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Abstract. The paper is devoted to research existence property of universal numberings for different computable families. 
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proved that there is no universal numbering for the family of all recursive sets. For families of 
c.e. sets without an empty set or a finite number of finite sets, there still exists a universal 
numbering. However, for families of all c.e. sets without an infinite set, there is no universal 
numbering. Also, we proved that family Σ2−1 ∖ 𝐵𝐵 and the family Σ1−1 has no universal Σ2−1-
computable numbering for any 𝐵𝐵 ∈ Σ2−1. 
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УНИВЕРСАЛДЫҚ САНДАРДЫҢ БАР БОЛУЫ ТУРАЛЫ 

 
Аңдатпа. Бұл мақала әр түрлі есептелімді үйірлердің универсал нөмірлеулері табылу қасиеттерін 
зерттеуге бағытталған. Қандайда бір 𝛼𝛼 нөмірлеуі басқа бір 𝛽𝛽 нөмірлеуіне көшіріледі деп 
аталынады. Егер 𝛼𝛼 = 𝛽𝛽 ∘ 𝑓𝑓 теңдігін қанағаттандыратын 𝑓𝑓 есептелімді функциясы табылатын 
болса, кез келген 𝑆𝑆 үйірі үшін 𝛼𝛼 нөмірлеуі универсал болып табылады. Егер 𝑆𝑆 үйіріндегі кез келген 
𝛽𝛽 нөмірлеуі 𝛼𝛼 нөмірлеуіне көшірілетін болса, барлық рекурсив саналымды (р. с.) жиындар үйірінің 
универсал нөмірлеуі табылатындығы белгілі. Біз барлық дерлік жиындардың үйірлерін, рекурсив 
жиындардың және барлық дерлік р. с. жиындардың айырымының үйірлері үшін универсал 
нөмірлеулері табылатын табылмайтын қасиеттерін зерттейміз. Біз барлық рекурсив жиындардың 
үйірінде универсал нөмірлеу жоқ екенін дәлелдедік. Сондай-ақ, бос элементі жоқ, ақырлы 
жиындардың ақырлы саны жоқ р. с. жиындардың үйірінде универсал нөмірлеу болатынын 
көрсеттік. Ал ақырсыз р. с. жиыны жоқ барлық р. с. жиындардың үйіріне келетін болсақ, бұл 
жағдайда универсал нөмірлеу болмайтынын дәлелдедік. Сондай-ақ, біз Σ2−1 ∖ 𝐵𝐵 және Σ1−1 
үйірлерінде кез келген 𝐵𝐵 ∈ Σ2−1 үшін Σ2−1-есептелімді нөмірлеу болмайтынын дәлелдедік. 
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Аннотация. Данная статья посвящена исследованию свойства существования универсальных нумераций для 
различных семейств. Говорят, что нумерация α сводится к нумерации β, если существует вычислимая функция 
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. Вычислимая нумерация α для некоторого семейства S универсальна, если любая 
вычислимая нумерация β для семейства S сводится к α. Хорошо известно, что семейство всех вычислимо 
перечислимых (в.п.) множеств имеет вычислимую универсальную нумерацию. В данной работе мы изучаем 
семейства почти всех в.п. множеств, рекурсивные множества и почти все разности в.п. множеств, а именно 
вопросы о существовании универсальных нумераций для данных семейств. Мы доказали, что для семейства 
всех рекурсивных множеств не существует универсальной нумерации. Также для семейств в.п. множества без 
пустого элемента, без конечного числа конечных множеств, все еще есть универсальная нумерация. Что касается 
семейств всех в.п. множества без бесконечного множества, то в этом случае универсальной нумерации не будет. 
Также мы доказываем, что семейство 
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О СУЩЕСТВОВАНИИ УНИВЕРСАЛЬНЫХ НУМЕРАЦИЙ 
 
Аннотация. Данная статья посвящена исследованию свойства существования 
универсальных нумераций для различных семейств. Говорят, что нумерация 𝛼𝛼 сводится к 
нумерации 𝛽𝛽, если существует вычислимая функция 𝑓𝑓 такая, что 𝛼𝛼 = 𝛽𝛽 ∘ 𝑓𝑓. Вычислимая 
нумерация 𝛼𝛼 для некоторого семейства 𝑆𝑆 универсальна, если любая вычислимая 
нумерация 𝛽𝛽 для семейства 𝑆𝑆 сводится к 𝛼𝛼. Хорошо известно, что семейство всех 
вычислимо перечислимых (в.п.) множеств имеет вычислимую универсальную нумерацию. 
В данной работе мы изучаем семейства почти всех в.п. множеств, рекурсивные множества 
и почти все разности в.п. множеств, а именно вопросы о существовании универсальных 
нумераций для данных семейств. Мы доказали, что для семейства всех рекурсивных 
множеств не существует универсальной нумерации. Также для семейств в.п. множества 
без пустого элемента, без конечного числа конечных множеств, все еще есть 
универсальная нумерация. Что касается семейств всех в.п. множества без бесконечного 
множества, то в этом случае универсальной нумерации не будет. Также мы доказываем, 
что семейство Σ2

−1 ∖ 𝐵𝐵 и семейство Σ1
−1 не имеют универсальной Σ2

−1-вычислимой 
нумерации для любой 𝐵𝐵 ∈ Σ2

−1.  
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1. Introduction 
The paper studies computable numberings for different families. In particular, we will 

investigate families for the existence of computable numberings and universal numberings.  
The standard numberings of the family of all c.e. sets and of the family of all unary 

partial computable functions are denoted by {𝑊𝑊𝑥𝑥}𝑥𝑥∈𝜔𝜔 and {𝜑𝜑𝑥𝑥}𝑥𝑥∈𝜔𝜔, respectively. A binary 
function ⟨𝑥𝑥, 𝑦𝑦⟩ given by the rule 
 

⟨𝑥𝑥, 𝑦𝑦⟩ =  
(𝑥𝑥 + 𝑦𝑦)2 + 3𝑥𝑥 + 𝑦𝑦

2  
 
is a bijection of 𝜔𝜔2 onto 𝜔𝜔, which is called Cantor’s pairing function. By l and r we denote the 
uniquely defined functions such that ⟨𝑙𝑙(𝑥𝑥), 𝑟𝑟(𝑥𝑥)⟩ = 𝑥𝑥, 𝑙𝑙(⟨ 𝑥𝑥, 𝑦𝑦⟩)  =  𝑥𝑥, and 𝑟𝑟(⟨𝑥𝑥, 𝑦𝑦⟩) = 𝑦𝑦 for all 
𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. For a finite set X we denote its cardinality by 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐(𝑋𝑋). 

Let S be any countable set. By [1] any surjective mapping of the set of all natural 
numbers 𝜔𝜔 onto S is called numbering for the family S. 

We say that numbering 𝛼𝛼 is computable if the set {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is computably 
enumerable, and by 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) we denote the set of all computable numberings for the family S. A 
family S is called computable if 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) is non-empty. 

A numbering 𝛼𝛼 is reducible to 𝛽𝛽, if there exists a computable function 𝑓𝑓 such that 
𝛼𝛼(𝑥𝑥) = 𝛽𝛽(𝑓𝑓(𝑥𝑥)) for all 𝑥𝑥 ∈ 𝜔𝜔, and we denote it as 𝛼𝛼 ≤ 𝛽𝛽. 

We say that numberings 𝛼𝛼, 𝛽𝛽 are equivalent if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛽𝛽 ≤ 𝛼𝛼, and denote it as 𝛼𝛼 ≡ 𝛽𝛽. 
By 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) we denote the set of all numberings which equivalent to 𝛼𝛼, i.e. 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) = {𝛽𝛽: 𝛽𝛽 ≡
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is a bijection of 𝜔𝜔2 onto 𝜔𝜔, which is called Cantor’s pairing function. By l and r we denote the 
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𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. For a finite set X we denote its cardinality by 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐(𝑋𝑋). 

Let S be any countable set. By [1] any surjective mapping of the set of all natural 
numbers 𝜔𝜔 onto S is called numbering for the family S. 

We say that numbering 𝛼𝛼 is computable if the set {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is computably 
enumerable, and by 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) we denote the set of all computable numberings for the family S. A 
family S is called computable if 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) is non-empty. 

A numbering 𝛼𝛼 is reducible to 𝛽𝛽, if there exists a computable function 𝑓𝑓 such that 
𝛼𝛼(𝑥𝑥) = 𝛽𝛽(𝑓𝑓(𝑥𝑥)) for all 𝑥𝑥 ∈ 𝜔𝜔, and we denote it as 𝛼𝛼 ≤ 𝛽𝛽. 

We say that numberings 𝛼𝛼, 𝛽𝛽 are equivalent if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛽𝛽 ≤ 𝛼𝛼, and denote it as 𝛼𝛼 ≡ 𝛽𝛽. 
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𝛼𝛼}. For family S the degree structure ({𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼): 𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆)}, ≤) is called Rogers semilattice of 
S. It is important to note that if the Rogers semilattice has the largest element, then the 
numberings to this degree are called universal. That is, a computable numbering 𝛼𝛼 of a family S 
is called universal if 𝛽𝛽 ≤ 𝛼𝛼 for all computable numberings 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆). More details about the 
properties of the classical Rogers semilattice can be found, for example, in [1-13]. 

Later, in [14], it was proposed to generalize the concepts of the Rogers semilattice for 
various computational classes. In this paper, we will be interested in generalizations for the 
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⟨𝑥𝑥, 𝑦𝑦⟩ =  
(𝑥𝑥 + 𝑦𝑦)2 + 3𝑥𝑥 + 𝑦𝑦
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𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. For a finite set X we denote its cardinality by 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐(𝑋𝑋). 

Let S be any countable set. By [1] any surjective mapping of the set of all natural 
numbers 𝜔𝜔 onto S is called numbering for the family S. 
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is called universal if 𝛽𝛽 ≤ 𝛼𝛼 for all computable numberings 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆). More details about the 
properties of the classical Rogers semilattice can be found, for example, in [1-13]. 

