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ANALYTICAL APPROACH FOR INVERSE PROBLEMS THEORY APPLICATIONS 
TOWARDS DETERMINATION OF THERMOPHYSICAL CHARACTERISTICS OF SOIL

Abstract
Current paper presents analytical expressions received for investigation of determination of thermophysical characteristics 
of soil applying the theory of inverse problems. There was considered experimental design with exact measurements and 
constructed mathematical model for considered case. The analytical expression for transient one-dimensional temperature 
field was received by Laplace transform. Additional data, such as the heat flux at inlet domain received by conducting 
numerical simulation of the heat source via computational model. Presented analytical expression for heat transfer 
parameter allows to determine the soil thermal property without loss of precision, which is crucial in agricultural field. 
Paper discusses posed peculiarities considered for the inverse problem methodology along with derivation stages of 
analytical expression. The analytical expression for proposed model is presented both in the frequency and real time 
domain by applied direct and inverse Laplace transform. The measured outlet input data is interpolated further by the 8-th 
order polynomial and presented with approximation residuals.
Key words: Inverse problems, transient heat transfer, analytical solution, experimental measurements, numerical 
simulation, soil.
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ТОПЫРАҚТЫҢ ТЕРМОФИЗИКАЛЫҚ СИПАТТАМАЛАРЫН АНЫҚТАУҒА КЕРІ
МӘСЕЛЕЛЕР ТЕОРИЯСЫ ҚОЛДАНЫЛУЫНЫҢ САРАПТАМАЛЫҚ  ТӘСІЛДЕРІ

Аңдатпа
Бұл жұмыста кері есептер теориясының көмегімен топырақтың термофизикалық сипаттамаларын анықтауды 
зерттеу үшін алынған сараптамалық өрнектер берілген. Нақты өлшемдері бар эксперименттік схема зерттеліп, 
қарастырылып отырған жағдайға математикалық модель құрастырылды. Лаплас түрлендіруінің көмегімен 
стационарлы емес бір өлшемді температура өрісі үшін аналитикалық өрнек алынды. Қосымша деректер, мысалы, 
кіріс жылу ағыны, есептеу моделін пайдаланып жылу көзін сандық модельдеу арқылы алынады. Жылу беру 
параметрі үшін ұсынылған аналитикалық өрнек топырақтың жылулық қасиеттерін дәлдікті жоғалтпай анықтауға 
мүмкіндік береді. Бұл ауыл шаруашылығы саласында өте маңызды. Мақалада кері есептің әдістемесі үшін 
ескерілетін жиынтық белгілер, сондай-ақ аналитикалық өрнекті шығару кезеңдері қарастырылады. Ұсынылған 
модель үшін аналитикалық өрнек Лапластың тікелей және кері түрлендірулерінің көмегімен жиілік облысында 
да, нақты уақыт аймағында да ұсынылған. Шығудағы өлшенген кіріс деректері 8-ші ретті көпмүшемен қосымша 
интерполяцияланады және жуықтау қалдықтарымен ұсынылады. Сонымен қатар, модельдеудің дәлдігін арттыру 
үшін жан-жақты құрылымдары бар модельді көрсетуге қаншалықты ынталы болсақ, аналитикалық шешімді 
шығару кезеңдерінде соғұрлым қиындықтар туындайды. Осы себепті біз нақты әлемде қарастырылатын мәселенің 
жалпы тенденцияларын көрсететін эквивалентті модельді ұсына аламыз. Ұсынылған мақаланың жалпы мақсаты 
– біртекті орта үшін қолданылатын коэффициенттерді анықтау процедурасы үшін аналитикалық кері талдау 
әдістемесінің жалпы идеясын ұсыну.
Тірек сөздер: Кері есептер, өтпелі жылу алмасу, аналитикалық шешім, тәжірибелік өлшемдер, сандық модельдеу, 
топырақ.
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АНАЛИТИЧЕСКИЙ ПОДХОД ДЛЯ ПРИЛОЖЕНИЙ ТЕОРИИ ОБРАТНЫХ ЗАДАЧ 
К ОПРЕДЕЛЕНИЮ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТА

