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ON THE EXISTENCE OF UNIVERSAL NUMBERINGS

Abstract. The paper is devoted to research existence property of universal numberings for different computable families.
A numbering a is reducible to a numbering B if there is computable function f such that & = B o f . A computable
numbering o for some family S is universal if any computable numbering  for the family S is reducible to a. It is well
known that the family of all computably enumerable (c.e.) sets has a computable universal numbering. In this paper, we
study families of almost all c.e. sets, recursive sets, and almost all differences of c.e. sets, namely questions about the
existence of universal numberings for given families. We proved that there is no universal numbering for the family of all
recursive sets. For families of c.e. sets without an empty set or a finite number of finite sets, there still exists a universal
numbering. However for families of all c. e sets without an 1nﬁn1te set, there is no universal numbering. Also, we proved
that family 22 \ B and the family 21 has no universal 22 -computable numbering for any B € X5 1,
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YHUBEPCAJI HOMIPJIEYJIEP TABBIJIATBIHIBIT'BI TYPAJIBI

Angarna. bynm makama op Typii ecemTemiMIi YHipIepAiH yHHBepcal HeMipieyiepi TaObITy KacHETTEpiH 3epTTeyre
arbrrranran. Kanaiina 6ip o Hemipneyi 6acka 6ip B Homipieyine keuripineni nen aransinanst. Erep & = f§ o f tenpirin
KaHaFaTTaHIBIPATHIH [ ecenTemiMal GyHKIUACH TaObIIaThIH OoJca, Ke3 KeNreH S yiipi YIIiH o HeMipieyi yHHBepcai
6ol TabbuTaAbl. Erep S yitipingeri ke3 kenreH 3 HoMipieyi o HOMipieyiHe KeuripineTiH Ooica, OapiblK peKypcuB
caHaJBIMIBI (. C.) XKUBIHAAP YHIPIHIH YHUBEPCAT HOMIpPIICY] TaObUIATBIHABIFGI OeIIrii. Bi3 GapIibIK AepITiK KUbIHAAPIBIH
y#ipiiepi, peKypCcHB >KUBbIHIAPABIH JKOHE OapIIbIK JEPIIiK P. C. KUBIHAAPBIH allbIPBIMBIHBIH YHIpJIepl YIIiH yHUBEpCcal
HeMipieysepi TaObUIaThIH TaOBIIMAaNTBIH KAacHUETTEpIH 3epTTelMi3. bi3 0apiblk peKkypcHB IKHMBIHAAPIBIH YHIpiHIE
YHHBEpcaJl HOMipJiey *KOK eKeHiH Janennenik. Conpaii-ak, 60¢ 2JIeMEHTI KOK, aKbIPIIbl dKUBIHAAP/IBIH aKbIPIIbI CAHBI XKOK
P. C. *KUBIHAAP/BIH YHIpiH/E YHUBEpPCAT HOMIpIiey OOJIaThIHBIH KOPCETTIK. AJI aKbIPCHI3 P. C. )KUBIHBI )KOK OapIIbIK p. C.
)KI/II)IH)IapILBIH yiiipiHe kenetin Ooscak, OyJ karaaiaa yHI/IBepcan HeMipiey OonManTBIHBIH gaeaenik. Connaii-ax, 0i3
22 \ B xone X~ yitipnepinze ke3 kenren B € 22 ymin X5 -ecenTenimi HoMipiey 60IMaHTHIHBIH TOMeIIEK.

Tipex ce3mep: ecenTeniMai HeMipIeylep, PEeKypCHB CaHAIBIMABI JKUBIHAAp, Pomkepc sxapTel Topiapsl, Epmros
HepapXHsCHI, YHHBEpCa HOMipieyIep.
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O CYHIECTBOBAHUU YHUBEPCAJIbHBIX HYMEPAIIUI

