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INDEX SETS OF SELF-FULL LINEAR ORDERS ISOMORPHIC 
TO SOME STANDARD ORDERS

Abstract. The work of Bazhenov N.A., Zubkov M.V., Kalmurzayev B.S. started investigation of questions of the 
existence of joins and meets of positive linear preorders with respect to computable reducibility of binary relations. In 
the last section of this work, these questions were considered in the structure of computable linear orders isomorphic to 
the standard order of natural numbers. Then, the work of Askarbekkyzy A., Bazhenov N.A., Kalmurzayev B.S. continued 
investigation of this structure. In the last article, the notion of a self-full linear order played important role. A preorder 
R is called self-full, if for every computable function g(x), which reduces R to R, the image of this function intersects 
all supp(R)-classes. In this article, we measure exact algorithmic complexities of index sets of all self-full recursive 
linear orders isomorphic to the standard order of natural numbers and to the standard order of integers. Researching the 
index sets allows us to measure exact algorithmic complexities of different notions in constructive structures, that we are 
investigating. We prove that the index set of all self-full computable linear orders isomorphic to the standard order of 
natural numbers is a 
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КЕЙБІР СТАНДАРТ РЕТТЕРГЕ ИЗОМОРФТЫ ӨЗІТОЛЫҚ СЫЗЫҚТЫ 
РЕТТЕРДІҢ ИНДЕКСТІ ЖИЫНДАРЫ 

 

Аңдатпа. Баженов Н.А., Калмурзаев Б.С., Зубков М.В. жұмыстарында позитивті сызықтық реттердің 
бинарлы қатынастардың есептелімді көшірілуіне қатысты супремумы мен инфимумының бар болуы туралы 
сұрақтарын зерттеу басталды. Жұмыстың соңғы тарауында бұл сұрақтар натурал сандардың стандартты 
ретіне изоморфты болатын есептелімді сызықты реттердің құрылымында қарастырылды. Одан кейін, 
Асқарбекқызы А., Баженов Н.А., Калмурзаев Б.С. жұмыстарында осы құрылымды зерттеу жалғасын тапты. 
Соңғы жұмыста өзітолық сызықты реттер ұғымы үлкен рөл ойнады. Егер 𝑅𝑅 жартыретін 𝑅𝑅-ге көшіретін кез 
келген есемтелімді 𝑔𝑔(𝑥𝑥) функциясының мәндер жиыны барлық 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅)-класстарымен қиылысса, 𝑅𝑅 
жартыреті өзітолық рет деп аталады. Бұл мақалада натурал сандардың стандарт ретіне және бүтін сандардың 
стандарт ретіне изоморфты барлық сызықтық реттердің индексті жиындарының алгоритмдік күрделілігі 
нақты бағаланады. Индексті жиындарды зерттеу қарастырылып отырған конструктивті құрылымдардағы 
түрлі ұғымдардың нақты күрделілігін бағалауға мүмкіндік береді. Натурал сандардың стандартты ретіне 
изоморфты болатын өзітолық есептелімді сызықты реттердің индексті жиындары П3

0-толық жиын 
болатындығы дәлелденеді. Бүтін сандардың стандартты ретіне изоморфты болатын өзітолық есептелімді 
сызықты реттердің индексті жиындары П3

0-толық жиын болатындығы дәлелденеді. 

Тірек сөздер: сызықты рет, өзітолық рет, индексті жиын, есептелімді көшіру. 
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КЕЙБІР СТАНДАРТ РЕТТЕРГЕ ИЗОМОРФТЫ ӨЗІ ТОЛЫҚ 
СЫЗЫҚТЫ РЕТТЕРДІҢ ИНДЕКСТІ ЖИЫНДАРЫ

Аңдатпа. Баженов Н.А., Калмурзаев Б.С., Зубков М.В. жұмыстарында позитивті сызықтық реттердің бинарлы 
қатынастардың есептелімді көшірілуіне қатысты супремумы мен инфимумының бар болуы туралы сұрақтарын 
зерттеу басталған болатын. Жұмыстың соңғы тарауында бұл сұрақтар натурал сандардың стандартты ретіне 
изоморфты болатын есептелімді сызықты реттердің құрылымында қарастырылды. Одан кейін, Асқарбекқызы 
А., Баженов Н.А., Калмурзаев Б.С. жұмыстарында осы құрылымды зерттеу жалғасын тапты. Соңғы жұмыста 
өзітолық сызықты реттер ұғымы үлкен рөл ойнады. Егер R жарты ретін R-ге көшіретін кез келген есептелімді  g(x) 
функциясының мәндер жиыны барлық supp(R)-класстарымен қиылысса, R жарты реті өзі толық рет деп аталады. 
Бұл мақалада натурал сандардың стандарт ретіне және бүтін сандардың стандарт ретіне изоморфты барлық 
сызықтық реттердің индексті жиындарының алгоритмдік күрделілігі нақты бағаланады. Индексті жиындарды 
зерттеу қарастырылып отырған конструктивті құрылымдардағы түрлі ұғымдардың нақты күрделілігін бағалауға 
мүмкіндік береді. Натурал сандардың стандартты ретіне изоморфты болатын өзітолық есептелімді сызықты 
реттердің индексті жиындары 
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Аннотация. В работе Баженова Н.А., Зубкова М.В., Калмурзаева Б.С. было начато исследование вопросов 
существования супремумов и инфимумов позитивных линейных предпорядков относительно вычислимых 
сводимостей бинарных отношений, в последней главе эти вопросы были рассмотрены в структуре вычислимых 
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немаловажную роль сыграло понятие самополных линейных порядков. Предпорядок R называется самополным, 
если для любой вычислимой функции g(x), осуществляющей сводимость  R в R, ее область значений пересекает 
все supp(R)-классы. В данной статье оценивается точная алгоритмическая сложность индексных множеств 
всех самополных рекурсивных линейных порядков, изоморфных стандартному порядку натуральных чисел и 
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Introduction
In this paper, we investigate the algorithmic complexity of positive preorders on the set of natural 

numbers (we denote by ω) and isomorphic to the standard order of natural numbers (we denote this 
as ωst), also to the standard order of integers (we denote this as 

Introduction 
In this paper, we investigate the algorithmic complexity of positive preorders on the set of 

natural numbers (we denote by 𝜔𝜔) and isomorphic to the standard order of natural numbers (we 
denote this as 𝜔𝜔𝑠𝑠𝑠𝑠), also to the standard order of integers (we denote this as 𝜁𝜁𝑠𝑠𝑠𝑠). 

In this article, we keep the notations and terminology as in [1].  