Аннотация
В данной работе представлены аналитические выражения, полученные для исследования определения теплофи-
зических характеристик грунта с применением теории обратных задач. Была рассмотрена экспериментальная 
схема с точными измерениями и построена математическая модель для рассматриваемого случая. Аналитическое 
выражение для нестационарного одномерного температурного поля получено с помощью преобразования 
Лапласа. Дополнительные данные, такие как тепловой поток на входе, получают путем проведения численного 
моделирования источника тепла с помощью вычислительной модели. Представленное аналитическое выражение 
для параметра теплопередачи позволяет без потери точности определить тепловые свойства почвы, что крайне важно 
в сельскохозяйственной сфере. В статье обсуждаются поставленные особенности, учитываемые для методологии 
обратной задачи, а также этапы вывода аналитического выражения. Аналитическое выражение для предложенной 
модели представлено как в частотной области, так и в области реального времени с применением прямого и 
обратного преобразования Лапласа. Измеренные входные данные на выходе дополнительно интерполируются 
полиномом 8-го порядка и представляются с остатками аппроксимации. Общая цель предлагаемой статьи состоит 
в том, чтобы изобразить общее представление о методологии аналитического обратного анализа для процедуры 
определения коэффициентов, используемых для однородной среды.
Ключевые слова: обратные задачи, нестационарный теплообмен, аналити ческое решение, экспериментальные 
измерения, численное моделирование, грунт.

 
Introduction
In today’s world there are a lot of well-known empirical methods for determination of thermal-

physical characteristics of structural and non-structural materials in the laboratory conditions with 
prescribed accuracy [1–5]. However, it is still a matter of difficulty to identify key properties of material 
without terminating the exploitation process during experiments conducted on the field or receiving 
such data analytically without loss of accuracy and precision [6]. It is well-known fact that analytical 
expressions are more favorable in terms of reduction of computational cost expressed in time and 
memory, to receive exact value without losses due to introduced errors by numerical approximation [7]. 
Determination of thermal characteristics of soil plays key role in agricultural area and construction sector 
[8–9]. Investigating soil fertility or appropriate freezing depth of soil are the key issues in agricultural 
sector which are impossible without reliable data of thermal characteristics for considered soil category 
[10–12]. Another application of the usage of inverse problems is to determine the type of the soil by 
observing calculated values of key thermal parameters using statistical comparative analysis [13–16].  
The essence of the inverse analysis methodology lies in the prescribed ill-posedness of the problem due 
to violation of one of the following factors: lac of solution, infinitely many solutions or the solution 
discontinuous dependency on the input data. These factors comprehend numerical exploitation of the 
posed inverse problem. In such case analytical investigation is more preferable, since we illuminate these 
factors, however such implementations require to overcome number difficulties due to derivation stages. 
For instance, there should exist the solution of the posed direct problem, its continuous transform in the 
frequency domain, and same solution of the invers problem derived for the considered process. Moreover, 
the more we are keen to imply model with comprehensive structures in order to increase the accuracy of 
simulation, the more difficulties will arise during the derivation stages of the analytical solution. For that 
reason, we may pose an equivalent model that will reflect general tendencies of real-world considered 
problem.

The general goal of proposed paper is to depict general idea of the analytical inverse analysis 
methodology for coefficients determination procedure utilized for homogeneous medium terrain.
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Figure 1 – Soil experimental design 

 
The direct problem consists of determining the temperature field in domain 

Ω = 𝑥𝑥 ∈ [0,∞) ∪ 𝑡𝑡 ∈ [0, 𝑇𝑇]. We set absence of bounds on the right side for spatial 
part of domain since for single-layered structure we do not have any reflections of 
the heat-wave flux from the right side, considering it as isolated side, thus for set 
experimental design the model describing transient heat flow is constructed as: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑎𝑎2 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑥𝑥2.      (1) 
 