Later, in [14], it was proposed to generalize the concepts of the Rogers semilattice for 
various computational classes. In this paper, we will be interested in generalizations for the 
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1. Introduction 
The paper studies computable numberings for different families. In particular, we will 

investigate families for the existence of computable numberings and universal numberings.  
The standard numberings of the family of all c.e. sets and of the family of all unary 

partial computable functions are denoted by {𝑊𝑊𝑥𝑥}𝑥𝑥∈𝜔𝜔 and {𝜑𝜑𝑥𝑥}𝑥𝑥∈𝜔𝜔, respectively. A binary 
function ⟨𝑥𝑥, 𝑦𝑦⟩ given by the rule 
 

⟨𝑥𝑥, 𝑦𝑦⟩ =  
(𝑥𝑥 + 𝑦𝑦)2 + 3𝑥𝑥 + 𝑦𝑦

2  
 
is a bijection of 𝜔𝜔2 onto 𝜔𝜔, which is called Cantor’s pairing function. By l and r we denote the 
uniquely defined functions such that ⟨𝑙𝑙(𝑥𝑥), 𝑟𝑟(𝑥𝑥)⟩ = 𝑥𝑥, 𝑙𝑙(⟨ 𝑥𝑥, 𝑦𝑦⟩)  =  𝑥𝑥, and 𝑟𝑟(⟨𝑥𝑥, 𝑦𝑦⟩) = 𝑦𝑦 for all 
𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. For a finite set X we denote its cardinality by 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐(𝑋𝑋). 

Let S be any countable set. By [1] any surjective mapping of the set of all natural 
numbers 𝜔𝜔 onto S is called numbering for the family S. 

We say that numbering 𝛼𝛼 is computable if the set {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is computably 
enumerable, and by 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) we denote the set of all computable numberings for the family S. A 
family S is called computable if 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) is non-empty. 

A numbering 𝛼𝛼 is reducible to 𝛽𝛽, if there exists a computable function 𝑓𝑓 such that 
𝛼𝛼(𝑥𝑥) = 𝛽𝛽(𝑓𝑓(𝑥𝑥)) for all 𝑥𝑥 ∈ 𝜔𝜔, and we denote it as 𝛼𝛼 ≤ 𝛽𝛽. 

We say that numberings 𝛼𝛼, 𝛽𝛽 are equivalent if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛽𝛽 ≤ 𝛼𝛼, and denote it as 𝛼𝛼 ≡ 𝛽𝛽. 
By 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) we denote the set of all numberings which equivalent to 𝛼𝛼, i.e. 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) = {𝛽𝛽: 𝛽𝛽 ≡
𝛼𝛼}. For family S the degree structure ({𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼): 𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆)}, ≤) is called Rogers semilattice of 
S. It is important to note that if the Rogers semilattice has the largest element, then the 
numberings to this degree are called universal. That is, a computable numbering 𝛼𝛼 of a family S 
is called universal if 𝛽𝛽 ≤ 𝛼𝛼 for all computable numberings 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆). More details about the 
properties of the classical Rogers semilattice can be found, for example, in [1-13]. 

Later, in [14], it was proposed to generalize the concepts of the Rogers semilattice for 
various computational classes. In this paper, we will be interested in generalizations for the 
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1. Introduction 
The paper studies computable numberings for different families. In particular, we will 

investigate families for the existence of computable numberings and universal numberings.  
The standard numberings of the family of all c.e. sets and of the family of all unary 

partial computable functions are denoted by {𝑊𝑊𝑥𝑥}𝑥𝑥∈𝜔𝜔 and {𝜑𝜑𝑥𝑥}𝑥𝑥∈𝜔𝜔, respectively. A binary 
function ⟨𝑥𝑥, 𝑦𝑦⟩ given by the rule 
 

⟨𝑥𝑥, 𝑦𝑦⟩ =  
(𝑥𝑥 + 𝑦𝑦)2 + 3𝑥𝑥 + 𝑦𝑦
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is a bijection of 𝜔𝜔2 onto 𝜔𝜔, which is called Cantor’s pairing function. By l and r we denote the 
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𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. For a finite set X we denote its cardinality by 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐(𝑋𝑋). 

Let S be any countable set. By [1] any surjective mapping of the set of all natural 
numbers 𝜔𝜔 onto S is called numbering for the family S. 

We say that numbering 𝛼𝛼 is computable if the set {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is computably 
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We say that numberings 𝛼𝛼, 𝛽𝛽 are equivalent if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛽𝛽 ≤ 𝛼𝛼, and denote it as 𝛼𝛼 ≡ 𝛽𝛽. 
By 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) we denote the set of all numberings which equivalent to 𝛼𝛼, i.e. 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) = {𝛽𝛽: 𝛽𝛽 ≡
𝛼𝛼}. For family S the degree structure ({𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼): 𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆)}, ≤) is called Rogers semilattice of 
S. It is important to note that if the Rogers semilattice has the largest element, then the 
numberings to this degree are called universal. That is, a computable numbering 𝛼𝛼 of a family S 
is called universal if 𝛽𝛽 ≤ 𝛼𝛼 for all computable numberings 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆). More details about the 
properties of the classical Rogers semilattice can be found, for example, in [1-13]. 

Later, in [14], it was proposed to generalize the concepts of the Rogers semilattice for 
various computational classes. In this paper, we will be interested in generalizations for the 
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1. Introduction 
The paper studies computable numberings for different families. In particular, we will 

investigate families for the existence of computable numberings and universal numberings.  
The standard numberings of the family of all c.e. sets and of the family of all unary 

partial computable functions are denoted by {𝑊𝑊𝑥𝑥}𝑥𝑥∈𝜔𝜔 and {𝜑𝜑𝑥𝑥}𝑥𝑥∈𝜔𝜔, respectively. A binary 
function ⟨𝑥𝑥, 𝑦𝑦⟩ given by the rule 
 

⟨𝑥𝑥, 𝑦𝑦⟩ =  
(𝑥𝑥 + 𝑦𝑦)2 + 3𝑥𝑥 + 𝑦𝑦
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is a bijection of 𝜔𝜔2 onto 𝜔𝜔, which is called Cantor’s pairing function. By l and r we denote the 
uniquely defined functions such that ⟨𝑙𝑙(𝑥𝑥), 𝑟𝑟(𝑥𝑥)⟩ = 𝑥𝑥, 𝑙𝑙(⟨ 𝑥𝑥, 𝑦𝑦⟩)  =  𝑥𝑥, and 𝑟𝑟(⟨𝑥𝑥, 𝑦𝑦⟩) = 𝑦𝑦 for all 
𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. For a finite set X we denote its cardinality by 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐(𝑋𝑋). 

Let S be any countable set. By [1] any surjective mapping of the set of all natural 
numbers 𝜔𝜔 onto S is called numbering for the family S. 

We say that numbering 𝛼𝛼 is computable if the set {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is computably 
enumerable, and by 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) we denote the set of all computable numberings for the family S. A 
family S is called computable if 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) is non-empty. 

A numbering 𝛼𝛼 is reducible to 𝛽𝛽, if there exists a computable function 𝑓𝑓 such that 
𝛼𝛼(𝑥𝑥) = 𝛽𝛽(𝑓𝑓(𝑥𝑥)) for all 𝑥𝑥 ∈ 𝜔𝜔, and we denote it as 𝛼𝛼 ≤ 𝛽𝛽. 

We say that numberings 𝛼𝛼, 𝛽𝛽 are equivalent if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛽𝛽 ≤ 𝛼𝛼, and denote it as 𝛼𝛼 ≡ 𝛽𝛽. 
By 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) we denote the set of all numberings which equivalent to 𝛼𝛼, i.e. 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) = {𝛽𝛽: 𝛽𝛽 ≡
𝛼𝛼}. For family S the degree structure ({𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼): 𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆)}, ≤) is called Rogers semilattice of 
S. It is important to note that if the Rogers semilattice has the largest element, then the 
numberings to this degree are called universal. That is, a computable numbering 𝛼𝛼 of a family S 
is called universal if 𝛽𝛽 ≤ 𝛼𝛼 for all computable numberings 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆). More details about the 
properties of the classical Rogers semilattice can be found, for example, in [1-13]. 

Later, in [14], it was proposed to generalize the concepts of the Rogers semilattice for 
various computational classes. In this paper, we will be interested in generalizations for the 
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1. Introduction 
The paper studies computable numberings for different families. In particular, we will 

investigate families for the existence of computable numberings and universal numberings.  
The standard numberings of the family of all c.e. sets and of the family of all unary 

partial computable functions are denoted by {𝑊𝑊𝑥𝑥}𝑥𝑥∈𝜔𝜔 and {𝜑𝜑𝑥𝑥}𝑥𝑥∈𝜔𝜔, respectively. A binary 
function ⟨𝑥𝑥, 𝑦𝑦⟩ given by the rule 
 

⟨𝑥𝑥, 𝑦𝑦⟩ =  
(𝑥𝑥 + 𝑦𝑦)2 + 3𝑥𝑥 + 𝑦𝑦

2  
 
is a bijection of 𝜔𝜔2 onto 𝜔𝜔, which is called Cantor’s pairing function. By l and r we denote the 
uniquely defined functions such that ⟨𝑙𝑙(𝑥𝑥), 𝑟𝑟(𝑥𝑥)⟩ = 𝑥𝑥, 𝑙𝑙(⟨ 𝑥𝑥, 𝑦𝑦⟩)  =  𝑥𝑥, and 𝑟𝑟(⟨𝑥𝑥, 𝑦𝑦⟩) = 𝑦𝑦 for all 
𝑥𝑥, 𝑦𝑦 ∈ 𝜔𝜔. For a finite set X we denote its cardinality by 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐(𝑋𝑋). 

Let S be any countable set. By [1] any surjective mapping of the set of all natural 
numbers 𝜔𝜔 onto S is called numbering for the family S. 

We say that numbering 𝛼𝛼 is computable if the set {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is computably 
enumerable, and by 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) we denote the set of all computable numberings for the family S. A 
family S is called computable if 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆) is non-empty. 

A numbering 𝛼𝛼 is reducible to 𝛽𝛽, if there exists a computable function 𝑓𝑓 such that 
𝛼𝛼(𝑥𝑥) = 𝛽𝛽(𝑓𝑓(𝑥𝑥)) for all 𝑥𝑥 ∈ 𝜔𝜔, and we denote it as 𝛼𝛼 ≤ 𝛽𝛽. 

We say that numberings 𝛼𝛼, 𝛽𝛽 are equivalent if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛽𝛽 ≤ 𝛼𝛼, and denote it as 𝛼𝛼 ≡ 𝛽𝛽. 
By 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) we denote the set of all numberings which equivalent to 𝛼𝛼, i.e. 𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼) = {𝛽𝛽: 𝛽𝛽 ≡
𝛼𝛼}. For family S the degree structure ({𝑐𝑐𝑑𝑑𝑑𝑑(𝛼𝛼): 𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆)}, ≤) is called Rogers semilattice of 
S. It is important to note that if the Rogers semilattice has the largest element, then the 
numberings to this degree are called universal. That is, a computable numbering 𝛼𝛼 of a family S 
is called universal if 𝛽𝛽 ≤ 𝛼𝛼 for all computable numberings 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆). More details about the 
properties of the classical Rogers semilattice can be found, for example, in [1-13]. 

