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ON DISTRIBUTIONS OF COUNTABLE MODELS FOR CONSTANT EXPANSIONS OF THE 
DENSE MEET-TREE THEORY. I

Abstract. We study all possible constant expansions of the structure of the dense meet-tree  〈М; <, П〉  [3]. Here, a dense 
meet-tree is a lower semilattice without the least and greatest elements. An example of this structure with the constant 
expansion is a theory that has exactly three pairwise non-isomorphic countable models [6], which is a good example in the 
context of Ehrenfeucht theories. We study all possible constant expansions of the structure of the dense meet-tree by using 
a general theory of classification of countable models of complete theories [7], as well as the description of the specificity 
for the theory of a dense-meet tree, namely, some distributions of countable models of these theories in terms of Rudin–
Keisler preorders and distribution functions of numbers of limit models. In this paper, we give a new proof of the theorem 
that the dense meet-tree theory is countable categorical and complete, which was originally proved by Peretyat’kin. Also, 
this theory admits quantifier elimination since complete types are forced by a set of quantifier-free formulas, and this leads 
to the fact that it is decidable.
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 ТЫҒЫЗ АҒАШ ТЕОРИЯCЫН ТҰРАҚТЫ БАЙЫТУ ҮШІН ЕСЕПТЕЛЕТІН 
МОДЕЛЬДЕРДІ  БӨЛУ ТУРАЛЫ. I

Андатпа. 〈М; <, П〉  Табиғатта тығыз ағаш та, бос ағаш та кездеседі. Тығыз ағашты өндірісте көбірек пайдаланады. 
Сондықтан да біз  тығыз  су ағашы құрылымын байытудың [3] барлық түрлерін зерттейміз. Мұнда тығыз  ағаш 
деп ең үлкен және ең кішкентай элементтері жоқ төменгі жарты торды айтамыз. Осы тұрақты кеңейтілген 
құрылымның мысалы ретінде үш жұптық изоморфты емес саналымды моделі бар теорияны алуға болады 
[6] және ол Эренфойхт теорияларының мысалы ретінде қарастырылады. Тығыз ағаштың құрылымын барлық 
мүмкін болатын тұрақты кеңеюін зерттеу үшін біз толық теориялардың саналымды модельдерін жіктеудің 
жалпы теориясын [7], сонымен қатар, олардың ерекшеліктерін, атап айтқанда, Рудин-Кейслер реттері және шекті 
модельдер сандарының үлестіру функциялары тұрғысынан осы теориялардың саналымды модельдерінің кейбір 
үлестірімдерін зерттейміз. Бұл мақалада алғашында Перетятькин дәлелдеген тығыз  ағаш теориясы саналымды 
дәрежелік және толық екендігі туралы теореманың жаңа дәлелін береміз. Сондай-ақ, бұл теория кванторларды 
жоюға мүмкіндік береді. Өйткені типтер жиынтығы кванторлық емес формулалар арқылы жүктеледі және сол 
себепті, шешілімді теория болуына әкеледі.

Тірек сөздер: кездесетін ағаш, саналымды модель, байыту, Эренфойхт теориялары.
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О РАСПРЕДЕЛЕНИЯХ СЧЕТНЫХ МОДЕЛЕЙ ДЛЯ КОНСТАНТНЫХ ОБОГАЩЕНИЙ 
ТЕОРИИ ПЛОТНОГО ДЕРЕВА ВСТРЕЧ. I

Аннотация. Мы изучаем всевозможные константные обогащения структуры плотного дерева встреч 〈М; <, П〉 [3]. 
Здесь под плотным деревом встреч мы понимаем нижнюю полурешетку без наибольшего и наименьшего элемента. 
В качестве примера этой структуры с константным обогащением можно взять теорию, которая имеет в точности 
три попарно неизоморфные счетные модели [6], который является хорошим примером в контексте эренфойхтовых 
теорий. Мы изучаем всевозможные константные обогащения структуры плотного дерева встреч, используя общую 
теорию классификации счетных моделей полных теорий [7], а также описание специфики теории плотного дерева, 
а именно некоторые распределения счетных моделей этих теорий в терминах предпорядков Рудина–Кейслера и 
функций распределения чисел предельных моделей. В этой статье мы даем новое доказательство теоремы, что 
эта теория плотного дерева встреч является счетно-категоричной и полной, которое было изначально доказано 
Перетятькиным. Также эта теория допускает элиминацию кванторов, поскольку множество типов навязывается 
бескванторными формулами, и это приводит к тому, что она еще и является разрешимой. 
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(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
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The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
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structure [3] with constants 𝑐𝑐𝑛𝑛

(0), 𝑛𝑛 ∈ 𝜔𝜔, such that 𝑐𝑐𝑛𝑛
(0) < 𝑐𝑐𝑛𝑛+1

(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
Ehrenfeucht or 𝐼𝐼(𝑇𝑇, 𝜔𝜔) = 2𝜔𝜔. 