 

Let 𝑅𝑅, 𝑆𝑆 be binary relations on 𝜔𝜔. We say that 𝑅𝑅 is computably reducible to 𝑆𝑆 (denoted by 
𝑅𝑅 ≤𝑐𝑐 𝑆𝑆), if there is a computable function 𝑓𝑓(𝑥𝑥) such that 

𝑥𝑥 𝑅𝑅 𝑦𝑦 ↔ 𝑓𝑓(𝑥𝑥) 𝑆𝑆 𝑓𝑓(𝑦𝑦) 

for all 𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. We say that 𝑅𝑅 and 𝑆𝑆 are computably equivalent (denoted by 𝑅𝑅 ≡𝑐𝑐 𝑆𝑆), if 𝑅𝑅 ≤𝑐𝑐 𝑆𝑆 
and 𝑆𝑆 ≤𝑐𝑐 𝑅𝑅 []. 

There is a computable numbering 𝛼𝛼 for the family of all positive preorders on 𝜔𝜔. For 
simplicity, by 𝑃𝑃𝑖𝑖 we will denote the positive preorder with index 𝑖𝑖 (i.e., we will consider 𝛼𝛼(𝑖𝑖) =
𝑃𝑃𝑖𝑖). Given a class 𝐾𝐾 ⊆ {𝑃𝑃𝑥𝑥: 𝑥𝑥 ∈ 𝜔𝜔}, we say that 𝐼𝐼𝐾𝐾 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 ∈ 𝐾𝐾} is an index set of the class 𝐾𝐾. 
Studying index sets allows us to get an exact measure of the algorithmic complexity for different 
classes of positive preorders 𝐾𝐾. Article [3] was completely devoted to researching index sets for 
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There is a computable numbering 𝛼𝛼 for the family of all positive preorders on 𝜔𝜔. For 
simplicity, by 𝑃𝑃𝑖𝑖 we will denote the positive preorder with index 𝑖𝑖 (i.e., we will consider 𝛼𝛼(𝑖𝑖) =
𝑃𝑃𝑖𝑖). Given a class 𝐾𝐾 ⊆ {𝑃𝑃𝑥𝑥: 𝑥𝑥 ∈ 𝜔𝜔}, we say that 𝐼𝐼𝐾𝐾 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 ∈ 𝐾𝐾} is an index set of the class 𝐾𝐾. 
Studying index sets allows us to get an exact measure of the algorithmic complexity for different 
classes of positive preorders 𝐾𝐾. Article [3] was completely devoted to researching index sets for 
different classes of positive preorders. 

The papers [4-9] measured index sets of classes of positive equivalence relations in 
universal numbering for the family of all positive equivalences. 

 

2. Main provisions. Material and methods 

Notation ∃! 𝑥𝑥 means that «there is a unique 𝑥𝑥», and ∃∞𝑥𝑥 means that «there are infinitely 
many 𝑥𝑥». By 𝐼𝐼𝐼𝐼 we denote the identity equivalence relation on 𝜔𝜔. By 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴) we denote the 
cardinality of a set 𝐴𝐴. Let 𝑅𝑅 be a preorder and 𝑗𝑗 ∈ 𝜔𝜔, then by [𝑗𝑗]𝑅𝑅 we denote the set {𝑥𝑥: (𝑥𝑥, 𝑗𝑗) ∈
𝑅𝑅 &(𝑗𝑗, 𝑥𝑥) ∈ 𝑅𝑅}. 

In proofs, we will use the following fact [10, Theorem 4.3.11]: 𝐴𝐴 ∈ Σ3
0 iff there is a 

computable ternary predicate 𝑅𝑅 such that  

• If 𝑥𝑥 ∈ 𝐴𝐴, then there is a unique 𝑦𝑦, that (∃∞𝑧𝑧)𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧); 
• If 𝑥𝑥 ∉ 𝐴𝐴, then for any 𝑦𝑦: ¬(∃∞𝑧𝑧) 𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 

We will use the following notations: 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐸𝐸): 𝐸𝐸 is a positive equivalence}; ≤𝑐𝑐), 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝑃𝑃): 𝑃𝑃 is a positive preorder}; ≤𝑐𝑐), 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a positive linear preorder}; ≤𝑐𝑐). 

Definition [7]. A preorder 𝑅𝑅 is called self-full if for any reduction 𝑔𝑔: 𝑅𝑅 ≤𝑐𝑐 𝑅𝑅 the following 
holds: for any number 𝑗𝑗 ∈ 𝜔𝜔 there is 𝑘𝑘 ∈ 𝜔𝜔, such that 𝑔𝑔(𝑘𝑘) ∈ [𝑗𝑗]𝑅𝑅. 

The papers [11, 12] studied the following structure: 

𝛀𝛀 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a computable linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠}; ≤𝑐𝑐) 

Moreover, in [11] it was proved that there exists an antichain of self-full degrees above any 
given degree 𝒂𝒂 ∈ 𝛀𝛀. This fact implies that the structure 𝛀𝛀 has continuum many automorphisms. 
Also, in [10] it was proved that there is no strong minimal cover for a non-self-full degree. This 

 is an index set of the class K. Studying index sets allows 
us to get an exact measure of the algorithmic complexity for different classes of positive preorders К. 
Article [3] was completely devoted to researching index sets for different classes of positive preorders.

The papers [4-9] measured index sets of classes of positive equivalence relations in universal 
numbering for the family of all positive equivalences.

Main provisions. Material and methods
Notation 

Introduction 
In this paper, we investigate the algorithmic complexity of positive preorders on the set of 

natural numbers (we denote by 𝜔𝜔) and isomorphic to the standard order of natural numbers (we 
denote this as 𝜔𝜔𝑠𝑠𝑠𝑠), also to the standard order of integers (we denote this as 𝜁𝜁𝑠𝑠𝑠𝑠). 

In this article, we keep the notations and terminology as in [1].  

 

Let 𝑅𝑅, 𝑆𝑆 be binary relations on 𝜔𝜔. We say that 𝑅𝑅 is computably reducible to 𝑆𝑆 (denoted by 
𝑅𝑅 ≤𝑐𝑐 𝑆𝑆), if there is a computable function 𝑓𝑓(𝑥𝑥) such that 

𝑥𝑥 𝑅𝑅 𝑦𝑦 ↔ 𝑓𝑓(𝑥𝑥) 𝑆𝑆 𝑓𝑓(𝑦𝑦) 

for all 𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. We say that 𝑅𝑅 and 𝑆𝑆 are computably equivalent (denoted by 𝑅𝑅 ≡𝑐𝑐 𝑆𝑆), if 𝑅𝑅 ≤𝑐𝑐 𝑆𝑆 
and 𝑆𝑆 ≤𝑐𝑐 𝑅𝑅 []. 

