑋 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈, 𝑉𝑉, 𝑊𝑊⟧ (10)

This concept is illustrated in Figure 4.

This concept is illustrated in Figure 4.

МАТЕМАТИЧЕСКИЕ НАУКИ

97

КОМПЬЮТЕРНЫЕ НАУКИ

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15)

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-one
tensors. The matricized versions of (10) are:

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15)

 (11)

In general case:

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15)

 (12)

where:

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and W in (10).
This straightforward approach was first disclosed in a paper by Harshman [6], with the author crediting Dr.
Robert Jennrich. When the tensor components are guaranteed to be orthogonal, this algorithm stays effective.

1.	

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15)

, choose a random unit-length (or Gaussian)

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15)

 and get

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15)

:

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15)

 (14)

Where Xa and Xb can be formulated as follows:

Figure 3 – Canonical Polyadic Decomposition (CP).

The factor matrices in CP decomposition are composed of the merged vectors derived from the rank-
one tensors. The matricized versions of (10) are:

�̂�𝑋(1) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇

�̂�𝑋(2) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑉𝑉𝑇𝑇 (11)

�̂�𝑋(3) = (𝑊𝑊 ⊙ 𝑉𝑉)𝑊𝑊𝑇𝑇

In general case:

�̂�𝑋(𝑘𝑘) = Λ(𝑈𝑈(𝑛𝑛) ⊙ … ⊙ 𝑈𝑈(𝑘𝑘+1) ⊙ 𝑈𝑈(𝑘𝑘−1) ⊙ … ⊙ 𝑈𝑈(1))𝑈𝑈(𝑘𝑘)𝑇𝑇 (12)

where: Λ = diag(λ)

The CP decomposition can be computed using a variety of algorithms. Here, we concentrate on the
Alternating Least Squares (ALS) and Jennrich’s algorithm.

Jennrich’s Algorithm. Using Jennrich's algorithm, we can recover the factor matrices U, V, and
W in (10). This straightforward approach was first disclosed in a paper by Harshman [6], with the
author crediting Dr. Robert Jennrich. When the tensor components are guaranteed to be orthogonal,
this algorithm stays effective.

1. 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑝𝑝, choose a random unit-length (or Gaussian) 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅𝑝𝑝 and get 𝑋𝑋 𝑎𝑎, 𝑋𝑋 𝑏𝑏:

𝑋𝑋 𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (13)

𝑋𝑋 𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋
𝑝𝑝

𝑖𝑖=1
(: , ∶, 𝑖𝑖) (14)

Where 𝑋𝑋 𝑎𝑎 and 𝑋𝑋 𝑏𝑏 can be formulated as follows:

𝑋𝑋 𝑎𝑎 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉 (15) (15)

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)

 (16)

1.	 Compute the eigen-decomposition of

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)

. Where

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)

 and

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)

 and we can get:

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)

 (17)

ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №2 (65), 2023

98

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)

 (18)

where the columns of U and V are ui and vi respectively.
2.	 Given ui and vi, we can solve the linear system of equations to find wi and finally get the tensor factor

matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing CP
decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and then optimize
the non-fixed factor matrix. Each factor matrix goes through this process repeatedly until a stopping criterion
is satisfied, signifying convergence or obtaining the required level of approximation. The steps of the ALS
algorithm for 3-order tensor:

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)

 (19)

The optimal solution for the minimization is obtained by:

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21)

 (20)

Exponential smoothing. An exponential smoothing time series forecasting method uses weighted averages
of previous observations. Recent data points are given more weight while the significance of earlier observations
is gradually reduced. An exponential decay factor is used to produce this weighting technique, assigning more
weight to recent observations. The formula for exponential smoothing is as follows:

𝑋𝑋 𝑏𝑏 = ∑(𝑢𝑢𝑖𝑖 ∘
𝑟𝑟

𝑖𝑖=1
𝑣𝑣𝑖𝑖)〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉 (16)

2. Compute the eigen-decomposition of 𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)†
. Where 𝑋𝑋 𝑎𝑎 = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇 and

𝑋𝑋 𝑏𝑏 = 𝑈𝑈𝐷𝐷𝑏𝑏𝑉𝑉𝑇𝑇, 𝐷𝐷𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑎𝑎〉}𝑖𝑖), 𝐷𝐷𝑏𝑏 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑({〈𝑤𝑤𝑖𝑖, 𝑏𝑏〉}𝑖𝑖) and we can get:

𝑋𝑋 𝑎𝑎(𝑋𝑋 𝑏𝑏)† = 𝑈𝑈𝐷𝐷𝑎𝑎𝑉𝑉𝑇𝑇(𝑉𝑉𝑇𝑇)†𝐷𝐷𝑏𝑏
†𝑈𝑈† = 𝑈𝑈𝐷𝐷𝑎𝑎𝐷𝐷𝑏𝑏

† (17)

𝑋𝑋 𝑏𝑏(𝑋𝑋 𝑎𝑎)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝑈𝑈𝑈𝑈†𝐷𝐷𝑎𝑎
†(𝑉𝑉𝑇𝑇)† = 𝑉𝑉𝑇𝑇𝐷𝐷𝑏𝑏𝐷𝐷𝑎𝑎

†(𝑉𝑉𝑇𝑇)† (18)

where the columns of U and V are 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 respectively.