𝜃𝜃(𝑥𝑥, 0) = 𝜃𝜃0(𝑥𝑥).     (2) 
 

𝜃𝜃(0, 𝑡𝑡) = 𝜃𝜃1(𝑡𝑡).     (3) 
 

𝜃𝜃(∞, 𝑡𝑡) = 0.     (4) 
 

 Here the initial condition (2) is received by interpolating measured data 
through time domain and the same is done for boundary condition (3), heat 
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Here the initial condition (2) is received by interpolating measured data through time domain and 
the same is done for boundary condition (3), heat conductivity coefficient is expressed as conductivity coefficient is expressed as 𝑎𝑎 = √𝑘𝑘/𝜌𝜌𝜌𝜌, where 𝜌𝜌 and 𝜌𝜌 are density and 

specific heat capacities of the soil, whereas 𝑘𝑘 is the heat transfer coefficient.  
 The inverse problem is formulated as follows: to determine the heat 
conductivity coefficient by measuring additional data on the inlet of the domain. 
For that reason, we measure heat flux from radiation of the bulb lamp at point 𝑥𝑥 =
0.  

 
Materials and Methods 

The measured radiation received from numerical simulation of the heating 
processes inside the bulb lamp [17]. The geometrical domain is considered as axis-
symmetrical region, which is discretized by structural grid presented below: 

 

 
Figure 2 – Axis-symmetrical region and heat flux inside bulb lamp 

 
 Simulated processes include conduction trough the tungsten spiral, which is 
further transferred by convection through argon to the lamp glass and then as the 
heat flux by radiation from glass to soil inlet.  

The following profiles gives numerical values of received heat flux due to 
radiation from the bulb lamp: 
 

, 
where 

эта теория допускает элиминацию кванторов, поскольку множество типов навязывается 
бескванторными формулами, и это приводит к тому, что она еще и является разрешимой.  
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Introduction 

It is well known that M. G. Peretyat’kin [6] has constructed the complete decidable 
theory 𝑇𝑇0 having exactly 3 nonisomorphic countable models by expanding a dense meet-tree 
structure [3] with constants 𝑐𝑐𝑛𝑛

(0), 𝑛𝑛 ∈ 𝜔𝜔, such that 𝑐𝑐𝑛𝑛
(0) < 𝑐𝑐𝑛𝑛+1

(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
Ehrenfeucht or 𝐼𝐼(𝑇𝑇, 𝜔𝜔) = 2𝜔𝜔. 

 

 

In our work, we study all possibilities of constant expansions of a dense meet-tree 
structure 〈𝑀𝑀;<,⊓〉 by using a general theory of classification of countable models of complete 
theories [7]. Moreover, we describe some distributions of countable models of these theories in 
terms of Rudin–Keisler preorders and distribution functions of numbers of limit models. For 
instance, in the monograph [7] it is shown that the numbers of countable models for constant 
expansions of 𝑇𝑇d𝑚𝑚𝑚𝑚 with one sequence (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔 of constants, with two sequences 
(𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔 of constants, and three sequences (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛

(2))𝑛𝑛∈𝜔𝜔 of 
constants are 3, 6 and 34, respectively. 

 

Main Provisions 

The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
by 𝐼𝐼(𝑇𝑇, 𝜆𝜆). 

 Definition [4]. A theory 𝑇𝑇 is called Ehrenfeucht if 1 < 𝐼𝐼(𝑇𝑇, 𝜔𝜔) < 𝜔𝜔. 

 Definition [1]. A type 𝑝𝑝(𝑥𝑥) ∈ 𝑆𝑆(𝑇𝑇) is said to be powerful in a theory 𝑇𝑇 if every model 
ℳ of 𝑇𝑇 realizing 𝑝𝑝 also realizes every type 𝑞𝑞 ∈ 𝑆𝑆(𝑇𝑇), i.e., ℳ ⊨ 𝑆𝑆(𝑇𝑇). 