There is a computable numbering 𝛼𝛼 for the family of all positive preorders on 𝜔𝜔. For 
simplicity, by 𝑃𝑃𝑖𝑖 we will denote the positive preorder with index 𝑖𝑖 (i.e., we will consider 𝛼𝛼(𝑖𝑖) =
𝑃𝑃𝑖𝑖). Given a class 𝐾𝐾 ⊆ {𝑃𝑃𝑥𝑥: 𝑥𝑥 ∈ 𝜔𝜔}, we say that 𝐼𝐼𝐾𝐾 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 ∈ 𝐾𝐾} is an index set of the class 𝐾𝐾. 
Studying index sets allows us to get an exact measure of the algorithmic complexity for different 
classes of positive preorders 𝐾𝐾. Article [3] was completely devoted to researching index sets for 
different classes of positive preorders. 

The papers [4-9] measured index sets of classes of positive equivalence relations in 
universal numbering for the family of all positive equivalences. 

 

2. Main provisions. Material and methods 

Notation ∃! 𝑥𝑥 means that «there is a unique 𝑥𝑥», and ∃∞𝑥𝑥 means that «there are infinitely 
many 𝑥𝑥». By 𝐼𝐼𝐼𝐼 we denote the identity equivalence relation on 𝜔𝜔. By 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴) we denote the 
cardinality of a set 𝐴𝐴. Let 𝑅𝑅 be a preorder and 𝑗𝑗 ∈ 𝜔𝜔, then by [𝑗𝑗]𝑅𝑅 we denote the set {𝑥𝑥: (𝑥𝑥, 𝑗𝑗) ∈
𝑅𝑅 &(𝑗𝑗, 𝑥𝑥) ∈ 𝑅𝑅}. 

In proofs, we will use the following fact [10, Theorem 4.3.11]: 𝐴𝐴 ∈ Σ3
0 iff there is a 

computable ternary predicate 𝑅𝑅 such that  

• If 𝑥𝑥 ∈ 𝐴𝐴, then there is a unique 𝑦𝑦, that (∃∞𝑧𝑧)𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧); 
• If 𝑥𝑥 ∉ 𝐴𝐴, then for any 𝑦𝑦: ¬(∃∞𝑧𝑧) 𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 

We will use the following notations: 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐸𝐸): 𝐸𝐸 is a positive equivalence}; ≤𝑐𝑐), 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝑃𝑃): 𝑃𝑃 is a positive preorder}; ≤𝑐𝑐), 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a positive linear preorder}; ≤𝑐𝑐). 

Definition [7]. A preorder 𝑅𝑅 is called self-full if for any reduction 𝑔𝑔: 𝑅𝑅 ≤𝑐𝑐 𝑅𝑅 the following 
holds: for any number 𝑗𝑗 ∈ 𝜔𝜔 there is 𝑘𝑘 ∈ 𝜔𝜔, such that 𝑔𝑔(𝑘𝑘) ∈ [𝑗𝑗]𝑅𝑅. 

The papers [11, 12] studied the following structure: 

𝛀𝛀 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a computable linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠}; ≤𝑐𝑐) 

Moreover, in [11] it was proved that there exists an antichain of self-full degrees above any 
given degree 𝒂𝒂 ∈ 𝛀𝛀. This fact implies that the structure 𝛀𝛀 has continuum many automorphisms. 
Also, in [10] it was proved that there is no strong minimal cover for a non-self-full degree. This 

 x means that «there is a unique x», and 

Introduction 
In this paper, we investigate the algorithmic complexity of positive preorders on the set of 

natural numbers (we denote by 𝜔𝜔) and isomorphic to the standard order of natural numbers (we 
denote this as 𝜔𝜔𝑠𝑠𝑠𝑠), also to the standard order of integers (we denote this as 𝜁𝜁𝑠𝑠𝑠𝑠). 

In this article, we keep the notations and terminology as in [1].  

 

Let 𝑅𝑅, 𝑆𝑆 be binary relations on 𝜔𝜔. We say that 𝑅𝑅 is computably reducible to 𝑆𝑆 (denoted by 
𝑅𝑅 ≤𝑐𝑐 𝑆𝑆), if there is a computable function 𝑓𝑓(𝑥𝑥) such that 

𝑥𝑥 𝑅𝑅 𝑦𝑦 ↔ 𝑓𝑓(𝑥𝑥) 𝑆𝑆 𝑓𝑓(𝑦𝑦) 

for all 𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. We say that 𝑅𝑅 and 𝑆𝑆 are computably equivalent (denoted by 𝑅𝑅 ≡𝑐𝑐 𝑆𝑆), if 𝑅𝑅 ≤𝑐𝑐 𝑆𝑆 
and 𝑆𝑆 ≤𝑐𝑐 𝑅𝑅 []. 

There is a computable numbering 𝛼𝛼 for the family of all positive preorders on 𝜔𝜔. For 
simplicity, by 𝑃𝑃𝑖𝑖 we will denote the positive preorder with index 𝑖𝑖 (i.e., we will consider 𝛼𝛼(𝑖𝑖) =
𝑃𝑃𝑖𝑖). Given a class 𝐾𝐾 ⊆ {𝑃𝑃𝑥𝑥: 𝑥𝑥 ∈ 𝜔𝜔}, we say that 𝐼𝐼𝐾𝐾 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 ∈ 𝐾𝐾} is an index set of the class 𝐾𝐾. 
Studying index sets allows us to get an exact measure of the algorithmic complexity for different 
classes of positive preorders 𝐾𝐾. Article [3] was completely devoted to researching index sets for 
different classes of positive preorders. 

The papers [4-9] measured index sets of classes of positive equivalence relations in 
universal numbering for the family of all positive equivalences. 

 

2. Main provisions. Material and methods 

Notation ∃! 𝑥𝑥 means that «there is a unique 𝑥𝑥», and ∃∞𝑥𝑥 means that «there are infinitely 
many 𝑥𝑥». By 𝐼𝐼𝐼𝐼 we denote the identity equivalence relation on 𝜔𝜔. By 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴) we denote the 
cardinality of a set 𝐴𝐴. Let 𝑅𝑅 be a preorder and 𝑗𝑗 ∈ 𝜔𝜔, then by [𝑗𝑗]𝑅𝑅 we denote the set {𝑥𝑥: (𝑥𝑥, 𝑗𝑗) ∈
𝑅𝑅 &(𝑗𝑗, 𝑥𝑥) ∈ 𝑅𝑅}. 