AHHOTanusl. J[aHHAsT CTaThsl MOCBSIMICHA MCCICIOBAHMIO CBOMCTBA CYIIECTBOBAHUS YHHBEPCATBbHBIX HyMEpaImi Ui
Pa3IUYHBIX ceMENUCTB. [OBOPAT, YTO HyMepamus o CBOIUTCSA K HyMEpALUH 3, €CIIN CYMIECTBYET BBIUMCINMAsT (DyHKINS
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f Takas, 9To X = ﬁ o f . Beruncnumas Hymeparms o IJIi HEKOTOPOTO ceMeicTBa S yHHBepcaibHA, eciu Jrobas
BEIUMCIIUMAsT HyMmepaiust 3 Ui ceMelcTBa S CBOOWTCA K 0. XOPOIIO M3BECTHO, YTO CEMEWCTBO BCEX BBIYMCINIMO
MIEPEYNCITUMBIX (B.I1.) MHOXKECTB MMEET BBIUHCIMMYIO YHHBEPCAIBHYIO HyMeparuio. B maHHOW paboTe MBI H3y4aeM
CEMENCTBA MOYTH BCEX B.Il. MHOXKECTB, PEKYPCHUBHBIE MHOXKECTBA M IMOYTH BCE PAa3HOCTU B.I. MHOXKECTB, & UMEHHO
BOIIPOCHI O CYIIECTBOBAaHUM YHHMBEPCAJIbHBIX HyMEpaluil /Uil AaHHBIX ceMeHcTB. MBI 0Ka3anu, 4To Uil ceMeicTBa
BCEX PEKYPCHBHBIX MHOXECTB HE CYIIECTBYEeT YHHBEPCATBHON HyMepanuu. Takke JUIs CeMEWCTB B.II. MHOXKECTBa 0e3
ITyCTOTO JIEMEHTa, 0€3 KOHEYHOTO YHCIIa KOHEYHBIX MHOXKECTB, BCE €IIIe €CTh YHUBEpCalbHas HyMepalus. Uto kacaercs
CEeMEHCTB BceX B.II. MHOXKECTBA Oe3 OECKOHEYHOTO MHOXKECTBA, TO B 3TOM ciTydae YHUBEpCaJIbHON HymMepanuu He OyeT.
Takxe MbI JJ0Ka3bIBae€M, 4TO CGMGI/ICTBO 22 \ B u cewmeiictBo 21 HE UMEIOT YHHBEPCAIbHOMN 22_ 1_Brrancmmmoit
HyMepaIuu s ioboit B € 22

KiroueBbie cjioBa: BBHIYHMCIMMBIE HyMEpalWd, BBIYHCINMO MEPEYHCIMMBIE MHOXECTBa, Hoilypermerku Pomkepca,
nepapxus Epiiosa, yHuBepcaibHas HyMmepauusl.

1. Introduction

The paper studies computable numberings for different families. In particular, we will investigate families
for the existence of computable numberings and universal numberings.

The standard numberings of the family of all c.e. sets and of the family of all unary partial computable
functions are denoted by {VVx}an) and {(Px}xao, respectively. A binary function (x, y) given by the rule

(x+y)2+3x+y

is a bijection of @w? onto w, which is called Cantor s pairing function. By [ and r we denote the uniquely
defined functions such that (I(x),r(x)) = x, l({ x,y)) = x,and r({x,y)) =y for all X,y € w. For a
finite set X we denote its cardinality by card(X).

Let S be any countable set. By [1] any surjective mapping of the set of all natural numbers  onto S is
called numbering for the family S.

We say that numbering a is computable if the set {(x,n): x € a(n)} is computably enumerable, and by
Com(S) we denote the set of all computable numberings for the family S. A family S is called computable if
Com(S) is non-empty.

A numbering o is reducible to B, if there exists a computable function f'such that @(x) = B(f (x)) for
all x € w, and we denote itas a < f3.

We say that numberings o, {3 are equivalent if @ < f and f§ < @, and denote it as @ = . By deg(a)
we denote the set of all numberings which equivalent to a, i.e. deg(a) = {f: =a}. For family S the
degree structure ({deg(a): @ € Com(S)}, <) is called Rogers semilattice of S. It is important to note that
if the Rogers semilattice has the largest element, then the numberings to this degree are called universal. That
is, a computable numbering o of a family S is called universal if B < a for all computable numberings
f € Com(S). More details about the properties of the classical Rogers semilattice can be found, for example,
in [1-13].

Later, in [14], it was proposed to generalize the concepts of the Rogers semilattice for various computational
classes. In this paper, we will be interested in generalizations for the Ershov hierarchy. Recall here that a set
A € w is in Ershov’s hierarchy class X571 if A is n-computably enumerable (n-c.e.), i.e., if A = limg Ag
for a uniformly computable sequence of functions A_such that Ay = @ and for each x, there are at most n
many s such that Ag(x) # Ag41(X). Here, by A (X) we denote the characteristic function for the set 4 .
Furthermore, a set 4 is a difference of computably enumerable sets (d-c.e.) if A is 2-c.e., i.e., if 4 is of the form
Ag \ Ay for computably enumerable sets A and A,.