The powerful types, that always are represented in Ehrenfeucht theories [1], play an 
important role for the finding the number of countable models. If a complete theory does not 
have a powerful type, then it has infinitely many countable models. Indeed, we take a type 𝑝𝑝0, 
since it is not powerful, there is a type 𝑝𝑝1 and a model ℳ0 that realizes the type 𝑝𝑝0 and omits the 
type 𝑝𝑝1, since the types 𝑝𝑝0, 𝑝𝑝1 are not powerful, again there is a type 𝑝𝑝2 and a model ℳ1 that 
realizes the types 𝑝𝑝0, 𝑝𝑝1 and omits the type 𝑝𝑝2 and etc. Thus, any Ehrenfeucht theory has a 
powerful type. 

 and с are density and specific heat capacities of the soil, whereas k is the heat transfer coefficient. 
The inverse problem is formulated as follows: to determine the heat conductivity coefficient by 

measuring additional data on the inlet of the domain. For that reason, we measure heat flux from radiation 
of the bulb lamp at point x – 0. 

Materials and Methods
The measured radiation received from numerical simulation of the heating processes inside the bulb 

lamp [17]. The geometrical domain is considered as axis-symmetrical region, which is discretized by 
structural grid presented below:
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conductivity coefficient is expressed as 𝑎𝑎 = √𝑘𝑘/𝜌𝜌𝜌𝜌, where 𝜌𝜌 and 𝜌𝜌 are density and 
specific heat capacities of the soil, whereas 𝑘𝑘 is the heat transfer coefficient.  
 The inverse problem is formulated as follows: to determine the heat 
conductivity coefficient by measuring additional data on the inlet of the domain. 
For that reason, we measure heat flux from radiation of the bulb lamp at point 𝑥𝑥 =
0.  

 
Materials and Methods 

The measured radiation received from numerical simulation of the heating 
processes inside the bulb lamp [17]. The geometrical domain is considered as axis-
symmetrical region, which is discretized by structural grid presented below: 

 

 
Figure 2 – Axis-symmetrical region and heat flux inside bulb lamp 

 
 Simulated processes include conduction trough the tungsten spiral, which is 
further transferred by convection through argon to the lamp glass and then as the 
heat flux by radiation from glass to soil inlet.  

The following profiles gives numerical values of received heat flux due to 
radiation from the bulb lamp: 
 

Figure 2 – Axis-symmetrical region and heat flux inside bulb lamp

Simulated processes include conduction trough the tungsten spiral, which is further transferred by 
convection through argon to the lamp glass and then as the heat flux by radiation from glass to soil inlet. 

The following profiles gives numerical values of received heat flux due to radiation from the bulb 
lamp:

  
Figure 3 – Heat flux profiles 

 
 The introduced heat flux is depicted in model as expression: 
 

𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 |𝜕𝜕=0 = 𝑞𝑞.      (5) 

 
 Considering (5) and (3), we can reformulate them as follows: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 |𝜕𝜕=0 = ℎ𝜃𝜃|𝜕𝜕=0, ℎ = 𝑞𝑞

𝑘𝑘𝜕𝜕(0,𝑡𝑡).    (6) 
 

 To find an analytical solution form, we apply Laplace Transform as usually 
done for seeking analytical expressions [18-20], so the problem (1)-(6) will take 
form in the frequency domain: 
 

𝑝𝑝𝑝𝑝 − 𝑎𝑎2 𝑑𝑑2𝑈𝑈
𝑑𝑑𝜕𝜕2 = 𝜃𝜃0.      (7) 

 
𝑑𝑑𝑈𝑈
𝑑𝑑𝜕𝜕 |𝜕𝜕=0 = ℎ𝑝𝑝|𝜕𝜕=0.      (8) 

 
 The solution of (7) is found in the form: 
 

𝑝𝑝 = 𝜕𝜕0
𝑝𝑝 + 𝐶𝐶𝑒𝑒−

√𝑝𝑝
𝑎𝑎 𝜕𝜕.      (9) 