In proofs, we will use the following fact [10, Theorem 4.3.11]: 𝐴𝐴 ∈ Σ3
0 iff there is a 

computable ternary predicate 𝑅𝑅 such that  

• If 𝑥𝑥 ∈ 𝐴𝐴, then there is a unique 𝑦𝑦, that (∃∞𝑧𝑧)𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧); 
• If 𝑥𝑥 ∉ 𝐴𝐴, then for any 𝑦𝑦: ¬(∃∞𝑧𝑧) 𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 

We will use the following notations: 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐸𝐸): 𝐸𝐸 is a positive equivalence}; ≤𝑐𝑐), 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝑃𝑃): 𝑃𝑃 is a positive preorder}; ≤𝑐𝑐), 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a positive linear preorder}; ≤𝑐𝑐). 

Definition [7]. A preorder 𝑅𝑅 is called self-full if for any reduction 𝑔𝑔: 𝑅𝑅 ≤𝑐𝑐 𝑅𝑅 the following 
holds: for any number 𝑗𝑗 ∈ 𝜔𝜔 there is 𝑘𝑘 ∈ 𝜔𝜔, such that 𝑔𝑔(𝑘𝑘) ∈ [𝑗𝑗]𝑅𝑅. 

The papers [11, 12] studied the following structure: 

𝛀𝛀 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a computable linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠}; ≤𝑐𝑐) 

Moreover, in [11] it was proved that there exists an antichain of self-full degrees above any 
given degree 𝒂𝒂 ∈ 𝛀𝛀. This fact implies that the structure 𝛀𝛀 has continuum many automorphisms. 
Also, in [10] it was proved that there is no strong minimal cover for a non-self-full degree. This 

 x means that «there are infinitely many x». 
By Id we denote the identity equivalence relation on ω. By card(A) we denote the cardinality of a set 
A. Let R be a preorder and 

Introduction 
In this paper, we investigate the algorithmic complexity of positive preorders on the set of 

natural numbers (we denote by 𝜔𝜔) and isomorphic to the standard order of natural numbers (we 
denote this as 𝜔𝜔𝑠𝑠𝑠𝑠), also to the standard order of integers (we denote this as 𝜁𝜁𝑠𝑠𝑠𝑠). 

In this article, we keep the notations and terminology as in [1].  

 

Let 𝑅𝑅, 𝑆𝑆 be binary relations on 𝜔𝜔. We say that 𝑅𝑅 is computably reducible to 𝑆𝑆 (denoted by 
𝑅𝑅 ≤𝑐𝑐 𝑆𝑆), if there is a computable function 𝑓𝑓(𝑥𝑥) such that 

𝑥𝑥 𝑅𝑅 𝑦𝑦 ↔ 𝑓𝑓(𝑥𝑥) 𝑆𝑆 𝑓𝑓(𝑦𝑦) 

for all 𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. We say that 𝑅𝑅 and 𝑆𝑆 are computably equivalent (denoted by 𝑅𝑅 ≡𝑐𝑐 𝑆𝑆), if 𝑅𝑅 ≤𝑐𝑐 𝑆𝑆 
and 𝑆𝑆 ≤𝑐𝑐 𝑅𝑅 []. 

There is a computable numbering 𝛼𝛼 for the family of all positive preorders on 𝜔𝜔. For 
simplicity, by 𝑃𝑃𝑖𝑖 we will denote the positive preorder with index 𝑖𝑖 (i.e., we will consider 𝛼𝛼(𝑖𝑖) =
𝑃𝑃𝑖𝑖). Given a class 𝐾𝐾 ⊆ {𝑃𝑃𝑥𝑥: 𝑥𝑥 ∈ 𝜔𝜔}, we say that 𝐼𝐼𝐾𝐾 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 ∈ 𝐾𝐾} is an index set of the class 𝐾𝐾. 
Studying index sets allows us to get an exact measure of the algorithmic complexity for different 
classes of positive preorders 𝐾𝐾. Article [3] was completely devoted to researching index sets for 
different classes of positive preorders. 

The papers [4-9] measured index sets of classes of positive equivalence relations in 
universal numbering for the family of all positive equivalences. 

 

2. Main provisions. Material and methods 

Notation ∃! 𝑥𝑥 means that «there is a unique 𝑥𝑥», and ∃∞𝑥𝑥 means that «there are infinitely 
many 𝑥𝑥». By 𝐼𝐼𝐼𝐼 we denote the identity equivalence relation on 𝜔𝜔. By 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴) we denote the 
cardinality of a set 𝐴𝐴. Let 𝑅𝑅 be a preorder and 𝑗𝑗 ∈ 𝜔𝜔, then by [𝑗𝑗]𝑅𝑅 we denote the set {𝑥𝑥: (𝑥𝑥, 𝑗𝑗) ∈
𝑅𝑅 &(𝑗𝑗, 𝑥𝑥) ∈ 𝑅𝑅}. 

In proofs, we will use the following fact [10, Theorem 4.3.11]: 𝐴𝐴 ∈ Σ3
0 iff there is a 

computable ternary predicate 𝑅𝑅 such that  

• If 𝑥𝑥 ∈ 𝐴𝐴, then there is a unique 𝑦𝑦, that (∃∞𝑧𝑧)𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧); 
• If 𝑥𝑥 ∉ 𝐴𝐴, then for any 𝑦𝑦: ¬(∃∞𝑧𝑧) 𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 

We will use the following notations: 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐸𝐸): 𝐸𝐸 is a positive equivalence}; ≤𝑐𝑐), 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝑃𝑃): 𝑃𝑃 is a positive preorder}; ≤𝑐𝑐), 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a positive linear preorder}; ≤𝑐𝑐). 

Definition [7]. A preorder 𝑅𝑅 is called self-full if for any reduction 𝑔𝑔: 𝑅𝑅 ≤𝑐𝑐 𝑅𝑅 the following 
holds: for any number 𝑗𝑗 ∈ 𝜔𝜔 there is 𝑘𝑘 ∈ 𝜔𝜔, such that 𝑔𝑔(𝑘𝑘) ∈ [𝑗𝑗]𝑅𝑅. 