Later, in [14], it was proposed to generalize the concepts of the Rogers semilattice for 
various computational classes. In this paper, we will be interested in generalizations for the 
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. More details about the properties of the classical Rogers semilattice can be found, for example, 
in [1-13].

Later, in [14], it was proposed to generalize the concepts of the Rogers semilattice for various computational 
classes. In this paper, we will be interested in generalizations for the Ershov hierarchy. Recall here that a set 

Ershov hierarchy. Recall here that a set 𝐴𝐴 ⊆ 𝜔𝜔 is in Ershov’s hierarchy class Σ𝑛𝑛
−1 if A is 𝑛𝑛-

computably enumerable (𝑛𝑛-c.e.), i.e., if 𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠 𝐴𝐴𝑠𝑠 for a uniformly computable sequence of 
functions 𝐴𝐴𝑠𝑠 such that 𝐴𝐴0 = ∅ and for each 𝑥𝑥, there are at most 𝑛𝑛 many 𝑠𝑠 such that 𝐴𝐴𝑠𝑠(𝑥𝑥) ≠
𝐴𝐴𝑠𝑠+1(𝑥𝑥). Here, by 𝐴𝐴𝑠𝑠(𝑥𝑥) we denote the characteristic function for the set 𝐴𝐴𝑠𝑠. Furthermore, a set 
𝐴𝐴 is a difference of computably enumerable sets (𝑑𝑑-c.e.) if 𝐴𝐴 is 2-c.e., i.e., if 𝐴𝐴 is of the form 
𝐴𝐴0 ∖ 𝐴𝐴1 for computably enumerable sets 𝐴𝐴0 and 𝐴𝐴1. 

2. Main provisions. Material and methods. 
We call a numbering 𝛼𝛼 for a family 𝑆𝑆 is Σ𝑛𝑛

−1-computable (or equivalently, 𝑛𝑛-
computable), if the relation {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is in Σ𝑛𝑛

−1. Note that if a family of sets 𝑆𝑆 has a Σ𝑛𝑛
−1-

computable numbering, then every set in 𝑆𝑆 is in Σ𝑛𝑛
−1. For a family 𝑆𝑆 by 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) we will 
denote the set of all Σ𝑛𝑛

−1-computable numberings for the family 𝑆𝑆. The quotient structure of 
𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) modulo equivalence of the numberings ordered by the relation reducibility of 
numberings is also called Rogers semilattice and denote it as ℛ𝑛𝑛

−1(𝑆𝑆). Similarly, a numbering 
𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) is called universal in 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛
−1(𝑆𝑆) if 𝛽𝛽 ≤ 𝛼𝛼 for all 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆).  
The study of Rogers semilattices in the Ershov hierarchy is interesting because in it a 

number of unexpected results have been obtained. For example, it was shown in [15] that there is 
a family 𝑆𝑆 consisting of just two 𝑑𝑑-c.e. sets such that 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(𝑆𝑆) has no universal numbering, 
despite the fact that in classical numbering theory every finite family has a universal numbering. 
Khutoretskii’s theorem states that the Rogers semilattice of any family of c.e. sets have either at 
most one or infinitely many elements [9]. Furthermore, a lemma used in the inductive step of the 
proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is 
possible for some family of 𝑑𝑑-c.e. sets. The question of whether the full statement of 
Khutoretskii’s Theorem fails for families of 𝑑𝑑-c.e. sets remains open. In view of the properties of 
the F. Stephan operator [17], it suffices to research Rogers semilattices for families of sets at two 
lower levels in the Ershov hierarchy. Other results on Rogers semilattices in Ershov hierarchy 
can be found, for example, in [18-26]. 

In section 2.1, we prove that the following families have no universal computable 
numberings: the family of all computable sets (theorem 1); for any infinite c.e. set 𝐴𝐴 the family 
of all c.e. sets without set 𝐴𝐴 (theorem 3). In case when 𝐴𝐴 is a finite set, then the family of all c.e. 
sets without set 𝐴𝐴 has a universal computable numbering (theorem 2). From this result in the set 
of all c.e. sets we can characterize finite sets in terms of Rogers semilattices. Namely, a c.e. set 𝐴𝐴 
is finite iff Rogers semilattice ℛ1

−1(Σ1
−1 ∖ 𝐴𝐴) has the greatest element (corollary 2). In section 2.2 

we focused on Σ2
−1-computable numberings. In particular, we prove that the following families 

have no universal Σ2
−1-computable numberings: the family of all c.e. sets; for any 𝑑𝑑-c.e. set 𝐴𝐴 the 

family Σ2
−1 ∖ 𝐴𝐴. 

3. Results and Discussion 
3.1. Computable numberings 

This section provides the proofs of existence (or not) of the computable numberings and 
universal computable numberings for some families of c.e. sets. Let's denote by 𝑅𝑅𝑅𝑅𝑅𝑅 the family 
of all computable sets. 

Theorem 1. The family 𝑅𝑅𝑅𝑅𝑅𝑅 is computable and 𝑅𝑅𝑅𝑅𝑅𝑅 has no universal computable 
numbering. 

Proof. First of all, we will prove that the family 𝑅𝑅𝑅𝑅𝑅𝑅 has a computable numbering (see 
also [27]). We will construct, step by step, an approximation for numbering 𝜈𝜈 as follow: we 
present the construction for a fixed number 𝑅𝑅 and additional, we will construct a computable 
function 𝑟𝑟. 
Step 0. Assume that 𝜈𝜈0(𝑅𝑅) = ∅ and 𝑟𝑟(0) = 0. 
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−1(𝑆𝑆). Similarly, a numbering 
𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) is called universal in 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛
−1(𝑆𝑆) if 𝛽𝛽 ≤ 𝛼𝛼 for all 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆).  
The study of Rogers semilattices in the Ershov hierarchy is interesting because in it a 

number of unexpected results have been obtained. For example, it was shown in [15] that there is 
a family 𝑆𝑆 consisting of just two 𝑑𝑑-c.e. sets such that 𝐶𝐶𝐶𝐶𝑚𝑚2
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Khutoretskii’s theorem states that the Rogers semilattice of any family of c.e. sets have either at 
most one or infinitely many elements [9]. Furthermore, a lemma used in the inductive step of the 
proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is 
possible for some family of 𝑑𝑑-c.e. sets. The question of whether the full statement of 
Khutoretskii’s Theorem fails for families of 𝑑𝑑-c.e. sets remains open. In view of the properties of 
the F. Stephan operator [17], it suffices to research Rogers semilattices for families of sets at two 
lower levels in the Ershov hierarchy. Other results on Rogers semilattices in Ershov hierarchy 
can be found, for example, in [18-26]. 

In section 2.1, we prove that the following families have no universal computable 
numberings: the family of all computable sets (theorem 1); for any infinite c.e. set 𝐴𝐴 the family 
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of all c.e. sets we can characterize finite sets in terms of Rogers semilattices. Namely, a c.e. set 𝐴𝐴 
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we focused on Σ2
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−1(𝑆𝑆) has no universal numbering, 
despite the fact that in classical numbering theory every finite family has a universal numbering. 
Khutoretskii’s theorem states that the Rogers semilattice of any family of c.e. sets have either at 
most one or infinitely many elements [9]. Furthermore, a lemma used in the inductive step of the 
proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is 
possible for some family of 𝑑𝑑-c.e. sets. The question of whether the full statement of 
Khutoretskii’s Theorem fails for families of 𝑑𝑑-c.e. sets remains open. In view of the properties of 
the F. Stephan operator [17], it suffices to research Rogers semilattices for families of sets at two 
lower levels in the Ershov hierarchy. Other results on Rogers semilattices in Ershov hierarchy 
can be found, for example, in [18-26]. 

In section 2.1, we prove that the following families have no universal computable 
numberings: the family of all computable sets (theorem 1); for any infinite c.e. set 𝐴𝐴 the family 
of all c.e. sets without set 𝐴𝐴 (theorem 3). In case when 𝐴𝐴 is a finite set, then the family of all c.e. 
sets without set 𝐴𝐴 has a universal computable numbering (theorem 2). From this result in the set 
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3. Results and Discussion 
3.1. Computable numberings 
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Khutoretskii’s Theorem fails for families of 𝑑𝑑-c.e. sets remains open. In view of the properties of 
the F. Stephan operator [17], it suffices to research Rogers semilattices for families of sets at two 
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can be found, for example, in [18-26]. 
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present the construction for a fixed number 𝑅𝑅 and additional, we will construct a computable 
function 𝑟𝑟. 
Step 0. Assume that 𝜈𝜈0(𝑅𝑅) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If ∀ 𝑦𝑦 ≤ 𝑟𝑟(𝑠𝑠) [𝜑𝜑𝑒𝑒,𝑠𝑠(𝑦𝑦) ↓∈ {0,1}], then assume that 
 

𝜈𝜈𝑠𝑠+1(𝑅𝑅) = {𝑥𝑥: 𝑥𝑥 ≤ 𝑟𝑟(𝑠𝑠) & 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑥𝑥) = 1}  𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 

. 

МАТЕМАТИЧЕСКИЕ НАУКИ 



ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №1 (64), 2023

16

The study of Rogers semilattices in the Ershov hierarchy is interesting because in it a number of unexpected 
results have been obtained. For example, it was shown in [15] that there is a family S consisting of just two 
d-c.e. sets such that 

Ershov hierarchy. Recall here that a set 𝐴𝐴 ⊆ 𝜔𝜔 is in Ershov’s hierarchy class Σ𝑛𝑛
−1 if A is 𝑛𝑛-

computably enumerable (𝑛𝑛-c.e.), i.e., if 𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠 𝐴𝐴𝑠𝑠 for a uniformly computable sequence of 
functions 𝐴𝐴𝑠𝑠 such that 𝐴𝐴0 = ∅ and for each 𝑥𝑥, there are at most 𝑛𝑛 many 𝑠𝑠 such that 𝐴𝐴𝑠𝑠(𝑥𝑥) ≠
𝐴𝐴𝑠𝑠+1(𝑥𝑥). Here, by 𝐴𝐴𝑠𝑠(𝑥𝑥) we denote the characteristic function for the set 𝐴𝐴𝑠𝑠. Furthermore, a set 
𝐴𝐴 is a difference of computably enumerable sets (𝑑𝑑-c.e.) if 𝐴𝐴 is 2-c.e., i.e., if 𝐴𝐴 is of the form 
𝐴𝐴0 ∖ 𝐴𝐴1 for computably enumerable sets 𝐴𝐴0 and 𝐴𝐴1. 