2. Main provisions. Material and methods.

We call a numbering o for a family S is Z_l—computable (or equivalently, n-computable), if the relation
{(x,n): x € a(n)}isin %1 Note that if a family of sets Shasa ¥ —cornputable numbering, then every set
inSisin X, 1. For a family S by Com;;! (S) we will denote the set of all ¥, 1-computable numberings for the
family S. The quotient structure of Com,, ~1 (§) modulo equivalence of the numberings ordered by the relation
reducibility of numberings is also called Rogers semilattice and denote it as R 1 n - (8). Similarly, a numbering

a € Comy,*(S) is called universal in Comp1(S)if p < aforall B € Com;l(S)
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The study of Rogers semilattices in the Ershov hierarchy is interesting because in it a number of unexpected
results have been obtained. For example, it was shown in [15] that there is a family S consisting of just two
d-c.e. sets such that Com; 1(5) has no universal numbering, despite the fact that in classical numbering
theory every finite family has a universal numbering. Khutoretskii’s theorem states that the Rogers semilattice
of any family of c.e. sets have either at most one or infinitely many elements [9]. Furthermore, a lemma used
in the inductive step of the proof of this theorem demonstrates that, no Rogers semilattice can be partitioned
into a principal ideal and a principal filter. But, Badaev and Lempp in [16] show that such decomposition is
possible for some family of d-c.e. sets. The question of whether the full statement of Khutoretskii’s Theorem
fails for families of d-c.e. sets remains open. In view of the properties of the F. Stephan operator [17], it suffices
to research Rogers semilattices for families of sets at two lower levels in the Ershov hierarchy. Other results on
Rogers semilattices in Ershov hierarchy can be found, for example, in [18-26].

In section 2.1, we prove that the following families have no universal computable numberings: the family
of all computable sets (theorem 1); for any infinite c.e. set 4 the family of all c.e. sets without set 4 (theorem
3). In case when 4 is a finite set, then the family of all c.e. sets without set 4 has a universal computable
numbering (theorem 2). From this result in the set of all c.e. sets we can characterize finite sets in terms
of Rogers semilattices. Namely, a c.e. set 4 is finite iff Rogers semilattice R 1(21 \ A) has the greatest
element (corollary 2). In section 2.2 we focused on 35 1_computable numberings. In particular, we prove that
the following famlhes have no universal X5 —computable numberings: the family of all c.e. sets; for any d-c.e.
set A the family 253\ A.

3. Results and Discussion

3.1. Computable numberings

This section provides the proofs of existence (or not) of the computable numberings and universal
computable numberings for some families of c.e. sets. Let's denote by Rec the family of all computable sets.

Theorem 1. The family Rec is computable and Rec has no universal computable numbering.

Proof: First of all, we will prove that the family Rec has a computable numbering (see also [27]). We will
construct, step by step, an approximation for numbering v as follow: we present the construction for a fixed
number e and additional, we will construct a computable function r.

Step 0. Assume that Vo(e) = @ and r(0) = 0.

Step s+1.1fV y < 1(S) [@e,s(¥) L€ {0,1}], then assume that

Vspr(e) = {x:x <1(s) & e s(x) =1} andr(s +1) =r(s) + 1.

Otherwise, assume that Vsp1(€) = vg(e) and r(s+1) =r(s).

The construction's description is complete.

Assume V(x) =Ug v4(x) forall x € w.

Now we show that v is a computable numbering for the family Rec. At first, from construction it is not hard
to see that v is computable numbering for some family, i.e. {(x,e): x € v(e)} isc.e.

Let's show that image of v is Rec. If Pe is characteristic function, i.e. {0,1}-valued total function, then
obvious that r(s) increases to infinite and v(e) to be a set {x: . (x) = 1} That is v(e) is computable
set whose characteristic function is @e. If Pe is not characteristic function, i.e. either {0,1}-valued nor total
function, then there is minimal n, such that @, ;(n) & {0,1} or e (") is undefined. By construction function
7(s) do not increase more than 7, so v(e) remains finite.