The papers [11, 12] studied the following structure: 

𝛀𝛀 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a computable linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠}; ≤𝑐𝑐) 

Moreover, in [11] it was proved that there exists an antichain of self-full degrees above any 
given degree 𝒂𝒂 ∈ 𝛀𝛀. This fact implies that the structure 𝛀𝛀 has continuum many automorphisms. 
Also, in [10] it was proved that there is no strong minimal cover for a non-self-full degree. This 

, then by 

Introduction 
In this paper, we investigate the algorithmic complexity of positive preorders on the set of 

natural numbers (we denote by 𝜔𝜔) and isomorphic to the standard order of natural numbers (we 
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Let 𝑅𝑅, 𝑆𝑆 be binary relations on 𝜔𝜔. We say that 𝑅𝑅 is computably reducible to 𝑆𝑆 (denoted by 
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for all 𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. We say that 𝑅𝑅 and 𝑆𝑆 are computably equivalent (denoted by 𝑅𝑅 ≡𝑐𝑐 𝑆𝑆), if 𝑅𝑅 ≤𝑐𝑐 𝑆𝑆 
and 𝑆𝑆 ≤𝑐𝑐 𝑅𝑅 []. 

There is a computable numbering 𝛼𝛼 for the family of all positive preorders on 𝜔𝜔. For 
simplicity, by 𝑃𝑃𝑖𝑖 we will denote the positive preorder with index 𝑖𝑖 (i.e., we will consider 𝛼𝛼(𝑖𝑖) =
𝑃𝑃𝑖𝑖). Given a class 𝐾𝐾 ⊆ {𝑃𝑃𝑥𝑥: 𝑥𝑥 ∈ 𝜔𝜔}, we say that 𝐼𝐼𝐾𝐾 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 ∈ 𝐾𝐾} is an index set of the class 𝐾𝐾. 
Studying index sets allows us to get an exact measure of the algorithmic complexity for different 
classes of positive preorders 𝐾𝐾. Article [3] was completely devoted to researching index sets for 
different classes of positive preorders. 

The papers [4-9] measured index sets of classes of positive equivalence relations in 
universal numbering for the family of all positive equivalences. 

 

2. Main provisions. Material and methods 

Notation ∃! 𝑥𝑥 means that «there is a unique 𝑥𝑥», and ∃∞𝑥𝑥 means that «there are infinitely 
many 𝑥𝑥». By 𝐼𝐼𝐼𝐼 we denote the identity equivalence relation on 𝜔𝜔. By 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴) we denote the 
cardinality of a set 𝐴𝐴. Let 𝑅𝑅 be a preorder and 𝑗𝑗 ∈ 𝜔𝜔, then by [𝑗𝑗]𝑅𝑅 we denote the set {𝑥𝑥: (𝑥𝑥, 𝑗𝑗) ∈
𝑅𝑅 &(𝑗𝑗, 𝑥𝑥) ∈ 𝑅𝑅}. 

In proofs, we will use the following fact [10, Theorem 4.3.11]: 𝐴𝐴 ∈ Σ3
0 iff there is a 

computable ternary predicate 𝑅𝑅 such that  

• If 𝑥𝑥 ∈ 𝐴𝐴, then there is a unique 𝑦𝑦, that (∃∞𝑧𝑧)𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧); 
• If 𝑥𝑥 ∉ 𝐴𝐴, then for any 𝑦𝑦: ¬(∃∞𝑧𝑧) 𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 

We will use the following notations: 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐸𝐸): 𝐸𝐸 is a positive equivalence}; ≤𝑐𝑐), 
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𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a positive linear preorder}; ≤𝑐𝑐). 

Definition [7]. A preorder 𝑅𝑅 is called self-full if for any reduction 𝑔𝑔: 𝑅𝑅 ≤𝑐𝑐 𝑅𝑅 the following 
holds: for any number 𝑗𝑗 ∈ 𝜔𝜔 there is 𝑘𝑘 ∈ 𝜔𝜔, such that 𝑔𝑔(𝑘𝑘) ∈ [𝑗𝑗]𝑅𝑅. 

The papers [11, 12] studied the following structure: 

𝛀𝛀 = ({deg𝑐𝑐(𝐿𝐿): 𝐿𝐿 is a computable linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠}; ≤𝑐𝑐) 

Moreover, in [11] it was proved that there exists an antichain of self-full degrees above any 
given degree 𝒂𝒂 ∈ 𝛀𝛀. This fact implies that the structure 𝛀𝛀 has continuum many automorphisms. 
Also, in [10] it was proved that there is no strong minimal cover for a non-self-full degree. This 
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• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 
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2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is self-full iff every computable function 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 does not 
reduce L to L.

In this paper, we measure the index sets of the following classes:
•	

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

;
•	

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

.
In particular, we prove that both sets are 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

-complete sets. 

Results and discussion
The index set 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

-complete. The upper bound is implied by the following: 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is equivalent to this condition:

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is linear & 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is antisymmetric & 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

.		   (1)
The predicate x<pi z is computable, if 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

-sentence. 
The lower bound for 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
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• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 
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resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
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so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
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In particular, we prove that both sets are П3
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resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 we satisfy the following requirements for the constructed order L = Lx:
•	 SFe: if 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
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The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
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after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

.
In the construction of relation L there will be conflicts between strategies, which will be resolved 

by finite injury priority. Assume that the set of SF-strategies is linearly ordered of type ω: for instance, 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

. A given strategy ISe does not conflict with the other strategies, so ISe essentially will 
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work in the background mode.
In the strategy SFe, we say that 2xe is a fresh number if 2xe is greater than 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 
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higher priority strategies 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 
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0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 
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0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3
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condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  
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In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
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𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 
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(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3
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condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
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In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
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The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined;  is defined;
3.	 If  3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 

when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, then put 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 fresh numbers after 2xe. Every time 
when 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 increases, we will put a fresh number after 2xe.
Strategy SFe has two outcomes:
wait: Stuck at step 1 or step 2. Then one of the following is true: 
(a) The function φe is not total.
(b) 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, or 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

. Then φe = id or φe does not reduce L to L.
In both cases the requirement SFe is satisfied.
act: Reaching step 3. If 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, then the requirement is satisfied. Otherwise, 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

. Then φe cannot be a computable reduction from L to L, 
and in this case we initialize the lower priority strategies of type SFj, which chose 2xj less than φe(α), 
as its own number at step 1. “The strategy SFe is initialized” means that this strategy starts again from 
its step 1.

STRATEGY for ISe:
1.	 Choose the number 2e;
2.	 Let 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

. Put k fresh odd numbers after 2e in L. 
CONSTRUCTION.
At stage 0, we assume that 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

.
At stage s+1 we visit all strategies SFi and ISi for i<s. In ISi  we define k as 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

. And in ISi all conditions will be considered at the stage s.
Define 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

.
Lemma 1.1. Lx is a linear order on ω.
Proof. It is known that the function f (x) = x+2 has infinitely many Gödel numbers (let 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

). 
Then 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

  and strictly greater than 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 for every ei. Moreover, 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 and strictly greater than α. According to the strategy 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, at least one odd number should 
be put after 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

. Since there are infinitely many such ei, each odd number will be put after some 
number. Hence, Li is a linear order on ω.