 
 The constant is found by boundary condition (8): 
 

Figure 3 – Heat flux profiles
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The constant is found by boundary condition (8):

𝑈𝑈 = 𝜃𝜃0
𝑝𝑝 (1 −

ℎ
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥) = 𝜃𝜃0

𝑝𝑝 (1 − 𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥) + 𝜃𝜃0

𝑎𝑎
1

√𝑝𝑝(√
𝑝𝑝
𝑎𝑎 +ℎ)

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥.  (12) 

 
The form (12) represents an analytical expression for proposed model in the 

frequency domain. Now, it is necessary to apply inverse transform and receive 
equivalent form in real-time domain. Considering that: 
 

ℒ−1 (1𝑝𝑝 𝑒𝑒
−√𝑝𝑝

𝑎𝑎 𝑥𝑥) = 𝐸𝐸𝐸𝐸𝐸𝐸 ( 𝑥𝑥
2𝑎𝑎√𝑡𝑡).     (13) 

  
From it, follows that: 
 

𝜃𝜃0
𝑝𝑝 (1 − 𝑒𝑒−

√𝑝𝑝
𝑎𝑎 𝑥𝑥) → 𝜃𝜃0 erf (

𝑥𝑥
2𝑎𝑎√𝑡𝑡) .    (14) 

 
 For the right part of (12) shifting and similarities theorems of operational 
calculus are applied: 
 

ℒ−1[𝐹𝐹(𝑝𝑝)] = ℒ−1 [ 1
𝑝𝑝
𝑎𝑎+ℎ

𝑒𝑒−𝑝𝑝
𝑥𝑥
𝑎𝑎] = 𝑎𝑎𝑒𝑒−ℎ(𝑎𝑎𝑡𝑡−𝑥𝑥)𝜇𝜇(𝑎𝑎𝑎𝑎 − 𝑥𝑥).   (15) 

 
 Having Efros theorem together with (15), we know that: 
 

ℒ−1 [𝐹𝐹(√𝑝𝑝)
√𝑝𝑝

] = ℒ−1 [ 1
√𝑝𝑝

1
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥] = 𝑎𝑎

√𝜋𝜋𝑡𝑡 ∫ 𝑒𝑒−ℎ(𝑎𝑎𝑎𝑎−𝑥𝑥)−
𝜏𝜏2
4𝑡𝑡𝑑𝑑𝑑𝑑∞

𝑥𝑥
𝑎𝑎

.  (16) 

 
Results and Discussion 

Combining expressions (15) and (16) together the analytical expression in 
the real-time domain takes form: 
 

𝜃𝜃(𝑥𝑥, 𝑎𝑎) = 𝜃𝜃0 [𝑒𝑒𝐸𝐸𝐸𝐸 (
𝑥𝑥

2𝑎𝑎√𝑡𝑡) + 𝑒𝑒ℎ𝑥𝑥+𝑎𝑎2ℎ2𝑡𝑡𝑒𝑒𝐸𝐸𝐸𝐸𝑒𝑒 ( 𝑥𝑥
2𝑎𝑎√𝑡𝑡

+ 𝑎𝑎ℎ√𝑎𝑎)].  (17) 
 
 Expressing (17) having (6), the form becomes as: 
 

𝜃𝜃(𝑥𝑥, 𝑎𝑎) = 𝜃𝜃0 [
2
√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑎𝑎

𝑥𝑥
2𝑎𝑎√𝑡𝑡
0 +

𝑒𝑒
𝑞𝑞

𝑎𝑎𝑎𝑎(0,𝑡𝑡)𝑥𝑥+(
𝑞𝑞

𝑎𝑎(0,𝑡𝑡))
2
𝑡𝑡 2
√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑎𝑎∞

( 𝑥𝑥
2𝑎𝑎√𝑡𝑡+

𝑞𝑞
𝑎𝑎(0,𝑡𝑡)√𝑡𝑡)

] (18) 

 
 It should be noted that the error function can be expressed as the following 
converging series: 
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ℒ−1 [𝐹𝐹(√𝑝𝑝)
√𝑝𝑝