3. Given 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖, we can solve the linear system of equations to find 𝑤𝑤𝑖𝑖 and finally get the
tensor factor matrices U, V, W.

Alternating Least Squares Algorithm. The ALS algorithm is an efficient approach to computing
CP decomposition. The main idea of this algorithm is to fix all factor matrices aside from one and
then optimize the non-fixed factor matrix. Each factor matrix goes through this process repeatedly
until a stopping criterion is satisfied, signifying convergence or obtaining the required level of
approximation. The steps of the ALS algorithm for 3-order tensor:

𝑈𝑈 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑈𝑈

 ‖𝑋𝑋 (1) − (𝑊𝑊 ⊙ 𝑉𝑉)𝑈𝑈𝑇𝑇‖

𝑉𝑉 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑉𝑉

 ‖𝑋𝑋 (2) − (𝑊𝑊 ⊙ 𝑈𝑈)𝑉𝑉𝑇𝑇‖ (19)

𝑊𝑊 ← 𝑎𝑎𝑎𝑎𝑑𝑑min
𝑊𝑊

 ‖𝑋𝑋 (3) − (𝑉𝑉 ⊙ 𝑈𝑈)𝑊𝑊𝑇𝑇‖

The optimal solution for the minimization is obtained by:

�̂�𝑈 = 𝑋𝑋 (1)[(𝑊𝑊 ⊙ 𝑉𝑉)𝑇𝑇]† = 𝑋𝑋(1)(𝑊𝑊 ⊙ 𝑉𝑉)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑉𝑉𝑇𝑇𝑉𝑉)†

�̂�𝑉 = 𝑋𝑋 (2)[(𝑊𝑊 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(2)(𝑊𝑊 ⊙ 𝑈𝑈)(𝑊𝑊𝑇𝑇𝑊𝑊 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)† (20)

�̂�𝑊 = 𝑋𝑋 (3)[(𝑉𝑉 ⊙ 𝑈𝑈)𝑇𝑇]† = 𝑋𝑋(3)(𝑉𝑉 ⊙ 𝑈𝑈)(𝑉𝑉𝑇𝑇𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇𝑈𝑈)†

Exponential smoothing. An exponential smoothing time series forecasting method uses
weighted averages of previous observations. Recent data points are given more weight while the
significance of earlier observations is gradually reduced. An exponential decay factor is used to
produce this weighting technique, assigning more weight to recent observations. The formula for
exponential smoothing is as follows:

𝑠𝑠𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑠𝑠𝑡𝑡−1 (21) (21)

where 𝛽𝛽 - smoothing parameter, 𝑠𝑠𝑡𝑡 – smoothed value, 𝑥𝑥𝑡𝑡 - observed value

In our approach for link prediction, we use simple exponential smoothing to predict future values of
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for
factor matrix W can be expressed as:

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ + 𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22)

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 , 𝑇𝑇 – time period to predict

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating
the potential links that may be formed within L timestamps, as indicated by formula (23):

�̂�𝑋 𝐿𝐿+𝑇𝑇 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿+𝑇𝑇⟧ (23)

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning
activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other
neural network designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method
for temporal factor matrix W retrieved from CP decomposition. BiLSTM analyzes the historical
context of the time series by performing a forward pass on the historical observations. By examining
the future observations made through the backward pass, it also takes the future context into
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data
by merging these two information streams. To maximize prediction accuracy by reducing the
difference between the expected values and the actual observations, the model learns to modify its
parameters throughout training. The backward pass aids in learning long-term dependencies and
identifying future trends while also providing helpful information for gradient computing. The
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with
BiLSTM:

1. CP decomposition of observed data with rank-R
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧
3. Train each column of the temporal factor 𝑊𝑊𝐿𝐿 with BiLSTM and predict 𝑊𝑊𝐿𝐿+𝑡𝑡 , where 𝑡𝑡 =

1, . . , 𝑇𝑇
4. Concatenate 𝑊𝑊𝐿𝐿 and 𝑊𝑊𝐿𝐿+𝑇𝑇
5. Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup.

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage,
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the
second dimension (j) represents the item node, and the third dimension (k) captures the date of
interaction. For evaluation, we split the data into a training set and a test set, with 80% of the data
allocated for training and 20% for testing.

