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INDEX SETS OF SELF-FULL LINEAR ORDERS ISOMORPHIC
TO SOME STANDARD ORDERS

Abstract. The work of Bazhenov N.A., Zubkov M.V., Kalmurzayev B.S. started investigation of questions of the
existence of joins and meets of positive linear preorders with respect to computable reducibility of binary relations. In
the last section of this work, these questions were considered in the structure of computable linear orders isomorphic to
the standard order of natural numbers. Then, the work of Askarbekkyzy A., Bazhenov N.A., Kalmurzayev B.S. continued
investigation of this structure. In the last article, the notion of a self-full linear order played important role. A preorder
R is called self-full, if for every computable function g(x), which reduces R to R, the image of this function intersects
all supp(R)-classes. In this article, we measure exact algorithmic complexities of index sets of all self-full recursive
linear orders isomorphic to the standard order of natural numbers and to the standard order of integers. Researching the
index sets allows us to measure exact algorithmic complexities of different notions in constructive structures, that we are
investigating. We prove that the index set of all self-full computable linear orders isomorphic to the standard order of
natural numbers is a I13-complete set. We also prove that the index set of all self-full computable linear orders isomorphic
to the standard order of integers is I13-complete.
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KEWBIP CTAHJIAPT PETTEPTE HU30MOP®ThI 31 TOJIBIK
CBI3LIKTHI PETTEPIIH UHAEKCTI KU BIH/IAPBI

Anpnarna. baxxenos H.A., Kanmypsaes b.C., 3y0koB M.B. »yMbIcTapblH/a TIO3UTHUBTI CBHI3BIKTBIK PETTEP/iH OWHAPIIBI
KaTbIHACTAP/IbIH €CENTeNIM/II KOLIIPiTyiHe KaTICThI CyIIPEMYMbl MEH MH(GUMYMBIHBIH 0ap OO0Jybl Typajbl CYpaKTapblH
3eprrey OacranraH OosarbiH. JKYMBICTBIH COHFBI TapayblHIa OyJl Cypakrap HaTypall caHaapiblH CTaHAApTThl PeTiHEe
n30MOp(THI OOJIATHIH ecenTeNiM/Il ChI3BIKTBI PETTEPAiH KYPbUIBIMBIHAA KapacThIpbulabl. OnaH KeiiH, ACKapOeKKbI3bI
A., baxeno H.A., Kanmyp3aes b.C. xyMbICTapbIHAa OCBI KYPBUIBIM/BI 3€PTTEY KaJFachlH TanTbl. COHFBI )KYMBICTA
©31TOJIBIK CHI3BIKTBI PETTEP YFBIMBI YJIKEH pei oiiHa bl Erep R skapThl peTiH R-re KellipeTiH Ke3 KeJreH ecentenimMai g(x)
(DYHKIMSCBIHBIH MOHJIEP KHUBIHBI 0apIIbIK supp(R)-KiaccTapbIMeH KUbUIbICCA, R KapThl PETi 031 TOJIBIK PET eI aTasia/ibl.
by makanana Hartypasi caHIApIblH CTaHAApPT PETIHE XXKOHE OYTIH CaHAapIblH CTaHIAPT PETiHE M30MOP(THI OapIbIK
CBI3BIKTBIK PETTEPiH MHJICKCTI JKUBIHIAPBIHBIH aJTOPUTMJIIK KYPACIIIri HaKThl OarayaHajpl. MHAEKCTI dKHUBIHAAP/IbI
3epTTey KapacThIPbUIBII OTHIPFaH KOHCTPYKTHBTI KYPBUIBIMAAPAAFbl TYPIIi YFBIMAAPABIH HAKThI KYPIEIIriH Oaraayra
MYMKIiHIIK Oepeni. Hatypan canmapiblH CTaHAApPTThI PETiHE HU30MOPQTHI OOJNATHIH ©3ITONBIK SCEHTEIIM/II ChI3BIKTHI
peTTepiH MHAEKCTI KUbIHAAphl [13-TONBIK KUBIH GONATHIHABIFGI JoNelaeHe . ByTiH cannapiabH cTaHIapTThl PEeTiHe
130MOpPQTHI GONIATHIH ©31 TOJBIK €CENTENIMII ChI3BIKTHI PETTEPIH UHIAEKCTI JKUbIHAAPDI [13-TOJBIK XKUBIH GOJIATHIHIBIFbI
JoTeneHe .