For any recursive set 4 there is e such that v(e) = A. So, for the set 4 there is its characteristic recursive
function Pe. Since Pe is {0,1}-valued total function, as discussed above v(€) is a set which characteristic
function is Q.

Now we will prove that for the family Rec there is no universal computable numbering.

Assume o be any computable numbering for the family Rec. Let {Ks}sew bea computable approximation
for the halting problem. We will define numbering [3 as follow: for any x € w

B(2x) = a(x)
and define B (2x + 1) with the following construction
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Step 0. Assume By(2x + 1) = @ and (0) = 0.

Step s+1. If @rs(2x+1) =y and B,(2x + 1) N [0,7(s)] = as(y) N [0,7(s)], then assume
Bs+1(2x +1) = KN [0,7(s)] and r(s + 1) = 7(s) + 1.

Otherwise, Bs11(2x + 1) = fs(2x + 1) and r(s + 1) = r(s).

The construction's description is complete. Assume f(x) =Ug Bg(x).

Let's show that  is computable numbering for the family Rec. Since o is computable numbering and by
construction clear that f is computable numbering for some family. It is clear that §(2x) € Rec. Now, let
x be any number. If ¢, (2x + 1) undefined, then by construction B.(2x + 1) = By (2x + 1) = @ for all

s € w. So B(2x + 1) = @ which belongs to Rec. If @x(2x + 1) is defined and equal to some y, then
B (2x + 1) is finite set, because a(y) # K. Really, let m be the least number such that a(y) and K different
from each other. Then fBs(2x + 1) N [0,7(s)] # as(y) N [0,7(s)] when r(s) = m. Function r(s) does
not increase more than m, so BRx+ 1) remains finite.

Now, suppose that S < @. Moreover, suppose P¢ is arecursive function which reduces f to a. Itis clear that
@e(2e + 1) | = y for some y. As discussed above there is m such that (2e + 1) n [0,m] # a(y) N [0, m].
So B(2e + 1) # a(p.(2e + 1)) which contradicts that @e is reduces P to a. Hence a can not be universal
computable numbering. Theorem 1 is proved.

Now, we will show that there still be universal computable numbering for a family of all c.e. sets even if
we remove any finite set.

Theorem 2. Let F be any finite set and S be a family of all c.e. sets without F. Then S has universal
numbering.

Proof. By Friedberg's work [3], we know that there is Friedberg numbering for the family of c.e. sets. For
instance, if we remove one element from the family, we still can have Friedberg numbering for a given family,
we just enumerate them in other way.

The construction of computable universal numbering for the family S is split into two parts.

Case I. Assume that F = (. We construct infinitely many a (x) numberings that enumerates W_with the

{i}, ie.an(x) = W, U {n}. Lets define the numbering B as follow:

B(n, x)) = an(x).

It is not hard to see that 3 is computable numbering for the family S.

Now, let v be a computable numbering for the family S. Since S € {W;:1 € w} there is computable
function f'such that v(x) = Wr(x). Let v_ be a computable approximation for the numbering v. Lets define a
function A(x) as follow:

h(x) = L(us[(I(s) € vs(x)])

Since v(x) # @ for any x the function % is total computable. So numbering v is reducible to B via
computable function g(x) = (h(x),f(x)). Indeed, since h(x) € v(x) = Wiy We know that

0 (f(X) = Wiy U {h(x)} = Wy(y)- Consequently, y(x) = Wiy = Qneo (f (X)) = B((h(x),
f(x))). Which means that B is universal numbering for the family S.

Case II. Assume that F # @. For this case universal numbering § we can define as follows: for any x let

B(x) =Us Bsex), where By(x) = @ and

Wysir if Wyse1 # F;
Bs(x), if Wy 541 =F.

Again, let v be a computable numbering for the family S. As in the previous case there is computable
function £ with V(x) = Wy for any x. Since v(x) # F there is infinitely many s such that Wy(y)s # F.
Then B(f(x)) = v(x). Theorem 2 is proved.

Corollary 1. If Sis a family of all c.e. sets without finitely many finite sets, then S has universal numbering.

We can see the change if we remove some infinite set from the family S .

Frn @ = |

17



o BECTHMK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, N91 (64), 2023 o

Theorem 3. Let F be any infinite c.e. set and S be a family of all c.e. sets without F. Then S has no
universal numbering.