- smoothing parameter, st – smoothed value, xt- observed value
In our approach for link prediction, we use simple exponential smoothing to predict future values of the

temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for factor matrix W
can be expressed as:

where 𝛽𝛽 - smoothing parameter, 𝑠𝑠𝑡𝑡 – smoothed value, 𝑥𝑥𝑡𝑡 - observed value

In our approach for link prediction, we use simple exponential smoothing to predict future values of
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for
factor matrix W can be expressed as:

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ + 𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22)

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 , 𝑇𝑇 – time period to predict

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating
the potential links that may be formed within L timestamps, as indicated by formula (23):

�̂�𝑋 𝐿𝐿+𝑇𝑇 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿+𝑇𝑇⟧ (23)

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning
activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other
neural network designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method
for temporal factor matrix W retrieved from CP decomposition. BiLSTM analyzes the historical
context of the time series by performing a forward pass on the historical observations. By examining
the future observations made through the backward pass, it also takes the future context into
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data
by merging these two information streams. To maximize prediction accuracy by reducing the
difference between the expected values and the actual observations, the model learns to modify its
parameters throughout training. The backward pass aids in learning long-term dependencies and
identifying future trends while also providing helpful information for gradient computing. The
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with
BiLSTM:

1. CP decomposition of observed data with rank-R
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧
3. Train each column of the temporal factor 𝑊𝑊𝐿𝐿 with BiLSTM and predict 𝑊𝑊𝐿𝐿+𝑡𝑡 , where 𝑡𝑡 =

1, . . , 𝑇𝑇
4. Concatenate 𝑊𝑊𝐿𝐿 and 𝑊𝑊𝐿𝐿+𝑇𝑇
5. Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup.

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage,
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the
second dimension (j) represents the item node, and the third dimension (k) captures the date of
interaction. For evaluation, we split the data into a training set and a test set, with 80% of the data
allocated for training and 20% for testing.

where 𝛽𝛽 - smoothing parameter, 𝑠𝑠𝑡𝑡 – smoothed value, 𝑥𝑥𝑡𝑡 - observed value

In our approach for link prediction, we use simple exponential smoothing to predict future values of
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for
factor matrix W can be expressed as:

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ + 𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22)

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 , 𝑇𝑇 – time period to predict

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating
the potential links that may be formed within L timestamps, as indicated by formula (23):

�̂�𝑋 𝐿𝐿+𝑇𝑇 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿+𝑇𝑇⟧ (23)

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning
activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other
neural network designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method
for temporal factor matrix W retrieved from CP decomposition. BiLSTM analyzes the historical
context of the time series by performing a forward pass on the historical observations. By examining
the future observations made through the backward pass, it also takes the future context into
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data
by merging these two information streams. To maximize prediction accuracy by reducing the
difference between the expected values and the actual observations, the model learns to modify its
parameters throughout training. The backward pass aids in learning long-term dependencies and
identifying future trends while also providing helpful information for gradient computing. The
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with
BiLSTM:

1. CP decomposition of observed data with rank-R
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧
3. Train each column of the temporal factor 𝑊𝑊𝐿𝐿 with BiLSTM and predict 𝑊𝑊𝐿𝐿+𝑡𝑡 , where 𝑡𝑡 =

1, . . , 𝑇𝑇
4. Concatenate 𝑊𝑊𝐿𝐿 and 𝑊𝑊𝐿𝐿+𝑇𝑇
5. Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup.

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage,
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the
second dimension (j) represents the item node, and the third dimension (k) captures the date of
interaction. For evaluation, we split the data into a training set and a test set, with 80% of the data
allocated for training and 20% for testing.

where 𝛽𝛽 - smoothing parameter, 𝑠𝑠𝑡𝑡 – smoothed value, 𝑥𝑥𝑡𝑡 - observed value

In our approach for link prediction, we use simple exponential smoothing to predict future values of
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for
factor matrix W can be expressed as:

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ + 𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22)

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 , 𝑇𝑇 – time period to predict

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating
the potential links that may be formed within L timestamps, as indicated by formula (23):

�̂�𝑋 𝐿𝐿+𝑇𝑇 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿+𝑇𝑇⟧ (23)

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning
activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other
neural network designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method
for temporal factor matrix W retrieved from CP decomposition. BiLSTM analyzes the historical
context of the time series by performing a forward pass on the historical observations. By examining
the future observations made through the backward pass, it also takes the future context into
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data
by merging these two information streams. To maximize prediction accuracy by reducing the
difference between the expected values and the actual observations, the model learns to modify its
parameters throughout training. The backward pass aids in learning long-term dependencies and
identifying future trends while also providing helpful information for gradient computing. The
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with
BiLSTM:

1. CP decomposition of observed data with rank-R
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧
3. Train each column of the temporal factor 𝑊𝑊𝐿𝐿 with BiLSTM and predict 𝑊𝑊𝐿𝐿+𝑡𝑡 , where 𝑡𝑡 =

1, . . , 𝑇𝑇
4. Concatenate 𝑊𝑊𝐿𝐿 and 𝑊𝑊𝐿𝐿+𝑇𝑇
5. Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup.