Tipek co3mep: CbI3BIKTBI PET, ©31TOJIBIK PET, HHACKCTI KUbIH, €CENTENIM/II KOLIipy.
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UHIEKCHBIE MHOKECTBA CAMOIIOJIHBIX IUHEWHBIX IMTOPSAJIKOB, U30MOP®HBIX
HEKOTOPBIM CTAHAAPTHBIM IHOPAJKAM

Annoranusi. B pabore baxenoBa H.A., 3yoxoBa M.B., Kanmypsaesa b.C. Obuto Hawato mccienoBaHHe BOIPOCOB
CYIIECTBOBAHUSl CYNPEMYMOB M WH(QHUMYMOB IO3MTHBHBIX JIMHEHHBIX HPEINOPSIKOB OTHOCHTEIBHO BBIYHUCIUMBIX
CBOIMMOCTEW OMHApPHBIX OTHOIICHHUH, B ITOCIEIHEN TIIaBe 3TH BOIPOCHI OBUIM PACCMOTPEHBI B CTPYKTYPE BBIYHUCIUMBIX
JIMHEIHBIX MOPSIIKOB, N30MOP(HBIX CTAHIAPTHOMY TOPSIKY HaTypabHbIX yrcen. [anee, B pabore AckapOeKKbI3bI A.,
BaxenoBa H.A., Kammyp3aeBa Bb.C. ObpII0 TpOmODKEHO HCCIIENOBAaHWE JTOH CTPYKTYphl. B mociemneir pabote
HEMaJIOBaKHYIO POJIb CHITPAJIO MOHATHE CAMOIIONHBIX JIMHEHHBIX MOPSAKOB. [Ipeamnopsnok R Ha3bIBaeTCs CaMOIIOIHBIM,
ecJm JUTs JTI000H BBIYUCIMMON (QYHKIMHU g(X), OCyIIeCTBIIomel cBoquMocTh R B R, ee oOnacTh 3HaueHnit nepecexaer
Bce supp(R)-kmaccel. B nanHO# crathe OlEHMBAETCS TOYHAS AITOPUTMUYECKAsl CJIOKHOCTh WHJIEKCHBIX MHOXECTB
BCEX CaMOIIOJHBIX PEKYPCHBHBIX JIMHEHHBIX TOPSIAKOB, H30MOP(HBIX CTAaHIAPTHOMY IMOPS/IKY HaTypaJbHBIX YHCEN U
LeNbIX 9yncen. MccnenoBaHue WHACKCHBIX MHOKECTB MO3BONISET OLEHUTH TOYHYIO CIOKHOCTH PAa3IMYHBIX MOHATHH B
UCCIIEyeMbIX KOHCTPYKTHBHBIX CTPYKTypax. JlOKa3bIBa€TCsl, YTO MHIEKCHOE MHOXECTBO CaMOIOJIHBIX BBIYHCIUMBIX
JIMHEWHBIX TIOPSIKOB, H30MOP(MHBIX CTAHIAPTHOMY MOPSIIKY HATYPAJIbHBIX YHUCEN, ABISCTCS I13-TIONHBIM MHOKECTBOM.
Jloka3bIBaeTCs, 4TO MHIEKCHOE MHOXKECTBO CAMOTIOIHBIX BBIYNCITUMBIX TMHEHHBIX TIOPSIKOB, H30MOP(HBIX CTAHAAPTHOMY
MOPSIKY LENBIX YUCEN, SBISETCS [13-TIOMHBIM MHOXKECTBOM.

KiroueBrble cjioBa: TUHECHHBIN TOPAOOK, CaMOTIOJIHBIN MOpAA0K, MHACKCHOC MHOXXCCTBO, BBIYMUC/IMMAasA CBOANMOCTDL

Introduction

In this paper, we investigate the algorithmic complexity of positive preorders on the set of natural
numbers (we denote by w) and isomorphic to the standard order of natural numbers (we denote this
as w_), also to the standard order of integers (we denote this as (s ).

In this article, we keep the notations and terminology as in [1].

Let R, S be binary relations on w. We say that R is computably reducible to S (denoted by R<S),
if there is a computable function f{x) such that

xRy o f(x)Sf(y)

for all x,¥ € w. We say that R and S are computably equivalent (denoted by R =, S), if R<S
and S<RT].

There is a computable numbering a for the family of all positive preorders on w. For simplicity,
by P, we will denote the positive preorder with index i (i.e., we will consider a(i) = P). Given a class
K < {P.:x € w}, we say that I, = {x: P, € K} is an index set of the class K. Studying index sets allows
us to get an exact measure of the algorithmic complexity for different classes of positive preorders K.
Article [3] was completely devoted to researching index sets for different classes of positive preorders.

The papers [4-9] measured index sets of classes of positive equivalence relations in universal
numbering for the family of all positive equivalences.