] = ℒ−1 [ 1
√𝑝𝑝

1
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥] = 𝑎𝑎

√𝜋𝜋𝑡𝑡 ∫ 𝑒𝑒−ℎ(𝑎𝑎𝑎𝑎−𝑥𝑥)−
𝜏𝜏2
4𝑡𝑡𝑑𝑑𝑑𝑑∞

𝑥𝑥
𝑎𝑎

.  (16) 

 
Results and Discussion 

Combining expressions (15) and (16) together the analytical expression in 
the real-time domain takes form: 
 

𝜃𝜃(𝑥𝑥, 𝑎𝑎) = 𝜃𝜃0 [𝑒𝑒𝐸𝐸𝐸𝐸 (
𝑥𝑥

2𝑎𝑎√𝑡𝑡) + 𝑒𝑒ℎ𝑥𝑥+𝑎𝑎2ℎ2𝑡𝑡𝑒𝑒𝐸𝐸𝐸𝐸𝑒𝑒 ( 𝑥𝑥
2𝑎𝑎√𝑡𝑡

+ 𝑎𝑎ℎ√𝑎𝑎)].  (17) 
 
 Expressing (17) having (6), the form becomes as: 
 

𝜃𝜃(𝑥𝑥, 𝑎𝑎) = 𝜃𝜃0 [
2
√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑎𝑎
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2𝑎𝑎√𝑡𝑡
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𝑒𝑒
𝑞𝑞

𝑎𝑎𝑎𝑎(0,𝑡𝑡)𝑥𝑥+(
𝑞𝑞

𝑎𝑎(0,𝑡𝑡))
2
𝑡𝑡 2
√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑎𝑎∞

( 𝑥𝑥
2𝑎𝑎√𝑡𝑡+

𝑞𝑞
𝑎𝑎(0,𝑡𝑡)√𝑡𝑡)

] (18) 

 
 It should be noted that the error function can be expressed as the following 
converging series: 

      (13)
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𝑎𝑎 𝑥𝑥.  (12) 

 
The form (12) represents an analytical expression for proposed model in the 

frequency domain. Now, it is necessary to apply inverse transform and receive 
equivalent form in real-time domain. Considering that: 
 

ℒ−1 (1𝑝𝑝 𝑒𝑒
−√𝑝𝑝
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] = ℒ−1 [ 1
√𝑝𝑝

1
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥] = 𝑎𝑎

√𝜋𝜋𝑡𝑡 ∫ 𝑒𝑒−ℎ(𝑎𝑎𝑎𝑎−𝑥𝑥)−
𝜏𝜏2
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𝑝𝑝
𝑎𝑎+ℎ

𝑒𝑒−𝑝𝑝
𝑥𝑥
𝑎𝑎] = 𝑎𝑎𝑒𝑒−ℎ(𝑎𝑎𝑡𝑡−𝑥𝑥)𝜇𝜇(𝑎𝑎𝑎𝑎 − 𝑥𝑥).   (15) 

 
 Having Efros theorem together with (15), we know that: 
 

ℒ−1 [𝐹𝐹(√𝑝𝑝)
√𝑝𝑝

] = ℒ−1 [ 1
√𝑝𝑝

1
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𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥] = 𝑎𝑎

√𝜋𝜋𝑡𝑡 ∫ 𝑒𝑒−ℎ(𝑎𝑎𝑎𝑎−𝑥𝑥)−
𝜏𝜏2
4𝑡𝑡𝑑𝑑𝑑𝑑∞

𝑥𝑥
𝑎𝑎

.  (16) 

 
Results and Discussion 

Combining expressions (15) and (16) together the analytical expression in 
the real-time domain takes form: 
 