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage,
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the
second dimension (j) represents the item node, and the third dimension (k) captures the date of
interaction. For evaluation, we split the data into a training set and a test set, with 80% of the data
allocated for training and 20% for testing.

 (22)

Where:

where 𝛽𝛽 - smoothing parameter, 𝑠𝑠𝑡𝑡 – smoothed value, 𝑥𝑥𝑡𝑡 - observed value

In our approach for link prediction, we use simple exponential smoothing to predict future values of
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for
factor matrix W can be expressed as:

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ + 𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22)

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 , 𝑇𝑇 – time period to predict

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating
the potential links that may be formed within L timestamps, as indicated by formula (23):

�̂�𝑋 𝐿𝐿+𝑇𝑇 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿+𝑇𝑇⟧ (23)

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning
activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other
neural network designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method
for temporal factor matrix W retrieved from CP decomposition. BiLSTM analyzes the historical
context of the time series by performing a forward pass on the historical observations. By examining
the future observations made through the backward pass, it also takes the future context into
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data
by merging these two information streams. To maximize prediction accuracy by reducing the
difference between the expected values and the actual observations, the model learns to modify its
parameters throughout training. The backward pass aids in learning long-term dependencies and
identifying future trends while also providing helpful information for gradient computing. The
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with
BiLSTM:

1. CP decomposition of observed data with rank-R
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧
3. Train each column of the temporal factor 𝑊𝑊𝐿𝐿 with BiLSTM and predict 𝑊𝑊𝐿𝐿+𝑡𝑡 , where 𝑡𝑡 =

1, . . , 𝑇𝑇
4. Concatenate 𝑊𝑊𝐿𝐿 and 𝑊𝑊𝐿𝐿+𝑇𝑇
5. Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup.

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage,
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the
second dimension (j) represents the item node, and the third dimension (k) captures the date of
interaction. For evaluation, we split the data into a training set and a test set, with 80% of the data
allocated for training and 20% for testing.

 – time period to predict
By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating the

potential links that may be formed within L timestamps, as indicated by formula (23):

where 𝛽𝛽 - smoothing parameter, 𝑠𝑠𝑡𝑡 – smoothed value, 𝑥𝑥𝑡𝑡 - observed value

In our approach for link prediction, we use simple exponential smoothing to predict future values of
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for
factor matrix W can be expressed as:

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ + 𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22)

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 , 𝑇𝑇 – time period to predict

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating
the potential links that may be formed within L timestamps, as indicated by formula (23):

�̂�𝑋 𝐿𝐿+𝑇𝑇 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿+𝑇𝑇⟧ (23)

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning
activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other
neural network designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method
for temporal factor matrix W retrieved from CP decomposition. BiLSTM analyzes the historical
context of the time series by performing a forward pass on the historical observations. By examining
the future observations made through the backward pass, it also takes the future context into
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data
by merging these two information streams. To maximize prediction accuracy by reducing the
difference between the expected values and the actual observations, the model learns to modify its
parameters throughout training. The backward pass aids in learning long-term dependencies and
identifying future trends while also providing helpful information for gradient computing. The
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with
BiLSTM:

1. CP decomposition of observed data with rank-R
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧
3. Train each column of the temporal factor 𝑊𝑊𝐿𝐿 with BiLSTM and predict 𝑊𝑊𝐿𝐿+𝑡𝑡 , where 𝑡𝑡 =

1, . . , 𝑇𝑇
4. Concatenate 𝑊𝑊𝐿𝐿 and 𝑊𝑊𝐿𝐿+𝑇𝑇
5. Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup.

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage,
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the
second dimension (j) represents the item node, and the third dimension (k) captures the date of
interaction. For evaluation, we split the data into a training set and a test set, with 80% of the data
allocated for training and 20% for testing.