2. Main provisions. Material and methods. 
We call a numbering 𝛼𝛼 for a family 𝑆𝑆 is Σ𝑛𝑛

−1-computable (or equivalently, 𝑛𝑛-
computable), if the relation {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is in Σ𝑛𝑛

−1. Note that if a family of sets 𝑆𝑆 has a Σ𝑛𝑛
−1-

computable numbering, then every set in 𝑆𝑆 is in Σ𝑛𝑛
−1. For a family 𝑆𝑆 by 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) we will 
denote the set of all Σ𝑛𝑛

−1-computable numberings for the family 𝑆𝑆. The quotient structure of 
𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) modulo equivalence of the numberings ordered by the relation reducibility of 
numberings is also called Rogers semilattice and denote it as ℛ𝑛𝑛

−1(𝑆𝑆). Similarly, a numbering 
𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) is called universal in 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛
−1(𝑆𝑆) if 𝛽𝛽 ≤ 𝛼𝛼 for all 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆).  
The study of Rogers semilattices in the Ershov hierarchy is interesting because in it a 

number of unexpected results have been obtained. For example, it was shown in [15] that there is 
a family 𝑆𝑆 consisting of just two 𝑑𝑑-c.e. sets such that 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(𝑆𝑆) has no universal numbering, 
despite the fact that in classical numbering theory every finite family has a universal numbering. 
Khutoretskii’s theorem states that the Rogers semilattice of any family of c.e. sets have either at 
most one or infinitely many elements [9]. Furthermore, a lemma used in the inductive step of the 
proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is 
possible for some family of 𝑑𝑑-c.e. sets. The question of whether the full statement of 
Khutoretskii’s Theorem fails for families of 𝑑𝑑-c.e. sets remains open. In view of the properties of 
the F. Stephan operator [17], it suffices to research Rogers semilattices for families of sets at two 
lower levels in the Ershov hierarchy. Other results on Rogers semilattices in Ershov hierarchy 
can be found, for example, in [18-26]. 

In section 2.1, we prove that the following families have no universal computable 
numberings: the family of all computable sets (theorem 1); for any infinite c.e. set 𝐴𝐴 the family 
of all c.e. sets without set 𝐴𝐴 (theorem 3). In case when 𝐴𝐴 is a finite set, then the family of all c.e. 
sets without set 𝐴𝐴 has a universal computable numbering (theorem 2). From this result in the set 
of all c.e. sets we can characterize finite sets in terms of Rogers semilattices. Namely, a c.e. set 𝐴𝐴 
is finite iff Rogers semilattice ℛ1

−1(Σ1
−1 ∖ 𝐴𝐴) has the greatest element (corollary 2). In section 2.2 

we focused on Σ2
−1-computable numberings. In particular, we prove that the following families 

have no universal Σ2
−1-computable numberings: the family of all c.e. sets; for any 𝑑𝑑-c.e. set 𝐴𝐴 the 

family Σ2
−1 ∖ 𝐴𝐴. 

3. Results and Discussion 
3.1. Computable numberings 

This section provides the proofs of existence (or not) of the computable numberings and 
universal computable numberings for some families of c.e. sets. Let's denote by 𝑅𝑅𝑅𝑅𝑅𝑅 the family 
of all computable sets. 

Theorem 1. The family 𝑅𝑅𝑅𝑅𝑅𝑅 is computable and 𝑅𝑅𝑅𝑅𝑅𝑅 has no universal computable 
numbering. 

Proof. First of all, we will prove that the family 𝑅𝑅𝑅𝑅𝑅𝑅 has a computable numbering (see 
also [27]). We will construct, step by step, an approximation for numbering 𝜈𝜈 as follow: we 
present the construction for a fixed number 𝑅𝑅 and additional, we will construct a computable 
function 𝑟𝑟. 
Step 0. Assume that 𝜈𝜈0(𝑅𝑅) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If ∀ 𝑦𝑦 ≤ 𝑟𝑟(𝑠𝑠) [𝜑𝜑𝑒𝑒,𝑠𝑠(𝑦𝑦) ↓∈ {0,1}], then assume that 
 

𝜈𝜈𝑠𝑠+1(𝑅𝑅) = {𝑥𝑥: 𝑥𝑥 ≤ 𝑟𝑟(𝑠𝑠) & 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑥𝑥) = 1}  𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 

 has no universal numbering, despite the fact that in classical numbering 
theory every finite family has a universal numbering. Khutoretskii’s theorem states that the Rogers semilattice 
of any family of c.e. sets have either at most one or infinitely many elements [9]. Furthermore, a lemma used 
in the inductive step of the proof of this theorem demonstrates that, no Rogers semilattice can be partitioned 
into a principal ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is 
possible for some family of d-c.e. sets. The question of whether the full statement of Khutoretskii’s Theorem 
fails for families of d-c.e. sets remains open. In view of the properties of the F. Stephan operator [17], it suffices 
to research Rogers semilattices for families of sets at two lower levels in the Ershov hierarchy. Other results on 
Rogers semilattices in Ershov hierarchy can be found, for example, in [18-26].

In section 2.1, we prove that the following families have no universal computable numberings: the family 
of all computable sets (theorem 1); for any infinite c.e. set A the family of all c.e. sets without set A (theorem 
3). In case when A is a finite set, then the family of all c.e. sets without set A has a universal computable 
numbering (theorem 2). From this result in the set of all c.e. sets we can characterize finite sets in terms 
of Rogers semilattices. Namely, a c.e. set A is finite iff Rogers semilattice 

Ershov hierarchy. Recall here that a set 𝐴𝐴 ⊆ 𝜔𝜔 is in Ershov’s hierarchy class Σ𝑛𝑛
−1 if A is 𝑛𝑛-

computably enumerable (𝑛𝑛-c.e.), i.e., if 𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠 𝐴𝐴𝑠𝑠 for a uniformly computable sequence of 
functions 𝐴𝐴𝑠𝑠 such that 𝐴𝐴0 = ∅ and for each 𝑥𝑥, there are at most 𝑛𝑛 many 𝑠𝑠 such that 𝐴𝐴𝑠𝑠(𝑥𝑥) ≠
𝐴𝐴𝑠𝑠+1(𝑥𝑥). Here, by 𝐴𝐴𝑠𝑠(𝑥𝑥) we denote the characteristic function for the set 𝐴𝐴𝑠𝑠. Furthermore, a set 
𝐴𝐴 is a difference of computably enumerable sets (𝑑𝑑-c.e.) if 𝐴𝐴 is 2-c.e., i.e., if 𝐴𝐴 is of the form 
𝐴𝐴0 ∖ 𝐴𝐴1 for computably enumerable sets 𝐴𝐴0 and 𝐴𝐴1. 

2. Main provisions. Material and methods. 
We call a numbering 𝛼𝛼 for a family 𝑆𝑆 is Σ𝑛𝑛

−1-computable (or equivalently, 𝑛𝑛-
computable), if the relation {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is in Σ𝑛𝑛

−1. Note that if a family of sets 𝑆𝑆 has a Σ𝑛𝑛
−1-

computable numbering, then every set in 𝑆𝑆 is in Σ𝑛𝑛
−1. For a family 𝑆𝑆 by 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) we will 
denote the set of all Σ𝑛𝑛

−1-computable numberings for the family 𝑆𝑆. The quotient structure of 
𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) modulo equivalence of the numberings ordered by the relation reducibility of 
numberings is also called Rogers semilattice and denote it as ℛ𝑛𝑛

−1(𝑆𝑆). Similarly, a numbering 
𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) is called universal in 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛
−1(𝑆𝑆) if 𝛽𝛽 ≤ 𝛼𝛼 for all 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆).  
The study of Rogers semilattices in the Ershov hierarchy is interesting because in it a 

number of unexpected results have been obtained. For example, it was shown in [15] that there is 
a family 𝑆𝑆 consisting of just two 𝑑𝑑-c.e. sets such that 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(𝑆𝑆) has no universal numbering, 
despite the fact that in classical numbering theory every finite family has a universal numbering. 
Khutoretskii’s theorem states that the Rogers semilattice of any family of c.e. sets have either at 
most one or infinitely many elements [9]. Furthermore, a lemma used in the inductive step of the 
proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is 
possible for some family of 𝑑𝑑-c.e. sets. The question of whether the full statement of 
Khutoretskii’s Theorem fails for families of 𝑑𝑑-c.e. sets remains open. In view of the properties of 
the F. Stephan operator [17], it suffices to research Rogers semilattices for families of sets at two 
lower levels in the Ershov hierarchy. Other results on Rogers semilattices in Ershov hierarchy 
can be found, for example, in [18-26]. 

In section 2.1, we prove that the following families have no universal computable 
numberings: the family of all computable sets (theorem 1); for any infinite c.e. set 𝐴𝐴 the family 
of all c.e. sets without set 𝐴𝐴 (theorem 3). In case when 𝐴𝐴 is a finite set, then the family of all c.e. 
sets without set 𝐴𝐴 has a universal computable numbering (theorem 2). From this result in the set 
of all c.e. sets we can characterize finite sets in terms of Rogers semilattices. Namely, a c.e. set 𝐴𝐴 
is finite iff Rogers semilattice ℛ1

−1(Σ1
−1 ∖ 𝐴𝐴) has the greatest element (corollary 2). In section 2.2 

we focused on Σ2
−1-computable numberings. In particular, we prove that the following families 

have no universal Σ2
−1-computable numberings: the family of all c.e. sets; for any 𝑑𝑑-c.e. set 𝐴𝐴 the 

family Σ2
−1 ∖ 𝐴𝐴. 

3. Results and Discussion 
3.1. Computable numberings 

This section provides the proofs of existence (or not) of the computable numberings and 
universal computable numberings for some families of c.e. sets. Let's denote by 𝑅𝑅𝑅𝑅𝑅𝑅 the family 
of all computable sets. 

Theorem 1. The family 𝑅𝑅𝑅𝑅𝑅𝑅 is computable and 𝑅𝑅𝑅𝑅𝑅𝑅 has no universal computable 
numbering. 