𝜃𝜃(𝑥𝑥, 𝑎𝑎) = 𝜃𝜃0 [𝑒𝑒𝐸𝐸𝐸𝐸 (
𝑥𝑥

2𝑎𝑎√𝑡𝑡) + 𝑒𝑒ℎ𝑥𝑥+𝑎𝑎2ℎ2𝑡𝑡𝑒𝑒𝐸𝐸𝐸𝐸𝑒𝑒 ( 𝑥𝑥
2𝑎𝑎√𝑡𝑡

+ 𝑎𝑎ℎ√𝑎𝑎)].  (17) 
 
 Expressing (17) having (6), the form becomes as: 
 

𝜃𝜃(𝑥𝑥, 𝑎𝑎) = 𝜃𝜃0 [
2
√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑎𝑎

𝑥𝑥
2𝑎𝑎√𝑡𝑡
0 +

𝑒𝑒
𝑞𝑞

𝑎𝑎𝑎𝑎(0,𝑡𝑡)𝑥𝑥+(
𝑞𝑞

𝑎𝑎(0,𝑡𝑡))
2
𝑡𝑡 2
√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑎𝑎∞

( 𝑥𝑥
2𝑎𝑎√𝑡𝑡+

𝑞𝑞
𝑎𝑎(0,𝑡𝑡)√𝑡𝑡)

] (18) 

 
 It should be noted that the error function can be expressed as the following 
converging series: 

   (15)

Having Efros theorem together with (15), we know that:

𝑈𝑈 = 𝜃𝜃0
𝑝𝑝 (1 −

ℎ
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥) = 𝜃𝜃0

𝑝𝑝 (1 − 𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥) + 𝜃𝜃0

𝑎𝑎
1

√𝑝𝑝(√
𝑝𝑝
𝑎𝑎 +ℎ)

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥.  (12) 

 
The form (12) represents an analytical expression for proposed model in the 

frequency domain. Now, it is necessary to apply inverse transform and receive 
equivalent form in real-time domain. Considering that: 
 

ℒ−1 (1𝑝𝑝 𝑒𝑒
−√𝑝𝑝

𝑎𝑎 𝑥𝑥) = 𝐸𝐸𝐸𝐸𝐸𝐸 ( 𝑥𝑥
2𝑎𝑎√𝑡𝑡).     (13) 

  
From it, follows that: 
 

𝜃𝜃0
𝑝𝑝 (1 − 𝑒𝑒−

√𝑝𝑝
𝑎𝑎 𝑥𝑥) → 𝜃𝜃0 erf (

𝑥𝑥
2𝑎𝑎√𝑡𝑡) .    (14) 

 
 For the right part of (12) shifting and similarities theorems of operational 
calculus are applied: 
 

ℒ−1[𝐹𝐹(𝑝𝑝)] = ℒ−1 [ 1
𝑝𝑝
𝑎𝑎+ℎ

𝑒𝑒−𝑝𝑝
𝑥𝑥
𝑎𝑎] = 𝑎𝑎𝑒𝑒−ℎ(𝑎𝑎𝑡𝑡−𝑥𝑥)𝜇𝜇(𝑎𝑎𝑎𝑎 − 𝑥𝑥).   (15) 

 
 Having Efros theorem together with (15), we know that: 
 

ℒ−1 [𝐹𝐹(√𝑝𝑝)
√𝑝𝑝

] = ℒ−1 [ 1
√𝑝𝑝

1
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥] = 𝑎𝑎

√𝜋𝜋𝑡𝑡 ∫ 𝑒𝑒−ℎ(𝑎𝑎𝑎𝑎−𝑥𝑥)−
𝜏𝜏2
4𝑡𝑡𝑑𝑑𝑑𝑑∞

𝑥𝑥
𝑎𝑎

.  (16) 

 
Results and Discussion 

Combining expressions (15) and (16) together the analytical expression in 
the real-time domain takes form: 
 

𝜃𝜃(𝑥𝑥, 𝑎𝑎) = 𝜃𝜃0 [𝑒𝑒𝐸𝐸𝐸𝐸 (
𝑥𝑥

2𝑎𝑎√𝑡𝑡) + 𝑒𝑒ℎ𝑥𝑥+𝑎𝑎2ℎ2𝑡𝑡𝑒𝑒𝐸𝐸𝐸𝐸𝑒𝑒 ( 𝑥𝑥
2𝑎𝑎√𝑡𝑡

+ 𝑎𝑎ℎ√𝑎𝑎)].  (17) 
 