 (23)

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning activity
patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other neural network

МАТЕМАТИЧЕСКИЕ НАУКИ

99

КОМПЬЮТЕРНЫЕ НАУКИ

designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method for temporal factor
matrix W retrieved from CP decomposition. BiLSTM analyzes the historical context of the time series by
performing a forward pass on the historical observations. By examining the future observations made through
the backward pass, it also takes the future context into account. BiLSTM can offer a more thorough insight into
the temporal patterns and trends in the data by merging these two information streams. To maximize prediction
accuracy by reducing the difference between the expected values and the actual observations, the model learns
to modify its parameters throughout training. The backward pass aids in learning long-term dependencies
and identifying future trends while also providing helpful information for gradient computing. The employed
architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the ADAM optimizer. The
algorithm of temporal link prediction via tensor decomposition with BiLSTM:

1.	 CP decomposition of observed data with rank-R
2.	 Get factor matrices

where 𝛽𝛽 - smoothing parameter, 𝑠𝑠𝑡𝑡 – smoothed value, 𝑥𝑥𝑡𝑡 - observed value

In our approach for link prediction, we use simple exponential smoothing to predict future values of
the temporal factor matrix W of decomposed tensor. The formula of exponential smoothing for
factor matrix W can be expressed as:

𝑊𝑊𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑡𝑡,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)𝑊𝑊𝑡𝑡−1,𝑖𝑖 + 𝛽𝛽(1 − 𝛽𝛽)2𝑊𝑊𝑡𝑡−2,𝑖𝑖 + ⋯ + 𝛽𝛽(1 − 𝛽𝛽)3𝑊𝑊𝑡𝑡−3,𝑖𝑖 +
… + (1 − 𝛽𝛽)𝑖𝑖𝑊𝑊1,𝑖𝑖 (22)

Where: 𝑖𝑖 = 1, … , 𝑅𝑅 and 0 < 𝛽𝛽 < 1, 𝑡𝑡 = 1, . . , 𝐿𝐿 + 𝑇𝑇 , 𝑇𝑇 – time period to predict

By utilizing the extrapolated factor matrix W, we can reconstruct the observed tensor by estimating
the potential links that may be formed within L timestamps, as indicated by formula (23):

�̂�𝑋 𝐿𝐿+𝑇𝑇 = ∑ 𝑢𝑢𝑖𝑖 ∘ 𝑣𝑣𝑖𝑖 ∘ 𝑤𝑤𝑖𝑖

𝑟𝑟

𝑖𝑖=1
= ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿+𝑇𝑇⟧ (23)

Bidirectional Long Short-Term Memory. LSTM is an effective and versatile tool for learning
activity patterns. It has three layers: an input layer, a hidden layer, and an output layer, just like other
neural network designs. In our study, we use Bidirectional LSTM(BiLSTM) as a forecasting method
for temporal factor matrix W retrieved from CP decomposition. BiLSTM analyzes the historical
context of the time series by performing a forward pass on the historical observations. By examining
the future observations made through the backward pass, it also takes the future context into
account. BiLSTM can offer a more thorough insight into the temporal patterns and trends in the data
by merging these two information streams. To maximize prediction accuracy by reducing the
difference between the expected values and the actual observations, the model learns to modify its
parameters throughout training. The backward pass aids in learning long-term dependencies and
identifying future trends while also providing helpful information for gradient computing. The
employed architecture has two hidden BiLSTM layers, and the number of epochs is 300 with the
ADAM optimizer. The algorithm of temporal link prediction via tensor decomposition with
BiLSTM:

1. CP decomposition of observed data with rank-R
2. Get factor matrices ⟦𝑈𝑈𝐿𝐿, 𝑉𝑉𝐿𝐿, 𝑊𝑊𝐿𝐿⟧
3. Train each column of the temporal factor 𝑊𝑊𝐿𝐿 with BiLSTM and predict 𝑊𝑊𝐿𝐿+𝑡𝑡 , where 𝑡𝑡 =

1, . . , 𝑇𝑇
4. Concatenate 𝑊𝑊𝐿𝐿 and 𝑊𝑊𝐿𝐿+𝑇𝑇
5. Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup.

This dataset represents a user-item time-evolving network of Amazon. After the preprocessing stage,
the data is represented as a 3-order tensor. The first dimension (i) corresponds to the user node, the
second dimension (j) represents the item node, and the third dimension (k) captures the date of
interaction. For evaluation, we split the data into a training set and a test set, with 80% of the data
allocated for training and 20% for testing.

3.	 Train each column of the temporal factor WL with BiLSTM and predict WL+t, where t=1,..,T
4.	 Concatenate WL and WL+t
5.	 Reconstruct CP decomposition with formula (23)

Results and Discussion
The dataset we examine for temporal link prediction is downloaded from WSDM 2022 Cup. This dataset

represents a user-item time-evolving network of Amazon. After the preprocessing stage, the data is represented
as a 3-order tensor. The first dimension (i) corresponds to the user node, the second dimension (j) represents the
item node, and the third dimension (k) captures the date of interaction. For evaluation, we split the data into a
training set and a test set, with 80% of the data allocated for training and 20% for testing.