Proof. First of all, we will prove that the family 𝑅𝑅𝑅𝑅𝑅𝑅 has a computable numbering (see 
also [27]). We will construct, step by step, an approximation for numbering 𝜈𝜈 as follow: we 
present the construction for a fixed number 𝑅𝑅 and additional, we will construct a computable 
function 𝑟𝑟. 
Step 0. Assume that 𝜈𝜈0(𝑅𝑅) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If ∀ 𝑦𝑦 ≤ 𝑟𝑟(𝑠𝑠) [𝜑𝜑𝑒𝑒,𝑠𝑠(𝑦𝑦) ↓∈ {0,1}], then assume that 
 

𝜈𝜈𝑠𝑠+1(𝑅𝑅) = {𝑥𝑥: 𝑥𝑥 ≤ 𝑟𝑟(𝑠𝑠) & 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑥𝑥) = 1}  𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 

 has the greatest 
element (corollary 2). In section 2.2 we focused on 

Ershov hierarchy. Recall here that a set 𝐴𝐴 ⊆ 𝜔𝜔 is in Ershov’s hierarchy class Σ𝑛𝑛
−1 if A is 𝑛𝑛-

computably enumerable (𝑛𝑛-c.e.), i.e., if 𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠 𝐴𝐴𝑠𝑠 for a uniformly computable sequence of 
functions 𝐴𝐴𝑠𝑠 such that 𝐴𝐴0 = ∅ and for each 𝑥𝑥, there are at most 𝑛𝑛 many 𝑠𝑠 such that 𝐴𝐴𝑠𝑠(𝑥𝑥) ≠
𝐴𝐴𝑠𝑠+1(𝑥𝑥). Here, by 𝐴𝐴𝑠𝑠(𝑥𝑥) we denote the characteristic function for the set 𝐴𝐴𝑠𝑠. Furthermore, a set 
𝐴𝐴 is a difference of computably enumerable sets (𝑑𝑑-c.e.) if 𝐴𝐴 is 2-c.e., i.e., if 𝐴𝐴 is of the form 
𝐴𝐴0 ∖ 𝐴𝐴1 for computably enumerable sets 𝐴𝐴0 and 𝐴𝐴1. 

2. Main provisions. Material and methods. 
We call a numbering 𝛼𝛼 for a family 𝑆𝑆 is Σ𝑛𝑛

−1-computable (or equivalently, 𝑛𝑛-
computable), if the relation {(𝑥𝑥, 𝑛𝑛): 𝑥𝑥 ∈ 𝛼𝛼(𝑛𝑛)} is in Σ𝑛𝑛

−1. Note that if a family of sets 𝑆𝑆 has a Σ𝑛𝑛
−1-

computable numbering, then every set in 𝑆𝑆 is in Σ𝑛𝑛
−1. For a family 𝑆𝑆 by 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) we will 
denote the set of all Σ𝑛𝑛

−1-computable numberings for the family 𝑆𝑆. The quotient structure of 
𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) modulo equivalence of the numberings ordered by the relation reducibility of 
numberings is also called Rogers semilattice and denote it as ℛ𝑛𝑛

−1(𝑆𝑆). Similarly, a numbering 
𝛼𝛼 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) is called universal in 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛
−1(𝑆𝑆) if 𝛽𝛽 ≤ 𝛼𝛼 for all 𝛽𝛽 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆).  
The study of Rogers semilattices in the Ershov hierarchy is interesting because in it a 

number of unexpected results have been obtained. For example, it was shown in [15] that there is 
a family 𝑆𝑆 consisting of just two 𝑑𝑑-c.e. sets such that 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(𝑆𝑆) has no universal numbering, 
despite the fact that in classical numbering theory every finite family has a universal numbering. 
Khutoretskii’s theorem states that the Rogers semilattice of any family of c.e. sets have either at 
most one or infinitely many elements [9]. Furthermore, a lemma used in the inductive step of the 
proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is 
possible for some family of 𝑑𝑑-c.e. sets. The question of whether the full statement of 
Khutoretskii’s Theorem fails for families of 𝑑𝑑-c.e. sets remains open. In view of the properties of 
the F. Stephan operator [17], it suffices to research Rogers semilattices for families of sets at two 
lower levels in the Ershov hierarchy. Other results on Rogers semilattices in Ershov hierarchy 
can be found, for example, in [18-26]. 

In section 2.1, we prove that the following families have no universal computable 
numberings: the family of all computable sets (theorem 1); for any infinite c.e. set 𝐴𝐴 the family 
of all c.e. sets without set 𝐴𝐴 (theorem 3). In case when 𝐴𝐴 is a finite set, then the family of all c.e. 
sets without set 𝐴𝐴 has a universal computable numbering (theorem 2). From this result in the set 
of all c.e. sets we can characterize finite sets in terms of Rogers semilattices. Namely, a c.e. set 𝐴𝐴 
is finite iff Rogers semilattice ℛ1

−1(Σ1
−1 ∖ 𝐴𝐴) has the greatest element (corollary 2). In section 2.2 

we focused on Σ2
−1-computable numberings. In particular, we prove that the following families 

have no universal Σ2
−1-computable numberings: the family of all c.e. sets; for any 𝑑𝑑-c.e. set 𝐴𝐴 the 

family Σ2
−1 ∖ 𝐴𝐴. 

3. Results and Discussion 
3.1. Computable numberings 

This section provides the proofs of existence (or not) of the computable numberings and 
universal computable numberings for some families of c.e. sets. Let's denote by 𝑅𝑅𝑅𝑅𝑅𝑅 the family 
of all computable sets. 

Theorem 1. The family 𝑅𝑅𝑅𝑅𝑅𝑅 is computable and 𝑅𝑅𝑅𝑅𝑅𝑅 has no universal computable 
numbering. 

Proof. First of all, we will prove that the family 𝑅𝑅𝑅𝑅𝑅𝑅 has a computable numbering (see 
also [27]). We will construct, step by step, an approximation for numbering 𝜈𝜈 as follow: we 
present the construction for a fixed number 𝑅𝑅 and additional, we will construct a computable 
function 𝑟𝑟. 
Step 0. Assume that 𝜈𝜈0(𝑅𝑅) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If ∀ 𝑦𝑦 ≤ 𝑟𝑟(𝑠𝑠) [𝜑𝜑𝑒𝑒,𝑠𝑠(𝑦𝑦) ↓∈ {0,1}], then assume that 
 

𝜈𝜈𝑠𝑠+1(𝑅𝑅) = {𝑥𝑥: 𝑥𝑥 ≤ 𝑟𝑟(𝑠𝑠) & 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑥𝑥) = 1}  𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
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𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛

−1(𝑆𝑆) modulo equivalence of the numberings ordered by the relation reducibility of 
numberings is also called Rogers semilattice and denote it as ℛ𝑛𝑛

−1(𝑆𝑆). Similarly, a numbering 
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The study of Rogers semilattices in the Ershov hierarchy is interesting because in it a 

number of unexpected results have been obtained. For example, it was shown in [15] that there is 
a family 𝑆𝑆 consisting of just two 𝑑𝑑-c.e. sets such that 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(𝑆𝑆) has no universal numbering, 
despite the fact that in classical numbering theory every finite family has a universal numbering. 
Khutoretskii’s theorem states that the Rogers semilattice of any family of c.e. sets have either at 
most one or infinitely many elements [9]. Furthermore, a lemma used in the inductive step of the 
proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is 
possible for some family of 𝑑𝑑-c.e. sets. The question of whether the full statement of 
Khutoretskii’s Theorem fails for families of 𝑑𝑑-c.e. sets remains open. In view of the properties of 
the F. Stephan operator [17], it suffices to research Rogers semilattices for families of sets at two 
lower levels in the Ershov hierarchy. Other results on Rogers semilattices in Ershov hierarchy 
can be found, for example, in [18-26]. 

In section 2.1, we prove that the following families have no universal computable 
numberings: the family of all computable sets (theorem 1); for any infinite c.e. set 𝐴𝐴 the family 
of all c.e. sets without set 𝐴𝐴 (theorem 3). In case when 𝐴𝐴 is a finite set, then the family of all c.e. 
sets without set 𝐴𝐴 has a universal computable numbering (theorem 2). From this result in the set 
of all c.e. sets we can characterize finite sets in terms of Rogers semilattices. Namely, a c.e. set 𝐴𝐴 
is finite iff Rogers semilattice ℛ1

−1(Σ1
−1 ∖ 𝐴𝐴) has the greatest element (corollary 2). In section 2.2 

we focused on Σ2
−1-computable numberings. In particular, we prove that the following families 

have no universal Σ2
−1-computable numberings: the family of all c.e. sets; for any 𝑑𝑑-c.e. set 𝐴𝐴 the 

family Σ2
−1 ∖ 𝐴𝐴. 

3. Results and Discussion 
3.1. Computable numberings 

This section provides the proofs of existence (or not) of the computable numberings and 
universal computable numberings for some families of c.e. sets. Let's denote by 𝑅𝑅𝑅𝑅𝑅𝑅 the family 
of all computable sets. 

Theorem 1. The family 𝑅𝑅𝑅𝑅𝑅𝑅 is computable and 𝑅𝑅𝑅𝑅𝑅𝑅 has no universal computable 
numbering. 
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also [27]). We will construct, step by step, an approximation for numbering 𝜈𝜈 as follow: we 
present the construction for a fixed number 𝑅𝑅 and additional, we will construct a computable 
function 𝑟𝑟. 
Step 0. Assume that 𝜈𝜈0(𝑅𝑅) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If ∀ 𝑦𝑦 ≤ 𝑟𝑟(𝑠𝑠) [𝜑𝜑𝑒𝑒,𝑠𝑠(𝑦𝑦) ↓∈ {0,1}], then assume that 
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proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
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In section 2.1, we prove that the following families have no universal computable 
numberings: the family of all computable sets (theorem 1); for any infinite c.e. set 𝐴𝐴 the family 
of all c.e. sets without set 𝐴𝐴 (theorem 3). In case when 𝐴𝐴 is a finite set, then the family of all c.e. 
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is finite iff Rogers semilattice ℛ1

−1(Σ1
−1 ∖ 𝐴𝐴) has the greatest element (corollary 2). In section 2.2 

we focused on Σ2
−1-computable numberings. In particular, we prove that the following families 

have no universal Σ2
−1-computable numberings: the family of all c.e. sets; for any 𝑑𝑑-c.e. set 𝐴𝐴 the 

family Σ2
−1 ∖ 𝐴𝐴. 