 Expressing (17) having (6), the form becomes as: 
 

𝜃𝜃(𝑥𝑥, 𝑎𝑎) = 𝜃𝜃0 [
2
√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑎𝑎

𝑥𝑥
2𝑎𝑎√𝑡𝑡
0 +

𝑒𝑒
𝑞𝑞

𝑎𝑎𝑎𝑎(0,𝑡𝑡)𝑥𝑥+(
𝑞𝑞

𝑎𝑎(0,𝑡𝑡))
2
𝑡𝑡 2
√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑎𝑎∞

( 𝑥𝑥
2𝑎𝑎√𝑡𝑡+

𝑞𝑞
𝑎𝑎(0,𝑡𝑡)√𝑡𝑡)

] (18) 

 
 It should be noted that the error function can be expressed as the following 
converging series: 
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Expressing (17) having (6), the form becomes as:
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ℎ
√𝑝𝑝
𝑎𝑎 +ℎ

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥) = 𝜃𝜃0

𝑝𝑝 (1 − 𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥) + 𝜃𝜃0

𝑎𝑎
1

√𝑝𝑝(√
𝑝𝑝
𝑎𝑎 +ℎ)

𝑒𝑒−
√𝑝𝑝
𝑎𝑎 𝑥𝑥.  (12) 

 
The form (12) represents an analytical expression for proposed model in the 

frequency domain. Now, it is necessary to apply inverse transform and receive 
equivalent form in real-time domain. Considering that: 
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From it, follows that: 
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 For the right part of (12) shifting and similarities theorems of operational 
calculus are applied: 
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Results and Discussion 

Combining expressions (15) and (16) together the analytical expression in 
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 It should be noted that the error function can be expressed as the following 
converging series: 
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 Now, having the measurements of temperature received experimentally, we 
can find analytical expression for the heat diffusivity coefficient from (18). The 
data was measured during ten discrete time intervals that could be smoothly 
interpolated by the eighth order polynomial, depicted on the figure below, along 
with residual plot: 

 
Figure 4 – Measured discrete data interpolated by 8th order polynomial (above) 

along with its residuals (below) 
 
 On the above figure, we observe the fitting model, that is the coincide of the 
interpolated data with the measurements, so that the vertical axis represents the 
measurements, and we have time interval in the horizontal axis. Meanwhile the 
below graph represents the points at which the residual indicates an outliners, 
stating that at these points the measurements were influenced by the noise 
introduced via the measurement device error. 
 
Conclusion 

We take the first three term of the series (19), however increasing the order 
will lead to better accuracy, simplifying the expression (18) we obtain the 
following form: 
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     − ln [𝑢𝑢(𝜉𝜉,𝑡𝑡)𝑢𝑢0
− 4𝑎𝑎4𝜉𝜉𝑡𝑡2−3𝑎𝑎2𝜉𝜉9𝑡𝑡+2.5𝜉𝜉5

4√𝜋𝜋𝑎𝑎5𝑡𝑡
5
2

] = 0.  (20) 

 
 Expression (20) is an analytical form with heat transfer parameters of soil 
which is heated by the lamp on the inlet. Determination of the necessary 
coefficients could be done by numerical iterative approach or direct calculations. 
In (20) the term 𝜃𝜃(𝜉𝜉, 𝑡𝑡) is additionally measured temperature at point 𝑥𝑥 = 𝜉𝜉, 
whereas all other terms are known constants. It could be clear that heat transfer 
parameters will depend on temperature and vary through time exponentially. 
 Received form is crucial in performing on site investigations or 
mathematical exploitations over correlational studies between thermal 
characteristics of soil and other terms. It is also useful for convergency rate studies 
for different approaches.  
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