We use the area under the receiver operating characteristic curve (AUC) as a metric to evaluate the
performance of our methods in temporal link prediction. AUC is selected due to its robustness in handling
imbalanced data, which is crucial in our case as the training dataset contains a small fraction (less than 0.5%) of
actual links compared to all possible links. Firstly, in order to assess the performance of tensor decomposition
and its reconstruction, only the CP decomposition part of the model was evaluated.

We use the area under the receiver operating characteristic curve (AUC) as a metric to evaluate
the performance of our methods in temporal link prediction. AUC is selected due to its robustness in
handling imbalanced data, which is crucial in our case as the training dataset contains a small
fraction (less than 0.5%) of actual links compared to all possible links. Firstly, in order to assess the
performance of tensor decomposition and its reconstruction, only the CP decomposition part of the
model was evaluated.

(a) Jennrich’s algorithm

(b) ALS algorithm

 Figure 4 – AUC and ROC of the CP decomposition algorithms

Figure 4 displays the ROC curves, which provide a comprehensive view of the tensor
decomposition performance. It can be seen that Jennrich’s algorithm demonstrates slightly lower
performance than the ALS algorithm for 0.01 (0.95 vs. 0.96).

In Figure 5, the bar chart provides valuable insights into the link prediction performance
using AUC as the evaluation metric. Among all the methods, Jennrich’s CP decomposition algorithm
with BiLSTM algorithm achieves the highest AUC score (0.95). However, the ALS algorithm with
the same forecasting model yields the lowest AUC score (0.83). The ROC of these models is
presented in Figure 8. But with exponential smoothing in the prediction part, the AUC score of the
method increases by 0.5 (0.88). With two alternative forecasting methods in the prediction part,
Jennrich’s algorithm performs exceptionally well in link prediction with the time-evolving dataset. It
can be assumed that.

Figure 4 – AUC and ROC of the CP decomposition algorithms

Figure 4 displays the ROC curves, which provide a comprehensive view of the tensor decomposition
performance. It can be seen that Jennrich’s algorithm demonstrates slightly lower performance than the ALS
algorithm for 0.01 (0.95 vs. 0.96).

In Figure 5, the bar chart provides valuable insights into the link prediction performance using AUC as the
evaluation metric. Among all the methods, Jennrich’s CP decomposition algorithm with BiLSTM algorithm
achieves the highest AUC score (0.95). However, the ALS algorithm with the same forecasting model yields the
lowest AUC score (0.83). The ROC of these models is presented in Figure 8. But with exponential smoothing
in the prediction part, the AUC score of the method increases by 0.5 (0.88). With two alternative forecasting
methods in the prediction part, Jennrich’s algorithm performs exceptionally well in link prediction with the
time-evolving dataset. It can be assumed that.

ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №2 (65), 2023

100

We use the area under the receiver operating characteristic curve (AUC) as a metric to evaluate
the performance of our methods in temporal link prediction. AUC is selected due to its robustness in
handling imbalanced data, which is crucial in our case as the training dataset contains a small
fraction (less than 0.5%) of actual links compared to all possible links. Firstly, in order to assess the
performance of tensor decomposition and its reconstruction, only the CP decomposition part of the
model was evaluated.

(a) Jennrich’s algorithm

(b) ALS algorithm

 Figure 4 – AUC and ROC of the CP decomposition algorithms

Figure 4 displays the ROC curves, which provide a comprehensive view of the tensor
decomposition performance. It can be seen that Jennrich’s algorithm demonstrates slightly lower
performance than the ALS algorithm for 0.01 (0.95 vs. 0.96).

In Figure 5, the bar chart provides valuable insights into the link prediction performance
using AUC as the evaluation metric. Among all the methods, Jennrich’s CP decomposition algorithm
with BiLSTM algorithm achieves the highest AUC score (0.95). However, the ALS algorithm with
the same forecasting model yields the lowest AUC score (0.83). The ROC of these models is
presented in Figure 8. But with exponential smoothing in the prediction part, the AUC score of the
method increases by 0.5 (0.88). With two alternative forecasting methods in the prediction part,
Jennrich’s algorithm performs exceptionally well in link prediction with the time-evolving dataset. It
can be assumed that.

Figure 5 – AUC of link prediction models

Jennrich’s CP decomposition effectively retrieves latent temporal trends from an observed tensor to the
temporal factor matrix of the CP decomposition where the prediction part is held.

Figure 5 – AUC of link prediction models

Jennrich’s CP decomposition effectively retrieves latent temporal trends from an observed tensor to
the temporal factor matrix of the CP decomposition where the prediction part is held.