3. Results and Discussion 
3.1. Computable numberings 

This section provides the proofs of existence (or not) of the computable numberings and 
universal computable numberings for some families of c.e. sets. Let's denote by 𝑅𝑅𝑅𝑅𝑅𝑅 the family 
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numbering. 

Proof. First of all, we will prove that the family 𝑅𝑅𝑅𝑅𝑅𝑅 has a computable numbering (see 
also [27]). We will construct, step by step, an approximation for numbering 𝜈𝜈 as follow: we 
present the construction for a fixed number 𝑅𝑅 and additional, we will construct a computable 
function 𝑟𝑟. 
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proof of this theorem demonstrates that, no Rogers semilattice can be partitioned into a principal 
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3. Results and Discussion 
3.1. Computable numberings 

This section provides the proofs of existence (or not) of the computable numberings and 
universal computable numberings for some families of c.e. sets. Let's denote by 𝑅𝑅𝑅𝑅𝑅𝑅 the family 
of all computable sets. 

Theorem 1. The family 𝑅𝑅𝑅𝑅𝑅𝑅 is computable and 𝑅𝑅𝑅𝑅𝑅𝑅 has no universal computable 
numbering. 

Proof. First of all, we will prove that the family 𝑅𝑅𝑅𝑅𝑅𝑅 has a computable numbering (see 
also [27]). We will construct, step by step, an approximation for numbering 𝜈𝜈 as follow: we 
present the construction for a fixed number 𝑅𝑅 and additional, we will construct a computable 
function 𝑟𝑟. 
Step 0. Assume that 𝜈𝜈0(𝑅𝑅) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If ∀ 𝑦𝑦 ≤ 𝑟𝑟(𝑠𝑠) [𝜑𝜑𝑒𝑒,𝑠𝑠(𝑦𝑦) ↓∈ {0,1}], then assume that 
 

𝜈𝜈𝑠𝑠+1(𝑅𝑅) = {𝑥𝑥: 𝑥𝑥 ≤ 𝑟𝑟(𝑠𝑠) & 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑥𝑥) = 1}  𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 

Otherwise, assume that 
 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 and 
 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

.
The construction's description is complete.
Assume 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 for all 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

.
Now we show that v is a computable numbering for the family Rec. At first, from construction it is not hard 

to see that v is computable numbering for some family, i.e. 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is c.e. 
Let's show that image of v is Rec. If 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is characteristic function, i.e. 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

-valued total function, then 
obvious that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 increases to infinite and 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 to be a set 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. That is

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is computable 
set whose characteristic function is 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. If 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is not characteristic function, i.e. either 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

-valued nor total 
function, then there is minimal n, such that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 or 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is undefined. By construction function 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 do not increase more than n, so 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 remains finite.
For any recursive set A there is e such that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. So, for the set A there is its characteristic recursive 
function 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. Since 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

-valued total function, as discussed above 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is a set which characteristic 
function is 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

.
Now we will prove that for the family Rec there is no universal computable numbering.
Assume α be any computable numbering for the family Rec. Let 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

  be a computable approximation 
for the halting problem. We will define numbering β as follow: for any 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

and define 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 with the following construction
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Step 0. Assume 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 and 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

.
Step s+1. If 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 and 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

, then assume 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 and 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

.
Otherwise, 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 and 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

.
The construction's description is complete. Assume 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

.
Let's show that β is computable numbering for the family Rec. Since α is computable numbering and by 

construction clear that β is computable numbering for some family. It is clear that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. Now, let 
x be any number. If 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 undefined, then by construction 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 for all 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. So 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 which belongs to Rec. If  

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is defined and equal to some  y, then 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is finite set, because 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. Really, let m be the least number such that α(y) and K different 
from each other. Then 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 when 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. Function r(s) does 
not increase more than m, so 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 remains finite. 
Now, suppose that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. Moreover, suppose 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is a recursive function which reduces β to α. It is clear that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 for some y. As discussed above there is  m such that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. 
So 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 which contradicts that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

 is reduces β to α. Hence α can not be universal 
computable numbering. Theorem 1 is proved.

Now, we will show that there still be universal computable numbering for a family of all c.e. sets even if 
we remove any finite set.

Theorem 2. Let F be any finite set and S be a family of all c.e. sets without F. Then S has universal 
numbering.

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family of c.e. sets. For 
instance, if we remove one element from the family, we still can have Friedberg numbering for a given family, 
we just enumerate them in other way.

The construction of computable universal numbering for the family S is split into two parts.
Case I. Assume that 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. We construct infinitely many αi(x) numberings that enumerates Wx with the 

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

, i.e.

 
Otherwise, assume that 𝜈𝜈𝑠𝑠+1(𝑒𝑒) = 𝜈𝜈𝑠𝑠(𝑒𝑒) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 
The construction's description is complete. 
Assume 𝜈𝜈(𝑥𝑥) =∪𝑠𝑠 𝜈𝜈𝑠𝑠(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜔𝜔. 

Now we show that 𝜈𝜈 is a computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. At first, from 
construction it is not hard to see that 𝜈𝜈 is computable numbering for some family, i.e. {(𝑥𝑥, 𝑒𝑒): 𝑥𝑥 ∈
𝜈𝜈(𝑒𝑒)} is c.e.  

Let's show that image of 𝜈𝜈 is 𝑅𝑅𝑒𝑒𝑅𝑅. If 𝜑𝜑𝑒𝑒 is characteristic function, i.e. {0,1}-valued total 
function, then obvious that 𝑟𝑟(𝑠𝑠) increases to infinite and 𝜈𝜈(𝑒𝑒) to be a set {𝑥𝑥: 𝜑𝜑𝑒𝑒(𝑥𝑥) = 1}. That is 
𝜈𝜈(𝑒𝑒) is computable set whose characteristic function is 𝜑𝜑𝑒𝑒. If 𝜑𝜑𝑒𝑒 is not characteristic function, 
i.e. either {0,1}-valued nor total function, then there is minimal 𝑛𝑛, such that 𝜑𝜑𝑒𝑒,𝑠𝑠(𝑛𝑛) ∉ {0,1} or 
𝜑𝜑𝑒𝑒(𝑛𝑛) is undefined. By construction function 𝑟𝑟(𝑠𝑠) do not increase more than 𝑛𝑛, so 𝜈𝜈(𝑒𝑒) remains 
finite. 

For any recursive set 𝐴𝐴 there is 𝑒𝑒 such that 𝜈𝜈(𝑒𝑒) = 𝐴𝐴. So, for the set 𝐴𝐴 there is its 
characteristic recursive function 𝜑𝜑𝑒𝑒. Since 𝜑𝜑𝑒𝑒 is {0,1}-valued total function, as discussed above 
𝜈𝜈(𝑒𝑒) is a set which characteristic function is 𝜑𝜑𝑒𝑒. 
Now we will prove that for the family 𝑅𝑅𝑒𝑒𝑅𝑅 there is no universal computable numbering. 

Assume 𝛼𝛼 be any computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Let {𝐾𝐾𝑠𝑠}𝑠𝑠∈𝜔𝜔 be a 
computable approximation for the halting problem. We will define numbering 𝛽𝛽 as follow: for 
any 𝑥𝑥 ∈ 𝜔𝜔  

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) ∩ [0, 𝑟𝑟(𝑠𝑠)] = 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)], then 

assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝐾𝐾𝑠𝑠 ∩ [0, 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction's description is complete. Assume 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
Let's show that 𝛽𝛽 is computable numbering for the family 𝑅𝑅𝑒𝑒𝑅𝑅. Since 𝛼𝛼 is computable 

numbering and by construction clear that 𝛽𝛽 is computable numbering for some family. It is clear 
that 𝛽𝛽(2𝑥𝑥) ∈ 𝑅𝑅𝑒𝑒𝑅𝑅. Now, let 𝑥𝑥 be any number. If 𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) undefined, then by construction 
𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) = 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ for all 𝑠𝑠 ∈ 𝜔𝜔. So 𝛽𝛽(2𝑥𝑥 + 1) = ∅ which belongs to 𝑅𝑅𝑒𝑒𝑅𝑅. If 
𝜑𝜑𝑥𝑥(2𝑥𝑥 + 1) is defined and equal to some 𝑦𝑦, then 𝛽𝛽(2𝑥𝑥 + 1) is finite set, because 𝛼𝛼(𝑦𝑦) ≠ 𝐾𝐾. 
Really, let 𝑚𝑚 be the least number such that 𝛼𝛼(𝑦𝑦) and 𝐾𝐾 different from each other. Then 𝛽𝛽𝑠𝑠(2𝑥𝑥 +
1) ∩ [0, 𝑟𝑟(𝑠𝑠)] ≠ 𝛼𝛼𝑠𝑠(𝑦𝑦) ∩ [0, 𝑟𝑟(𝑠𝑠)] when 𝑟𝑟(𝑠𝑠) = 𝑚𝑚. Function 𝑟𝑟(𝑠𝑠) does not increase more than 
𝑚𝑚, so 𝛽𝛽(2𝑥𝑥 + 1) remains finite.  

Now, suppose that 𝛽𝛽 ≤ 𝛼𝛼. Moreover, suppose 𝜑𝜑𝑒𝑒 is a recursive function which reduces 𝛽𝛽 
to 𝛼𝛼. It is clear that 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1) ↓ = 𝑦𝑦 for some 𝑦𝑦. As discussed above there is 𝑚𝑚 such that 
𝛽𝛽(2𝑒𝑒 + 1) ∩ [0, 𝑚𝑚] ≠ 𝛼𝛼(𝑦𝑦) ∩ [0, 𝑚𝑚]. So 𝛽𝛽(2𝑒𝑒 + 1) ≠ 𝛼𝛼(𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1)) which contradicts that 𝜑𝜑𝑒𝑒 
is reduces 𝛽𝛽 to 𝛼𝛼. Hence 𝛼𝛼 can not be universal computable numbering. Theorem 1 is proved. 

Now, we will show that there still be universal computable numbering for a family of all 
c.e. sets even if we remove any finite set. 

Theorem 2. Let 𝐹𝐹 be any finite set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. Then 𝑆𝑆 
has universal numbering. 

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family 
of c.e. sets. For instance, if we remove one element from the family, we still can have Friedberg 
numbering for a given family, we just enumerate them in other way. 
The construction of computable universal numbering for the family 𝑆𝑆 is split into two parts. 