Lemma 1.2. If 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, then  

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

.
Proof. Let 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, then 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

. Inside the interval 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, the 
construction builds ω*. Hence, 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

.
Lemma 1.3. If 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

, then 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

.
Proof.  Let  z  be  a natural number. We show that only finitely many elements will be 

enumerated inside 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

. According to the strategy ISe, by the construction precisely 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 elements will be enumerated after the number 2z (i.e., finitely many 
elements).

This number 2z can be the fresh number 2xв for some strategies SFe. Let 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 be the first 
strategy, which reached step 3. At the first stage s0, when it happened, it is obvious that the interval 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥  is finite. Consequently, there are finitely many intervals 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 in this 
interval. If new elements are enumerated inside the interval 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

 according to the strategy 
ISy, then some elements after 2xв could be enumerated.
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In addition, another strategy with higher priority SFe can pick 2z as its own number at step 1 and 
reach step 3. In this case, every action from above will be repeated. Since there are only finitely many 
strategies with higher priority, in the end only finitely many elements will be enumerated inside the 
interval 

3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓ >𝐿𝐿 𝑎𝑎, then put 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) fresh numbers after 2𝑥𝑥𝑒𝑒. Every time 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎, 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿) increases, we will put a fresh number after 2𝑥𝑥𝑒𝑒. 

Strategy 𝑆𝑆𝑆𝑆𝑒𝑒 has two outcomes: 

wait: Stuck at step 1 or step 2. Then one of the following is true:  

(a) The function 𝜑𝜑𝑒𝑒 is not total. 

(b) 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓≤𝐿𝐿 2𝑥𝑥𝑒𝑒, or 𝜑𝜑𝑒𝑒(𝑎𝑎) ↓≤𝐿𝐿 𝑎𝑎. Then 𝜑𝜑𝑒𝑒 = id or 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In both cases the requirement 𝑆𝑆𝑆𝑆𝑒𝑒 is satisfied. 

act: Reaching step 3. If 𝜑𝜑𝑒𝑒(𝑎𝑎) ≤𝐿𝐿 𝑎𝑎, then the requirement is satisfied. Otherwise, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([2𝑥𝑥𝑒𝑒; 𝑎𝑎]𝐿𝐿) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐([𝑎𝑎; 𝜑𝜑𝑒𝑒(𝑎𝑎)]𝐿𝐿). Then 𝜑𝜑𝑒𝑒 cannot be a computable reduction from 𝐿𝐿 to 𝐿𝐿, 
and in this case we initialize the lower priority strategies of type 𝑆𝑆𝐹𝐹𝑗𝑗 , which chose 2𝑥𝑥𝑗𝑗  less than 
𝜑𝜑𝑒𝑒(𝑎𝑎), as its own number at step 1. “The strategy 𝑆𝑆𝐹𝐹𝑒𝑒 is initialized” means that this strategy 
starts again from its step 1. 

STRATEGY for 𝐼𝐼𝑆𝑆𝑒𝑒: 

1. Choose the number 2𝑒𝑒; 
2. Let 𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}). Put 𝑘𝑘 fresh odd numbers after 2𝑒𝑒 in 𝐿𝐿.  

CONSTRUCTION. 

At stage 0, we assume that 𝐿𝐿𝑥𝑥,0 = {(2𝑧𝑧, 2𝑦𝑦): 𝑧𝑧 ≤ 𝑦𝑦}. 

At stage 𝑠𝑠 + 1 we visit all strategies 𝑆𝑆𝐹𝐹𝑖𝑖 and 𝐼𝐼𝑆𝑆𝑖𝑖 for 𝑖𝑖 ≤ 𝑠𝑠. In 𝐼𝐼𝑆𝑆𝑖𝑖 we define 𝑘𝑘 as 
c𝑎𝑎𝑎𝑎𝑎𝑎({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑖𝑖, 𝑧𝑧) & 𝑧𝑧 ≤ 𝑠𝑠}). And in 𝑆𝑆𝐹𝐹𝑖𝑖 all conditions will be considered at the stage 𝑠𝑠. 

Define 𝐿𝐿𝑥𝑥 =∪𝑠𝑠∈𝜔𝜔 𝐿𝐿𝑥𝑥,𝑠𝑠. 

Lemma 𝟏𝟏. 𝟏𝟏. 𝐿𝐿𝑥𝑥 is a linear order on 𝜔𝜔. 

Proof. It is known that the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 2 has infinitely many Gödel numbers (let 
𝜑𝜑𝑒𝑒𝑖𝑖 = 𝑓𝑓). Then 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) ↓  and strictly greater than 2𝑥𝑥𝑒𝑒𝑖𝑖 for every 𝑒𝑒𝑖𝑖. Moreover, 𝜑𝜑𝑒𝑒𝑖𝑖(2𝑥𝑥𝑒𝑒𝑖𝑖) =
2𝑥𝑥𝑒𝑒𝑖𝑖 + 2 = 𝑎𝑎, 𝜑𝜑𝑒𝑒𝑖𝑖(𝑎𝑎) ↓ and strictly greater than 𝑎𝑎. According to the strategy 𝑆𝑆𝐹𝐹𝑒𝑒𝑖𝑖, at least one 
odd number should be put after 2𝑥𝑥𝑒𝑒𝑖𝑖. Since there are infinitely many such 𝑒𝑒𝑖𝑖, each odd number 
will be put after some number. Hence, 𝐿𝐿𝑖𝑖 is a linear order on 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟐𝟐. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Proof. Let 𝑥𝑥 ∉ 𝐴𝐴, then (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥, the 
construction builds 𝜔𝜔∗. Hence, 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔. 

Lemma 𝟏𝟏. 𝟑𝟑. If 𝑥𝑥 ∈ 𝐴𝐴, then 𝐿𝐿𝑥𝑥 ≅ 𝜔𝜔. 

Proof. Let 𝑧𝑧 be a natural number. We show that only finitely many elements will be 
enumerated inside [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥. According to the strategy 𝐼𝐼𝑆𝑆𝑒𝑒, by the construction precisely 
𝑘𝑘 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑧𝑧: 𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧)}) elements will be enumerated after the number 2𝑧𝑧 (i.e., finitely many 
elements). 