(a) 𝑇𝑇 = 1

(b) 𝑇𝑇 = 30

Figure 6 – AUC and ROC of the Jennrich’algorithm with exponential smoothing

The impact of increasing T on the change in AUC is illustrated in separate graphics, as
shown in Figure 6-7. The outcomes measured by ROC and AUC of Jennrich’s algorithm with
exponential smoothing are depicted in Figure 6. The AUC of this model decreases from 0.93 to 0.88
when T is increased from 1 to 30, indicating a relatively lower performance as the time period
increases. In Figure 7, a similar assumption can be applied to the results of the ALS decomposition
with a simple exponential smoothing as a forecasting method.

(a) 𝑇𝑇 = 1

(b) 𝑇𝑇 = 30

Figure 7 – The ALS algorithm with exponential smoothing (AUC and ROC)

Figure 6 – AUC and ROC of the Jennrich’algorithm with exponential smoothing

The impact of increasing T on the change in AUC is illustrated in separate graphics, as shown in Figure 6-7.
The outcomes measured by ROC and AUC of Jennrich’s algorithm with exponential smoothing are depicted
in Figure 6. The AUC of this model decreases from 0.93 to 0.88 when T is increased from 1 to 30, indicating a
relatively lower performance as the time period increases. In Figure 7, a similar assumption can be applied to
the results of the ALS decomposition with a simple exponential smoothing as a forecasting method.

Figure 5 – AUC of link prediction models

Jennrich’s CP decomposition effectively retrieves latent temporal trends from an observed tensor to
the temporal factor matrix of the CP decomposition where the prediction part is held.

(a) 𝑇𝑇 = 1

(b) 𝑇𝑇 = 30

Figure 6 – AUC and ROC of the Jennrich’algorithm with exponential smoothing

The impact of increasing T on the change in AUC is illustrated in separate graphics, as
shown in Figure 6-7. The outcomes measured by ROC and AUC of Jennrich’s algorithm with
exponential smoothing are depicted in Figure 6. The AUC of this model decreases from 0.93 to 0.88
when T is increased from 1 to 30, indicating a relatively lower performance as the time period
increases. In Figure 7, a similar assumption can be applied to the results of the ALS decomposition
with a simple exponential smoothing as a forecasting method.

(a) 𝑇𝑇 = 1

(b) 𝑇𝑇 = 30

Figure 7 – The ALS algorithm with exponential smoothing (AUC and ROC)

Figure 7 – The ALS algorithm with exponential smoothing (AUC and ROC)

МАТЕМАТИЧЕСКИЕ НАУКИ

101

КОМПЬЮТЕРНЫЕ НАУКИ

(a) Jennrich’s algorithm

(b) ALS algorithm

Figure 8 – The CP algorithms with BiLSTM (AUC and ROC)

Conclusion
In this work, we present a method for link prediction in large-scale time-evolving networks,

which completely differs from standard graph-based methods. This method is a combination of
tensor decomposition and time-series forecasting. The dataset that we used to evaluate our approach
is derived from WSDM. In data preprocessing, the dataset is converted to a three-way tensor. In the
tensor decomposition part, the observed tensor is decomposed to two-way tensors, which are factor
matrices of each mode that give a relative pattern of the network. As a tensor decomposition model,
we used two alternative algorithms of CP decomposition such as Jennrich’s algorithm and the ALS
algorithm. The results show that Jennrich’s algorithm is more efficient in problems considering the
temporal trend. In forecasting, we utilized the third mode factor matrix of decomposed tensor and
predicted new links via BiLSTM and exponential smoothing. By comparing the AUC of each
method, we conclude that the combination of the Jennrich algorithm and BiLSTM shows the best
performance. In future work, we aim to investigate other decomposition algorithms in link
prediction, such as Tucker and Tensor Train decomposition methods with a dataset presented as a
multi-way tensor.

References

1 Hitchcock Frank L. (1927) The expression of a tensor or a polyadic as a sum of products,
Journal of Mathematics and Physics, 6.1-4, pp. 164–189.

2 Sidiropoulos Nicholas D. et al. (2017) Tensor decomposition for signal processing and
machine learning, IEEE Transactions on Signal Processing, 65.13, pp. 3551–3582.