Main provisions. Material and methods

Notation 3! x means that «there is a unique x», and 3* x means that «there are infinitely many x».
By Id we denote the identity equivalence relation on w. By card(A) we denote the cardinality of a set
A. Let R be a preorder and j € w, then by /1z we denote the set {x: (x,j) €R &(j,x) € R},

In proofs, we will use the following fact [10, Theorem 4.3.11]: A € x9 iff there is a computable
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ternary predicate R such that

« If x € A, then there is a unique y, that (3*°z)R(x,y, z);

« If x € A, then for any =(3%z) R(x, y, 2).

We will use the following notations:

Ceers = ({deg.(E): E is a positive equivalence}; SC),

Ceprs = ({deg.(P): P is a positive preorder}; <.)

Celps = ({deg.(L): L is a positive linear preorder}; <.).

Definition [7]. A preorder R is called self-full if for any reduction g: R <. R the following holds:
for any number j € w there is k € w, such that g(k) € [j]z

The papers [11, 12] studied the following structure:

Q = ({deg.(L): L is a computable linear order isomorphic to wg: }; <.)

Moreover, in [11] it was proved that there exists an antichain of self-full degrees above any given
degree a € Q. This fact implies that the structure Q has continuum many automorphisms. Also, in
[10] it was proved that there is no strong minimal cover for a non-self-full degree. This result implies
that, in the structure Q, the self-full degrees are precisely those elements that have a strong minimal
cover. Note that a linear order L € Q is self-full iff every computable function f # id does not
reduce L to L.

In this paper, we measure the index sets of the following classes:

s Ispq = {i: P; is a self-full linear order isomorphic to wg; };

» Isp; = {i: P; is a self-full linear order isomorphicto {}.

In particular, we prove that both sets are [13-complete sets.

Results and discussion

The index set I = {i: P; € O} is M13-complete. The upper bound is implied by the following:
P; € Q is equivalent to this condition:

P; is linear & P; is antisymmetric & (¥x)(3y)(Vz > y) [« <p; z]. (1)

The predicate x<p,z is computable, if P; is linear and antisymmetric. This means that the
predicate (1) is equivalent to a I13-sentence.

The lower bound for I follows from Theorem 3(a) in [13], or from Example 2 in [14].

Theorem 1. The index set Igzq = {i: P; is a self-full linear order isomorphic to wg} is 13
-complete.

Proof. Self-fulness of P; is equivalent to the following:

(ve) | 3y(pe ) DV [V [t <5, v © 9o(@) S5, 9o ()] > (vVaTD) (a~p,00 )|

which is equivalent to a [13-condition. From the proof given above, P; €  is equivalent to a 13
-condition. Then, the conjunction of these conditions is also equivalent to a M3-condition.

Now we show the completeness. Suppose that a set 4 belongs to the class I13. Then there is a
computable relation Q (x, y, z) such that

x¢Ae Aly)3®2)Q(x,y,2)

For every e € w we satisfy the following requirements for the constructed order L = L :

« SF:if @, # id, then ¢_does not reduce L to L.

. IS:if @*2)Q(x,€,2),then L & Q.

In the construction of relation Z there will be conflicts between strategies, which will be resolved
by finite injury priority. Assume that the set of SF-strategies is linearly ordered of type w: for instance,
SFy < SF; < ---. Agiven strategy IS, does not conflict with the other strategies, so IS, essentially will
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work in the background mode.

In the strategy SF, we say that 2x is a fresh number if 2x, is greater than . (a) L for the
higher priority strategies SFer, e’ < e. In the construction, a notion “putting a fresh number
after some number o in the order L_at some stage s+1” means that we define Lygs4; = Lys U

{(Z: y):a <Lys }’} U {(}’: z):y Sk a}’ where z is the least odd number not in dom(L,. ).

STRATEGY for SF

1. Wait for a fresh number 2x, such that @, (2x.) 1>, 2x,;

2. Let @ = @.(2x,). Wait until ¥e(@) is defined;

3. If @e(a) L >, a, then put k == card([a, ¢.(a)],) fresh numbers after 2x . Every time
when card([a, ¢.(a)],) increases, we will put a fresh number after 2x .

Strategy SF has two outcomes:

wait: Stuck at step 1 or step 2. Then one of the following is true:

(a) The function ¢, is not total.

(b) ®e(2x.) 1<) 2x,, or p.(a) <, a. Then ¢_=id or ¢, does not reduce L to L.

In both cases the requirement SF is satisfied.

act: Reaching step 3. If ¢,(a) <, a, then the requirement is satisfied. Otherwise,
card([2x,; a];,) > card([a; p.(@)].). Then ¢, cannot be a computable reduction from L to L,
and in this case we initialize the lower priority strategies of type SF, which chose 2x, less than ¢ (a),
as its own number at step 1. “The strategy SF is initialized” means that this strategy starts again from
its step 1.