This number 2𝑧𝑧 can be the fresh number 2𝑥𝑥𝑒𝑒 for some strategies 𝑆𝑆𝐹𝐹𝑒𝑒. Let 𝑆𝑆𝐹𝐹𝑒𝑒0 be the first 
strategy, which reached step 3. At the first stage 𝑠𝑠0, when it happened, it is obvious that the 
interval [𝑎𝑎; 𝜑𝜑𝑒𝑒0(𝑎𝑎)]𝐿𝐿𝑥𝑥,𝑠𝑠0

  is finite. Consequently, there are finitely many intervals [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 

. 
Since z is an arbitrary number, the constructed order Lx will be isomorphic to ω.
The sequence 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 is a computable numbering of some subfamily of the family of all positive 
preorders. Consequently, there is a computable function f such that 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 for every 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

.

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

Theorem 1 is proved.
For 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

, the preorder 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is a computable linear order isomorphic to 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 if and only if:

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is linear & 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is antisymmetric & 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

   							        (2)
The predicate 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 is computable, if 

result implies that, in the structure 𝛀𝛀, the self-full degrees are precisely those elements that have 
a strong minimal cover. Note that a linear order 𝐿𝐿 ∈ 𝛀𝛀 is self-full iff every computable function 
𝑓𝑓 ≠ 𝑖𝑖𝑖𝑖 does not reduce 𝐿𝐿 to 𝐿𝐿. 

In this paper, we measure the index sets of the following classes: 

• 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠 }; 
• 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠}. 

In particular, we prove that both sets are П3
0-complete sets.  

 

3. Results and discussion 

The index set 𝐼𝐼Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 ∈ Ω} is П3
0-complete. The upper bound is implied by the 

following: 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to this condition: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & (∀𝑥𝑥)(∃𝑦𝑦)(∀𝑧𝑧 > 𝑦𝑦)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧].   (1) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. This means that the 
predicate (1) is equivalent to a П3

0-sentence.  

The lower bound for 𝐼𝐼Ω follows from Theorem 3(a) in [13], or from Example 2 in [14]. 

Theorem 1. The index set 𝐼𝐼𝑆𝑆𝑆𝑆Ω = {𝑖𝑖: 𝑃𝑃𝑖𝑖 is a self full linear order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠} is 
П3

0-complete. 

Proof. Self-fulness of 𝑃𝑃𝑖𝑖  is equivalent to the following: 

(∀𝑒𝑒) [∃𝑦𝑦(𝜑𝜑𝑒𝑒(𝑦𝑦) ↑) ∨ [(∀𝑢𝑢, 𝑣𝑣)[𝑢𝑢 ≤𝑃𝑃𝑖𝑖 𝑣𝑣 ↔ 𝜑𝜑𝑒𝑒(𝑢𝑢) ≤𝑃𝑃𝑖𝑖 𝜑𝜑𝑒𝑒(𝑣𝑣)] → (∀𝑎𝑎∃𝑏𝑏) (𝑎𝑎~𝑃𝑃𝑖𝑖𝜑𝜑𝑒𝑒(𝑏𝑏))]],  

which is equivalent to a П3
0-condition. From the proof given above, 𝑃𝑃𝑖𝑖 ∈ Ω is equivalent to a П3

0-
condition. Then, the conjunction of these conditions is also equivalent to a П3

0-condition. 

Now we show the completeness. Suppose that a set 𝐴𝐴 belongs to the class П3
0. Then there is 

a computable relation 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) such that  

𝑥𝑥 ∉ 𝐴𝐴 ↔ (∃! 𝑦𝑦)(∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
For every 𝑒𝑒 ∈ 𝜔𝜔 we satisfy the following requirements for the constructed order 𝐿𝐿 = 𝐿𝐿𝑥𝑥: 

• 𝑆𝑆𝑆𝑆𝑒𝑒: if 𝜑𝜑𝑒𝑒 ≠ 𝑖𝑖𝑖𝑖, then 𝜑𝜑𝑒𝑒 does not reduce 𝐿𝐿 to 𝐿𝐿. 
• 𝐼𝐼𝐼𝐼𝑒𝑒: if (∃∞𝑧𝑧)𝑄𝑄(𝑥𝑥, 𝑒𝑒, 𝑧𝑧), then 𝐿𝐿 ∉ Ω. 

In the construction of relation 𝐿𝐿 there will be conflicts between strategies, which will be 
resolved by finite injury priority. Assume that the set of 𝑆𝑆𝑆𝑆-strategies is linearly ordered of type 
𝜔𝜔: for instance, 𝑆𝑆𝐹𝐹0 < 𝑆𝑆𝐹𝐹1 < ⋯. A given strategy 𝐼𝐼𝑆𝑆𝑒𝑒 does not conflict with the other strategies, 
so 𝐼𝐼𝑆𝑆𝑒𝑒 essentially will work in the background mode. 

In the strategy 𝑆𝑆𝐹𝐹𝑒𝑒, we say that 2𝑥𝑥𝑒𝑒 is a fresh number if 2𝑥𝑥𝑒𝑒 is greater than 𝜑𝜑𝑒𝑒′(𝑎𝑎) ↓ for the 
higher priority strategies 𝑆𝑆𝐹𝐹𝑒𝑒′, 𝑒𝑒′ < 𝑒𝑒.  In the construction, a notion “putting a fresh number 
after some number 𝑎𝑎 in the order 𝐿𝐿𝑥𝑥 at some stage 𝑠𝑠 + 1” means that we define 𝐿𝐿𝑥𝑥,𝑠𝑠+1 = 𝐿𝐿𝑥𝑥,𝑠𝑠 ∪
{(𝑧𝑧, 𝑦𝑦): 𝑎𝑎 <𝐿𝐿𝑥𝑥,𝑠𝑠 𝑦𝑦} ∪ {(𝑦𝑦, 𝑧𝑧): 𝑦𝑦 ≤𝐿𝐿𝑥𝑥,𝑠𝑠 𝑎𝑎}, where 𝑧𝑧 is the least odd number not in 𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑥𝑥,𝑠𝑠). 