3 Kolda Tamara G. and Brett W. Bader (2009) Tensor decompositions and applications,
SIAM review, 51.3, pp. 455–500.

4 Tucker, Ledyard R. (1966) Some mathematical notes on three-mode factor analysis,
Psychometrika, 31.3: 279–311.

Figure 8 – The CP algorithms with BiLSTM (AUC and ROC)

Conclusion
In this work, we present a method for link prediction in large-scale time-evolving networks, which

completely differs from standard graph-based methods. This method is a combination of tensor decomposition
and time-series forecasting. The dataset that we used to evaluate our approach is derived from WSDM. In data
preprocessing, the dataset is converted to a three-way tensor. In the tensor decomposition part, the observed
tensor is decomposed to two-way tensors, which are factor matrices of each mode that give a relative pattern
of the network. As a tensor decomposition model, we used two alternative algorithms of CP decomposition
such as Jennrich’s algorithm and the ALS algorithm. The results show that Jennrich’s algorithm is more
efficient in problems considering the temporal trend. In forecasting, we utilized the third mode factor matrix
of decomposed tensor and predicted new links via BiLSTM and exponential smoothing. By comparing the
AUC of each method, we conclude that the combination of the Jennrich algorithm and BiLSTM shows the best
performance. In future work, we aim to investigate other decomposition algorithms in link prediction, such as
Tucker and Tensor Train decomposition methods with a dataset presented as a multi-way tensor.

References
1 Hitchcock Frank L. (1927) The expression of a tensor or a polyadic as a sum of products, Journal of Mathematics

and Physics, 6.1-4, pp. 164–189.
2 Sidiropoulos Nicholas D. et al. (2017) Tensor decomposition for signal processing and machine learning, IEEE

Transactions on Signal Processing, 65.13, pp. 3551–3582.
3 Kolda Tamara G. and Brett W. Bader (2009) Tensor decompositions and applications, SIAM review, 51.3, pp.

455–500.
4 Tucker, Ledyard R. (1966) Some mathematical notes on three-mode factor analysis, Psychometrika, 31.3: 279–311.
5 Carroll, J. Douglas and Jih-Jie Chang (1970) Analysis of individual differences in multidimensional scaling via an

N-way generalization of “Eckart-Young” decomposition, Psychometrika 35.3, pp. 283–319.
6 Harshman, Richard A. (1970) Foundations of the PARAFAC procedure: Models and conditions for an" explanatory"

multimodal factor analysis, pp. 1–84.
7 Bader, Brett W., Richard A. Harshman and Tamara G. Kolda. Temporal analysis of semantic graphs using

ASALSAN, Seventh IEEE international conference on data mining (ICDM 2007).
8 Nickel, Maximilian, Lorenzo Rosasco and Tomaso Poggio. (2016) Holographic embeddings of knowledge graphs,

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1.
9 Ma, Yunpu, Volker Tresp and Erik A. Daxberger. (2019) Embedding models for episodic knowledge graphs,

Journal of Web Semantics 59: 100490.
10 Acar E., Dunlavy D.M., Kolda T.G. (2009) Link prediction on evolving data using matrix and tensor factorizations,

IEEE International conference on data mining workshops, pp. 262–269.
11 Ermiş, Beyza, Evrim Acar and A. Taylan Cemgil. (2015) Link prediction in heterogeneous data via generalized

coupled tensor factorization, Data Mining and Knowledge Discovery, 29, pp. 203–236.
12 Xiong, Liang et al. (2010) Temporal collaborative filtering with Bayesian probabilistic tensor factorization,

Proceedings of the 2010 SIAM international conference on data mining, Society for Industrial and Applied Mathematics.
13 Gao S., Denoyer L., Gallinari P. (2010) Tensor decomposition model for link prediction in multi-relational

networks, 2nd IEEE International Conference on Network Infrastructure and Digital Content, IEEE, pp. 298–302.

ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №2 (65), 2023

102

14 Chi, Eric C. and Tamara G. Kolda. (2012) On tensors, sparsity, and nonnegative factorizations, SIAM Journal on
Matrix Analysis and Applications, 33.4, pp. 1272–1299.

15 de Araujo, Miguel Ramos, Pedro Manuel Pinto Ribeiro and Christos Faloutsos. Tensorcast: Forecasting with
context using coupled tensors (best paper award), 2017 IEEE International Conference on Data Mining (ICDM).

Information about author

Aliturliyeva Albina Erbolatovna
Master’s student in Data Science, Kazakh-British Technical University, 59, Tole bi street, Almaty,

050000, Kazakhstan
 ORCID ID 0009-0002-6758-5608
E-mail: a_aliturliyeva@kbtu.kz

Автор туралы мәлімет

Алитурлиева Альбина Ерболатовна
 Деректер ғылымының магистранты, Қазақстан-Британ техникалық университеті, Төле би көш.,

59, 050000, Алматы қ., Қазақстан
ORCID ID 0009-0002-6758-5608
E-mail: a_aliturliyeva@kbtu.kz

Информация об авторе

Алитурлиева Альбина Ерболатовна
Магистр наук о данных, Казахстанско-Британский технический университет, ул. Толе би, 59,

050000, г. Алматы, Казахстан
ORCID ID 0009-0002-6758-5608
E-mail: a_aliturliyeva@kbtu.kz