Case I. Assume that 𝐹𝐹 = ∅. We construct infinitely many 𝛼𝛼𝑖𝑖(𝑥𝑥) numberings that 
enumerates 𝑊𝑊𝑥𝑥 with the {𝑖𝑖}, i.e. 𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑊𝑊𝑥𝑥 ∪ {𝑛𝑛}. Lets define the numbering 𝛽𝛽 as follow: 
 

. Lets define the numbering β as follow:

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 
It is not hard to see that β is computable numbering for the family S.
Now, let v be a computable numbering for the family S. Since 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 there is computable 
function f such that 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

. Let vs be a computable approximation for the numbering v. Lets define a 
function h(x) as follow:

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

Since 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 for any x the function h is total computable. So numbering v is reducible to β via 
computable function 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

. Indeed, since 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 we know that 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

. Consequently, 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

. Which means that β is universal numbering for the family S.

Case II. Assume that 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

. For this case universal numbering β we can define as follows: for any x let 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

, where 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 and

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

Again, let v be a computable numbering for the family S. As in the previous case there is computable 
function f with 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 for any x. Since 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 there is infinitely many s such that 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

. 
Then 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

. Theorem 2 is proved.
Corollary 1. If  S is a family of all c.e. sets without finitely many finite sets, then S has universal numbering.
We can see the change if we remove some infinite set from the family S .
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Theorem 3. Let F be any infinite c.e. set and S be a family of all c.e. sets without F. Then S has no 
universal numbering.

Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we will only give the 
construction. Let Fs be a computable approximation for c.e. set F and α be a computable numbering for the 
family S. We will define numbering β as follow: for any 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

and define 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 with the following construction
Step 0. Assume 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 and 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

.
Step s+1. If 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 and 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

, then assume 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 and 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

.
Otherwise, assume 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 and 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

.
The construction description is complete. Let 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

.
According to previous theorems, in the set of all c.e. sets we can define the notion of "finite sets" in terms 

of Rogers semilattices.
Corollary 2. We is finite set iff there is universal computable numbering for the family 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

.
3.2.	

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

-computable numberings
In this section, we will use the following approximation for 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

-set. 
Lemma 1. A set B is 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

 iff there is 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

-valued computable function f(x,s) such that for all x, the 
following conditions is hold:

1.	1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

, with 1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

;
2.	

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

here, B(x) is characteristic function for B. The function f is called 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

-approximation for the set B.
Theorem 4. Let B be a 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

-set. Then the family 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 has no universal numbering in 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

.

Proof. Let 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 be any numbering. We will construct a numbering 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

  such 
that 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

. Let  

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 be a 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

-approximation for B. Let 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 be a 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

-approximation for 
numbering v. We define a 

𝛽𝛽(⟨𝑛𝑛, 𝑥𝑥⟩) = 𝛼𝛼𝑛𝑛(𝑥𝑥). 
  
It is not hard to see that 𝛽𝛽 is computable numbering for the family 𝑆𝑆. 

Now, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. Since 𝑆𝑆 ⊆ {𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} there is 
computable function 𝑓𝑓 such that 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥). Let 𝜈𝜈𝑠𝑠 be a computable approximation for the 
numbering 𝜈𝜈. Lets define a function ℎ(𝑥𝑥) as follow: 
 

ℎ(𝑥𝑥) = 𝑙𝑙(𝜇𝜇𝑠𝑠[(𝑙𝑙(𝑠𝑠) ∈ 𝜈𝜈𝑠𝑠(𝑥𝑥)]) 
 

Since 𝜈𝜈(𝑥𝑥) ≠ ∅ for any 𝑥𝑥 the function ℎ is total computable. So numbering 𝜈𝜈 is reducible 
to 𝛽𝛽 via computable function 𝑔𝑔(𝑥𝑥) = ⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩. Indeed, since ℎ(𝑥𝑥) ∈ 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) we know 
that 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) = 𝑊𝑊𝑓𝑓(𝑥𝑥) ∪ {ℎ(𝑥𝑥)} = 𝑊𝑊𝑓𝑓(𝑥𝑥). Consequently, 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) = 𝛼𝛼ℎ(𝑥𝑥)(𝑓𝑓(𝑥𝑥)) =
𝛽𝛽(⟨ℎ(𝑥𝑥), 𝑓𝑓(𝑥𝑥)⟩). Which means that 𝛽𝛽 is universal numbering for the family 𝑆𝑆. 
 

Case II. Assume that 𝐹𝐹 ≠ ∅. For this case universal numbering 𝛽𝛽 we can define as 
follows: for any 𝑥𝑥 let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥), where 𝛽𝛽0(𝑥𝑥) = ∅ and 
 

𝛽𝛽𝑠𝑠+1(𝑥𝑥) = {𝑊𝑊𝑥𝑥,𝑠𝑠+1,  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 ≠ 𝐹𝐹;
𝛽𝛽𝑠𝑠(𝑥𝑥),  𝑖𝑖𝑓𝑓 𝑊𝑊𝑥𝑥,𝑠𝑠+1 = 𝐹𝐹. 

 
Again, let 𝜈𝜈 be a computable numbering for the family 𝑆𝑆. As in the previous case there is 
computable function 𝑓𝑓 with 𝜈𝜈(𝑥𝑥) = 𝑊𝑊𝑓𝑓(𝑥𝑥) for any 𝑥𝑥. Since 𝜈𝜈(𝑥𝑥) ≠ 𝐹𝐹 there is infinitely many 𝑠𝑠 
such that 𝑊𝑊𝑓𝑓(𝑥𝑥),𝑠𝑠 ≠ 𝐹𝐹. Then 𝛽𝛽(𝑓𝑓(𝑥𝑥)) = 𝜈𝜈(𝑥𝑥). Theorem 2 is proved. 
 

Corollary 1. If 𝑆𝑆 is a family of all c.e. sets without finitely many finite sets, then 𝑆𝑆 has 
universal numbering. 

We can see the change if we remove some infinite set from the family 𝑆𝑆. 
Theorem 3. Let 𝐹𝐹 be any infinite c.e. set and 𝑆𝑆 be a family of all c.e. sets without 𝐹𝐹. 

Then 𝑆𝑆 has no universal numbering. 
Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we 

will only give the construction. Let 𝐹𝐹𝑠𝑠 be a computable approximation for c.e. set 𝐹𝐹 and 𝛼𝛼 be a 
computable numbering for the family 𝑆𝑆. We will define numbering 𝛽𝛽 as follow: for any 𝑥𝑥 ∈ 𝜔𝜔 
 

𝛽𝛽(2𝑥𝑥) = 𝛼𝛼(𝑥𝑥). 
 
and define 𝛽𝛽(2𝑥𝑥 + 1) with the following construction 

Step 0. Assume 𝛽𝛽0(2𝑥𝑥 + 1) = ∅ and 𝑟𝑟(0) = 0. 
Step s+1. If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝛼𝛼𝑠𝑠(𝑦𝑦) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1), then assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) =

𝐹𝐹𝑠𝑠 ∩ [0; 𝑟𝑟(𝑠𝑠)] and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠) + 1. 
Otherwise, assume 𝛽𝛽𝑠𝑠+1(2𝑥𝑥 + 1) = 𝛽𝛽𝑠𝑠(2𝑥𝑥 + 1) and 𝑟𝑟(𝑠𝑠 + 1) = 𝑟𝑟(𝑠𝑠). 

The construction description is complete. Let 𝛽𝛽(𝑥𝑥) =∪𝑠𝑠 𝛽𝛽𝑠𝑠(𝑥𝑥). 
According to previous theorems, in the set of all c.e. sets we can define the notion of 

"finite sets" in terms of Rogers semilattices. 
 

Corollary 2. 𝑊𝑊𝑒𝑒 is finite set iff there is universal computable numbering for the family 
{𝑊𝑊𝑖𝑖: 𝑖𝑖 ∈ 𝜔𝜔} ∖ {𝑊𝑊𝑒𝑒}. 

 
3.2. 𝚺𝚺𝟐𝟐

−𝟏𝟏-computable numberings 
In this section, we will use the following approximation for Σ2

−1-set.  
Lemma 1. A set 𝐵𝐵 is Σ2

−1 iff there is {0,1}-valued computable function 𝑓𝑓(𝑥𝑥, 𝑠𝑠) such that 
for all 𝑥𝑥, the following conditions is hold: 

-approximation 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 for numbering β as follow: for all x,y,s assume

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

and define 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 with the following construction.
Step 0. Assume 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 for all x,z and 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

.
Step s+1. Let 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

. If  

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

   and   

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

  
for all   

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

,  then for all 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 set 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 and 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
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for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
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−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
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In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
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1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
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𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

.
Otherwise, assume 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 and 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

.
Construction description is complete. Assume that, 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

.

It is not hard to see that 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 for all x,z, and  

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 
because the function 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 can change its value just because changes value 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

.
In the case when B is finite the construction undergoes a few changes: assume that 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 for 
all x,s. In this case at step 0 we start from the set ω instead  

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 (this means we assume 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 
for all x,z.).

Now, suppose that 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

, then there is total computable function φe such that 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 for all 
x. On strength of 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 via φe follows 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 for 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

. Since for any z there is 
infinitely many s such that 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 the function 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 is increase to infinite, so 
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1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 
for all z. Hence 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

. This is impossible, because v is numbering for family which does not contains 
the set B. Theorem 4 is proved.

Corollary 3. The family 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 has no universal numbering in 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

.
For proof the corollary 3 enough to take any proper -c.e. set instead of  in the construction of the 

theorem 4.
3.	Conclusion
In conclusion, we proved that there is no universal numbering for the family of all recusive sets. Also, for 

families of c.e. sets without an empty element, without a finite number of finite sets, there is still a universal 
numbering. As for the families of all c.e. sets without an infinite set, then in this case there will be no universal 
numbering. We proved that family 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 and the family 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

 has no universal 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

-computable 
numbering for any 

1. 𝐵𝐵(𝑥𝑥) =\𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓(𝑥𝑥, 𝑠𝑠), with 𝑓𝑓(𝑥𝑥, 0) = 0; 
2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓(𝑥𝑥, 𝑠𝑠 + 1) ≠ 𝑓𝑓(𝑥𝑥, 𝑠𝑠)}) ≤ 2 

here, 𝐵𝐵(𝑥𝑥) is characteristic function for 𝐵𝐵. The function 𝑓𝑓 is called Σ2
−1-approximation for the set 

𝐵𝐵. 
Theorem 4. Let 𝐵𝐵 be a Σ2

−1-set. Then the family 𝑆𝑆 = Σ2
−1 ∖ {𝐵𝐵} has no universal 

numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆). 