Proof. Proof of this theorem looks like proof of theorem 1. So as not to be repeated, we will only give the
construction. Let F' be a computable approximation for c.e. set /" and o be a computable numbering for the
family S. We will define numbering [ as follow: for any x € w

B(2x) = a(x)

and define §(2x + 1) with the following construction
Step 0. Assume f5(2x + 1) = @ and r(0) = 0.

Step s+1. If Prsx+ D=y nq as(y) = Bs(2x + 1), then assume PBgy1(2x+1) =
Fsn[0;r(s)] and r(s + 1) = r(s) + 1.

Otherwise, assume Bs11(2x + 1) = f(2x + 1) and (s + 1) = r(s).

The construction description is complete. Let S(x) =Ug Bs(x).

According to previous theorems, in the set of all c.e. sets we can define the notion of "finite sets" in terms
of Rogers semilattices. i
_ Corollary 2. W is finite set iff there is universal computable numbering for the family (Wi e w}\
\ {We}.

3.2. x5 1-computable numberings

In this section, we will use the following approximation for zz—l-set.

Lemma 1. A set Bis Xg L iff there is {0,1}-valued computable function f{x,s) such that for all x, the
following conditions is hold:

1. B(x) =\limsf (x,5), with f(x,0) = 0;

2. {s:f(x,s+1) # f(x,5)}) <2

here, B(x) is characteristic function for B. The function fis called X5 1-approximation for the set B.

Theorem 4. Let B be a X3 1 set. Then the family § =X 1 \ {B} has no universal numbering in
Com;1(S).

-1
Proof. Let V € Comy~(S) be any numbering. We will construct a numbering 8 € Com; 1(5) such

that B £ v. Let fp(x,s) bea X, 1-approximation for B. Let f,(x,y,5) be a X3 1‘-approximation for
numbering v. We define a X5 1_approximation f; B (x,y, s) for numbering B as follow: for all x,y,s assume

f5(26,,5) = f,(x,7,5),

and define fg(2x + 1,¥,S) with the following construction.

Step 0. Assume fp(2x +1,2,0) = 0 forall x,z and r(x,0) = 0.

Step s+1. Let X = l(S) If (px,s(zx + 1) = y and fﬁ (Zx +1,z, S) = ﬁ/(y' Z, S)
for all z<r(x,s), then for all z<r(x,s) set fe2x+1,2z,s + 1) = fg(z,s +1) and
r(x,s+1)=r(x,s)+ 1,

Otherwise, assume f[;(Zx +1,z,s+1) = f[g(Zx +1,2,5) and r(x,s +1) =r(x,s),

Construction description is complete. Assume that, B(x)(y) = lim,f, B (x,y,s).

It is not hard to see that fg (%, 2,0) = 0 forall x,z, and card({s: fp (x,z,s +1) #f3 (x, 2, S)}) =2
because the function As. f B (2x + 1, z, s) can change its value just because changes value As. fp(2, s).

In the case when B is finite the construction undergoes a few changes: assume that fe(x,s) = x5 (%) for
all x,s. In this case at step 0 we start from the set © instead @ (this means we assume fi B 2x+1,2,0) =1
for all x,z.).

Now, suppose that (t < v, then there is total computable function ¢, such that p(x) =v(@e(x)) forall
x. On strength of # =V via o, follows p(2e +1) =v(y) for ¥ = @e(2€ + 1), Since for any z there is
infinitely many s such that fz(2e + 1,2,5) = f, (¥, 2, 5) the function As.7(e,s) is increase to infinite, so
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limsf,(y,z,5) = limsfﬁ (2e+1,z,5) = limyfg(z,5)

for all z. Hence v(y) = B. This is impossible, because v is numbering for family which does not contains
the set B. Theorem 4 is proved.

Corollary 3. The family X7 1 has no universal numbering in Com,, 1 (Z7 1).

B -c.e. set instead of & in the construction of the

For proof the corollary 3 enough to take any proper
theorem 4.

3. Conclusion

In conclusion, we proved that there is no universal numbering for the family of all recusive sets. Also, for
families of c.e. sets without an empty element, without a finite number of finite sets, there is still a universal

numbering. As for the families of all c.e. sets without an infinite set, then in this case there will be no universal
numbering. We proved that family X5 1 \ {B} and the family Xy ' has no universal x5 L _computable

numbering for any B € 25,
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