STRATEGY for 𝑆𝑆𝑆𝑆𝑒𝑒: 

1. Wait for a fresh number 2𝑥𝑥𝑒𝑒, such that 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒) ↓>𝐿𝐿 2𝑥𝑥𝑒𝑒; 
2. Let 𝑎𝑎 ≔ 𝜑𝜑𝑒𝑒(2𝑥𝑥𝑒𝑒). Wait until 𝜑𝜑𝑒𝑒(𝑎𝑎) is defined; 

 is linear and antisymmetric. Hence, the predicate (2) 
is equivalent to a 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

-sentence. 
Theorem 2. The index set 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 is 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

-complete. 
Proof. We take the order Lx constructed in Theorem 1, and we define the order Zx as follows: 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

Suppose that Lx is a self-full order isomorphic to ωst. We show self-fullness of  Zx by reduction to a 
contradiction. Assume that Zx is a non-self-full order. Then there is a computable function 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 
that reduces Zx to Zx. Let t be an element such that 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
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𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  
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In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 as 
follows: 

•	 if 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

, then

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

•	 if 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

, then

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

A simple analysis shows that the function 

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  

 computably reduces Lx to Lx, which 
contradicts the self-fullness of Lx. 

If  

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 

Suppose that 𝐿𝐿𝑥𝑥 is a self-full order isomorphic to 𝜔𝜔𝑠𝑠𝑠𝑠. We show self-fullness of 𝑍𝑍𝑥𝑥 by 
reduction to a contradiction. Assume that 𝑍𝑍𝑥𝑥 is a non-self-full order. Then there is a computable 
function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,   2𝑦𝑦 + 1 >𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.

 

• if 𝑡𝑡 <𝑍𝑍𝑥𝑥 𝑓𝑓(𝑡𝑡), then 

𝑔𝑔(𝑦𝑦) = {
𝑦𝑦,    2𝑦𝑦 <𝑍𝑍𝑥𝑥 𝑡𝑡,

𝑓𝑓(2𝑦𝑦)
2 ,   2𝑦𝑦 ≥𝑍𝑍𝑥𝑥 𝑡𝑡.

 

A simple analysis shows that the function 𝑔𝑔(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 computably reduces 𝐿𝐿𝑥𝑥 to 𝐿𝐿𝑥𝑥, which 
contradicts the self-fullness of 𝐿𝐿𝑥𝑥.  

If 𝐿𝐿𝑥𝑥 ≇ 𝜔𝜔𝑠𝑠𝑠𝑠, then it is obvious that 𝑍𝑍𝑥𝑥 ≇ 𝜁𝜁𝑠𝑠𝑠𝑠. Thus, reduction of an arbitrary Π3
0-set 𝐴𝐴 to 

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 can be proved as in Theorem 1.  
, then it is obvious that  

in this interval. If new elements are enumerated inside the interval [2𝑦𝑦, 2𝑦𝑦 + 2]𝐿𝐿𝑥𝑥 according to 
the strategy 𝐼𝐼𝑆𝑆𝑦𝑦, then some elements after 2𝑥𝑥𝑒𝑒 could be enumerated. 

In addition, another strategy with higher priority 𝑆𝑆𝐹𝐹𝑒𝑒 can pick 2𝑧𝑧 as its own number at step 
1 and reach step 3. In this case, every action from above will be repeated. Since there are only 
finitely many strategies with higher priority, in the end only finitely many elements will be 
enumerated inside the interval [2𝑧𝑧, 2𝑧𝑧 + 2]𝐿𝐿𝑥𝑥.  

Since 𝑧𝑧 is an arbitrary number, the constructed order 𝐿𝐿𝑥𝑥 will be isomorphic to 𝜔𝜔. 

The sequence (𝐿𝐿𝑥𝑥)𝑥𝑥∈𝜔𝜔 is a computable numbering of some subfamily of the family of all 
positive preorders. Consequently, there is a computable function 𝑓𝑓 such that 𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑓𝑓(𝑥𝑥) for 
every 𝑥𝑥 ∈ 𝜔𝜔. 

𝑥𝑥 ∈ 𝐴𝐴 ↔ 𝑓𝑓(𝑥𝑥) ∈ 𝐼𝐼𝑆𝑆𝑆𝑆Ω. 
Theorem 1 is proved. 

For 𝑖𝑖 ∈ 𝜔𝜔, the preorder 𝑃𝑃𝑖𝑖 is a computable linear order isomorphic to 𝜁𝜁𝑠𝑠𝑠𝑠 if and only if: 

𝑃𝑃𝑖𝑖 is linear & 𝑃𝑃𝑖𝑖 is antisymmetric & 
¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≤𝑃𝑃𝑖𝑖 𝑦𝑦)]& ¬[∃𝑥𝑥 ∀𝑦𝑦 (𝑥𝑥 ≥𝑃𝑃𝑖𝑖 𝑦𝑦)]&(∀𝑥𝑥, 𝑦𝑦)(∃𝑧𝑧)(∀𝑢𝑢)[𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑢𝑢 <𝑃𝑃𝑖𝑖 𝑦𝑦 → 𝑢𝑢 < 𝑧𝑧]     (2) 

The predicate 𝑥𝑥 <𝑃𝑃𝑖𝑖 𝑧𝑧 is computable, if 𝑃𝑃𝑖𝑖 is linear and antisymmetric. Hence, the 
predicate (2) is equivalent to a П3

0-sentence.  

Theorem 2. The index set 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑥𝑥: 𝑃𝑃𝑥𝑥 is a self full linear order isomorphic to  𝜁𝜁𝑠𝑠𝑠𝑠} is 
Π3

0-complete.  

Proof. We take the order 𝐿𝐿𝑥𝑥 constructed in Theorem 1, and we define the order 𝑍𝑍𝑥𝑥 as 
follows:  

𝑎𝑎 ≤𝑍𝑍𝑥𝑥 𝑏𝑏 ↔ [𝑎𝑎 = 2𝑘𝑘 & 𝑏𝑏 = 2𝑚𝑚 & 𝑘𝑘 ≤𝐿𝐿𝑥𝑥 𝑚𝑚] ∨ [𝑎𝑎 = 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚 + 1 & 𝑚𝑚 ≤𝐿𝐿𝑥𝑥 𝑘𝑘] ∨ [𝑎𝑎
= 2𝑘𝑘 + 1 & 𝑏𝑏 = 2𝑚𝑚] 
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function 𝑓𝑓(𝑥𝑥) ≠ 𝑖𝑖𝑖𝑖 that reduces 𝑍𝑍𝑥𝑥 to 𝑍𝑍𝑥𝑥. Let 𝑡𝑡 be an element such that 𝑓𝑓(𝑡𝑡) ≠ 𝑡𝑡. We construct a 
function 𝑔𝑔: 𝜔𝜔 → 𝜔𝜔 as follows:  

• if 𝑓𝑓(𝑡𝑡) <𝑍𝑍𝑥𝑥 𝑡𝑡, then 
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𝑓𝑓(2𝑦𝑦 + 1) − 1
2 ,   2𝑦𝑦 + 1 ≤𝑍𝑍𝑥𝑥 𝑡𝑡.
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follows:  
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