Proof. Let 𝜈𝜈 ∈ 𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) be any numbering. We will construct a numbering 𝛽𝛽 ∈

𝐶𝐶𝐶𝐶𝑚𝑚2
−1(𝑆𝑆) such that 𝛽𝛽 ≰ 𝜈𝜈  . Let 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) be a Σ2

−1-approximation for 𝐵𝐵. Let 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) be a Σ2
−1-

approximation for numbering 𝜈𝜈. We define a Σ2
−1-approximation 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠) for numbering 𝛽𝛽 as 

follow: for all 𝑥𝑥, 𝑦𝑦, 𝑠𝑠 assume 
 

𝑓𝑓𝛽𝛽(2𝑥𝑥, 𝑦𝑦, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑥𝑥, 𝑦𝑦, 𝑠𝑠), 
 
and define 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑦𝑦, 𝑠𝑠) with the following construction. 

Step 0. Assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧 and 𝑐𝑐(𝑥𝑥, 0) = 0. 
Step s+1. Let 𝑥𝑥 = 𝑙𝑙(𝑠𝑠). If 𝜑𝜑𝑥𝑥,𝑠𝑠(2𝑥𝑥 + 1) ↓= 𝑦𝑦 and 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) for all 

𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠), then for all 𝑧𝑧 ≤ 𝑐𝑐(𝑥𝑥, 𝑠𝑠) set 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠 + 1) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) =
𝑐𝑐(𝑥𝑥, 𝑠𝑠) + 1. 

Otherwise, assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠 + 1) = 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) and 𝑐𝑐(𝑥𝑥, 𝑠𝑠 + 1) = 𝑐𝑐(𝑥𝑥, 𝑠𝑠). 
Construction description is complete. Assume that, 𝛽𝛽(𝑥𝑥)(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑠𝑠). 
It is not hard to see that 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 0) = 0 for all 𝑥𝑥, 𝑧𝑧, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑠𝑠: 𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠 + 1) ≠

𝑓𝑓𝛽𝛽(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)}) ≤ 2 because the function 𝜆𝜆𝑠𝑠. 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 𝑠𝑠) can change its value just because 
changes value 𝜆𝜆𝑠𝑠. 𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠). 

In the case when 𝐵𝐵 is finite the construction undergoes a few changes: assume that 
𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑠𝑠) = 𝜒𝜒𝐵𝐵(𝑥𝑥) for all 𝑥𝑥, 𝑠𝑠. In this case at step 0 we start from the set 𝜔𝜔 instead ∅ (this means 
we assume 𝑓𝑓𝛽𝛽(2𝑥𝑥 + 1, 𝑧𝑧, 0) = 1 for all 𝑥𝑥, 𝑧𝑧.). 

Now, suppose that 𝜇𝜇 ≤ 𝜈𝜈, then there is total computable function 𝜑𝜑𝑒𝑒 such that 𝜇𝜇(𝑥𝑥) =
𝜈𝜈(𝜑𝜑𝑒𝑒(𝑥𝑥)) for all 𝑥𝑥. On strength of 𝜇𝜇 ≤ 𝜈𝜈 via 𝜑𝜑𝑒𝑒 follows 𝜇𝜇(2𝑒𝑒 + 1) = 𝜈𝜈(𝑦𝑦) for 𝑦𝑦 = 𝜑𝜑𝑒𝑒(2𝑒𝑒 + 1). 
Since for any 𝑧𝑧 there is infinitely many 𝑠𝑠 such that 𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) the function 
𝜆𝜆𝑠𝑠. 𝑐𝑐(𝑒𝑒, 𝑠𝑠) is increase to infinite, so  
 

𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝜈𝜈(𝑦𝑦, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝛽𝛽(2𝑒𝑒 + 1, 𝑧𝑧, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑚𝑚𝑠𝑠𝑓𝑓𝐵𝐵(𝑧𝑧, 𝑠𝑠) 
  
for all 𝑧𝑧. Hence 𝜈𝜈(𝑦𝑦) = 𝐵𝐵. This is impossible, because 𝜈𝜈 is numbering for family which does not 
contains the set 𝐵𝐵. Theorem 4 is proved. 
 

Corollary 3. The family Σ1
−1 has no universal numbering in 𝐶𝐶𝐶𝐶𝑚𝑚2

−1(Σ1
−1). 

For proof the corollary 3 enough to take any proper 𝑐𝑐-c.e. set instead of 𝐵𝐵 in the construction of 
the theorem 4. 
 

3. Conclusion 
In conclusion, we proved that there is no universal numbering for the family of all 

recusive sets. Also, for families of c.e. sets without an empty element, without a finite number of 
finite sets, there is still a universal numbering. As for the families of all c.e. sets without an 
infinite set, then in this case there will be no universal numbering. We proved that family Σ2

−1 ∖
{𝐵𝐵} and the family Σ1

−1 has no universal Σ2
−1-computable numbering for any 𝐵𝐵 ∈ Σ2

−1. 
 

4. Acknowledgments 

.
4.	 Acknowledgments
The work of the authors is supported by the Ministry of Education and Science of the Republic of 

Kazakhstan, grant AP08856834 “Problems on Rogers semilattices of families of sets in the first and second 
levels of the Ershov hierarchy”.

REFERENCES

1 Yu. L. Ershov. (1977) Theory of Numerations, Nauka, Moscow. (In Russian)
2 Badaev S.A., Goncharov S.S. Theory of numberings: open problems. // Computability Theory and Its Applications, 

Amer. Math. Soc., Providences, 2000, pp. 23–38.
3 Friedberg, R.M. Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration 

without duplication. J. Symb. Log. 23, 309–316 (1958)/
4 Badaev S.A. On minimal enumerations, Siberian Adv. Math., 1992, v. 2, no. 1, pp. 1–30.
5 Badaev S.A. On cardinality of semilattices of numberings of non-discrete families, Sib. Math. J., 1993, v. 34, no. 

5, pp. 795–800.
6 Badaev S.A. Minimal numberings of positively computable families/ Algebra and Logic, 1994, v. 33, no. 2, pp. 

131–141.
7 Goncharov S.S., Badaev S.A. Families with one-element Rogers semi-lattice. Algebra and Logic, 1998, v. 37, no. 

1, pp. 21–34.
8 Khutoretsky A.B. Two existence theorems for computable numerations. Algebra i Logika, 1969, v. 8, no. 4, pp. 

484–492. (In Russian).
9 Khutoretsky A.B. On the cardinality of the upper semilattice of computable numberings, Algebra and Logic, 1971, 

v. 10, no. 5, pp. 348–352.
10 Rogers H. Godel numberings of partial computable functions. J. Symbolic Logic, 1958, v. 23, no. 3, pp. 49–57.
11 Selivanov V.L. Enumerations of families of general recursive functions. Algebra and Logic, 1976, v. 15, no. 2, 

pp. 128–141.
12 Selivanov V.L. Two theorems on computable enumerations. Algebra and Logic, 1976, v. 15, no. 4, pp. 297–306.
13 Badaev S.A., Goncharov S.S., Sorbi.A "Isomorphism types of Rogers semilattices for families from different 

levels of the arithmetical hierarchy. Algebra and Logic, 45:6 (2006), 361–370.
14 Goncharov S.S. and Sorbi A. Generalized computable numerations and nontrivial Rogers semilattices. Algebra 

and Logic, 36, no. 6, 359–369 (1997).
15 Abeshev K.Sh. On the existence of universal numberings for finite families of d.c.e. sets, Math. Log. Quart. 60, 

no. 3, 161–167 (2014).
16 Badaev S.A., Lempp S. A decomposition of the Rogers semilattice of a family of d.c.e. sets, The Journal of 

Symbolic Logic, v. 74, no 2, 2009.
17 I. Herbert, S. Jain, S. Lempp, M. Mustafa, and F. Stephan. Reductions between types of numberings, Ann. Pure 

Appl. Log., 170, no. 12 (2019), article 102716, pp. 1–25.
18 Abeshev K.Sh., Badaev S.A., Mustafa M. Families without minimal numberings, Algebra and Logic, v. 53, no 

4, 2014.
19 Badaev S.A., Kalmurzayev B.S., Mukash N., Mustafa M. One-element Rogers semilattices in the Ershov 

hierarchy, Algebra and Logic, v. 60, no 4, 2021.



ВЕСТНИК КАЗАХСТАНСКО-БРИТАНСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, №1 (64), 2023

20

20 Badaev S.A., Mustafa M., Sorbi A. Friedberg numberings in the Ershov hierarchy, Arch. Math. Logic, v. 54, 2015.
21 Badaev S.A., Mustafa M., Sorbi A. Rogers semilattices of families of two embedded sets in the Ershov hierarchy, 

Mathematical Logic Quarterly, v. 58, no 4–5, 2012.
22 Badaev S.A. and Talasbaeva Zh.T. Computable numberings in the hierarchy of Ershov, Mathematical Logic in 

Asia, S. S. Goncharov (Ed.), World Scientific, NJ, 17–30 (2006).
23 Kalmurzayev B.S. Embeddability of the semilattice $L_m^0$ in Rogers semilattices, Algebra and Logic, v. 55, 

no 3, 2016.
24 Mustafa M., Sorbi A. Positive undecidable numberings in the Ershov hierarchy, Algebra and Logic, v. 50, no 6, 

2012.
25 Ospichev S.S. Properties of numberings in various levels of the Ershov hierarchy, Journal of Mathematical 

Sciences, v. 188, no 4, 2013.
26 Ospichev S.S. Friedberg numberings in the Ershov hierarchy, Algebra and Logic, v. 54, no 4, 2015.
27 Odifreddi P. Classical Recursion Theory, Elsevier, Amsterdam, 1989.

Information about author

Nurlanbek Dias Daurenuly
Master student, Kazakh National University named after al-Farabi, Almaty, Kazakhstan.
ORCID ID: 0000-0002-1275-1413
E-mail: nurlanbek.dias21@gmail.com

Автор туралы мәліметтер

Нұрланбек Диас Дәуренұлы
Магистрант, әл-Фараби атындағы Қазақ Ұлттық Университеті, Алматы, Қазақстан.
ORCID ID: 0000-0002-1275-1413
E-mail: nurlanbek.dias21@gmail.com

Информация об авторе

Нурланбек Диас Дауренулы
Магистрант, Казахский Национальный университет имени аль-Фараби, Алматы, Казахстан.
ORCID ID: 0000-0002-1275-1413
E-mail: nurlanbek.dias21@gmail.com

mailto:nurlanbek.dias21@gmail.com
mailto:nurlanbek.dias21@gmail.com
mailto:nurlanbek.dias21@gmail.com