STRATEGY for IS ;

1. Choose the number 2e;

2. Let k == card({z: Q(x, e, z)}). Put k fresh odd numbers after 2¢ in L.

CONSTRUCTION.

At stage 0, we assume that Ly o = {(22,2y):z < y}.

At stage s+ we visit all strategies SF, and IS, for i<s. In IS, we define k as card({z: Q(x,i,z)
& z < s}). And in IS, all conditions will be considered at the stage s.

Define Lx =Usew Lxs.

Lemma 1.1. L_is a linear order on w.

Proof. It is known that the function f'(x) = x+2 has infinitely many G6del numbers (let @¢, = f).
Then (pei(eri) 1 and strictly greater than 2x,, for every e. Moreover, (pei(eri) =2x,, +2=a
s Qe (a) | and strictly greater than a. According to the strategy SFe,, at least one odd number should
be put after v2xel.. Since there are infinitely many such e, each odd number will be put after some
number. Hence, L, is a linear order on w.

Lemma 1.2.If x € A, then L, ¥ w.

Proof. Let x & A, then (3'y)(3*2)Q(x,y,2). Inside the interval [2y,2y + 2], , the
construction builds ®". Hence, L, % w.

Lemma 1.3.If x ¢ A, then Ly # w.

Proof. Let z be a natural number. We show that only finitely many elements will be
enumerated inside [2z,2z + 2] L, According to the strategy IS, by the construction precisely
k := card({z: Q(x,e,z)}) elements will be enumerated after the number 2z (i.e., finitely many
elements).

This number 2z can be the fresh number 2x_for some strategies SF. Let SFp, be the first
strategy, which reached step 3. At the first stage s, when it happened, it is obvious that the interval

[a; Pe, (a)] Lys, 1s finite. Consequently, there are finitely many intervals [2y,2y + Z]Lx in this
interval. If new elements are enumerated inside the interval [2y, 2y + 2], according to the strategy
IS, then some elements after 2x_could be enumerated.
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In addition, another strategy with higher priority SF', can pick 2z as its own number at step 1 and
reach step 3. In this case, every action from above will be repeated. Since there are only finitely many
strategies with higher priority, in the end only finitely many elements will be enumerated inside the

interval [22, 2z + 2]
Since z is an arbltrary number, the constructed order L_will be isomorphic to w.
The sequence (Ly)xee is a computable numbering of some subfamily of the family of all positive

preorders. Consequently, there is a computable function f'such that Ly = Pr(x) for every x € w.

X €A f(x)€ .

Theorem 1 is proved.
For i € w, the preorder P; is a computable linear order isomorphic to {s¢ if and only if:

P; is linear & P; is antisymmetric &

—[3x vy (x <p, ¥)]|& =[x Vy (x =p, ¥)]|&(Vx,¥)(32)
(Vu)[x <p, u <p, y—>u<z] )
The predicate X <p, Z is computable, if P; is linear and antisymmetric. Hence, the predicate (2)

is equivalent to a H3-sentence
Theorem 2. The index set Isp; = {x: P, is a self-full linear order isomorphicto {} is

Hg-complete.
Proof. We take the order L_constructed in Theorem 1, and we define the order Z_as follows:

assz<—>[a=2k&b=2m&kSLxm]v
l[a=2k+1&b=2m+1&m <, _k|v
[a=2k+1&b =2m]

Suppose that L _is a self-full order isomorphic to w . We show self-fullness of Z by reduction to a
contradiction. Assume that Z_is a non-self-full order. Then there is a computable functlon f(x) #id
that reduces Z to Z . Let ¢ be an element such that f(t) # t. We construct a function g:w — w as

follows:
« if f(t) <z, t. then

v, 2y+1>, ¢,
gy ={fQy+1 -1

> , 2y +1 Szx t.
o« ift <z f(0), then
Y 2_')/ <Zx L,
= 2
9 =1f( y)’ 2y >, t.

2

A simple analysis shows that the function g(x) # id computably reduces L_to L, which

contradicts the self-fullness of L .
If Ly # wg, then it is obv10us that Z, % . Thus, reduction of an arbitrary H3 set Fto [,

can be proved as in Theorem 1.
Theorem 2 is proved.

Conclusion
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Upper bound of the index sets of these classes was found:

o Ispq = {i: P; is a self-full linear order isomorphic to wy; };
* Ispz = {i: P; is a self-full linear order isomorphic to g }-

It is proved that both sets are l'[g-complete sets.
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