 

 

In our work, we study all possibilities of constant expansions of a dense meet-tree 
structure 〈𝑀𝑀;<,⊓〉 by using a general theory of classification of countable models of complete 
theories [7]. Moreover, we describe some distributions of countable models of these theories in 
terms of Rudin–Keisler preorders and distribution functions of numbers of limit models. For 
instance, in the monograph [7] it is shown that the numbers of countable models for constant 
expansions of 𝑇𝑇d𝑚𝑚𝑚𝑚 with one sequence (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔 of constants, with two sequences 
(𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔 of constants, and three sequences (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛

(2))𝑛𝑛∈𝜔𝜔 of 
constants are 3, 6 and 34, respectively. 

 

Main Provisions 

The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
by 𝐼𝐼(𝑇𝑇, 𝜆𝜆). 

 Definition [4]. A theory 𝑇𝑇 is called Ehrenfeucht if 1 < 𝐼𝐼(𝑇𝑇, 𝜔𝜔) < 𝜔𝜔. 

 Definition [1]. A type 𝑝𝑝(𝑥𝑥) ∈ 𝑆𝑆(𝑇𝑇) is said to be powerful in a theory 𝑇𝑇 if every model 
ℳ of 𝑇𝑇 realizing 𝑝𝑝 also realizes every type 𝑞𝑞 ∈ 𝑆𝑆(𝑇𝑇), i.e., ℳ ⊨ 𝑆𝑆(𝑇𝑇). 

The powerful types, that always are represented in Ehrenfeucht theories [1], play an 
important role for the finding the number of countable models. If a complete theory does not 
have a powerful type, then it has infinitely many countable models. Indeed, we take a type 𝑝𝑝0, 
since it is not powerful, there is a type 𝑝𝑝1 and a model ℳ0 that realizes the type 𝑝𝑝0 and omits the 
type 𝑝𝑝1, since the types 𝑝𝑝0, 𝑝𝑝1 are not powerful, again there is a type 𝑝𝑝2 and a model ℳ1 that 
realizes the types 𝑝𝑝0, 𝑝𝑝1 and omits the type 𝑝𝑝2 and etc. Thus, any Ehrenfeucht theory has a 
powerful type. 

 does not exceed q under the Rudin-Keisler preorder (written 

Interrelations of types in theories are defined, in many aspects, by the Rudin-Keisler 
preorders. The next definitions and notations are taken from [7]. Let ℳ𝑝𝑝 denote the class of 
isomorphic models that are prime over a realization of the type 𝑝𝑝. 

Definition. Let 𝑝𝑝 and 𝑞𝑞 be types in 𝑆𝑆(𝑇𝑇). We say that the type 𝑝𝑝 is dominated by a type 
𝑞𝑞, or 𝑝𝑝 does not exceed 𝑞𝑞 under the Rudin-Keisler preorder (written 𝑝𝑝 ≤RK 𝑞𝑞), if ℳ𝑞𝑞 ⊨ 𝑝𝑝, that 
is, ℳ𝑝𝑝 is an elementary submodel of ℳ𝑞𝑞 (written ℳ𝑝𝑝 ⪯ ℳ𝑞𝑞). Besides, we say that a model ℳ𝑝𝑝 
is dominated by a model ℳ𝑞𝑞, or ℳ𝑝𝑝 does not exceed ℳ𝑞𝑞 under the Rudin-Keisler preorder, and 
write ℳ𝑝𝑝 ≤RK ℳ𝑞𝑞. 

 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
ℳ𝑝𝑝 and ℳ𝑞𝑞 are said to be domination-equivalent, Rudin-Keisler equivalent, or RK-equivalent 
(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑃𝑃1,𝑃𝑃2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑃𝑃1 ∼ 𝑃𝑃2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(�̅�𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(�̅�𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(�̅�𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple �̅�𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑝𝑝(�̅�𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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Definition. Let 𝑝𝑝 and 𝑞𝑞 be types in 𝑆𝑆(𝑇𝑇). We say that the type 𝑝𝑝 is dominated by a type 
𝑞𝑞, or 𝑝𝑝 does not exceed 𝑞𝑞 under the Rudin-Keisler preorder (written 𝑝𝑝 ≤RK 𝑞𝑞), if ℳ𝑞𝑞 ⊨ 𝑝𝑝, that 
is, ℳ𝑝𝑝 is an elementary submodel of ℳ𝑞𝑞 (written ℳ𝑝𝑝 ⪯ ℳ𝑞𝑞). Besides, we say that a model ℳ𝑝𝑝 
is dominated by a model ℳ𝑞𝑞, or ℳ𝑝𝑝 does not exceed ℳ𝑞𝑞 under the Rudin-Keisler preorder, and 
write ℳ𝑝𝑝 ≤RK ℳ𝑞𝑞. 

 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
ℳ𝑝𝑝 and ℳ𝑞𝑞 are said to be domination-equivalent, Rudin-Keisler equivalent, or RK-equivalent 
(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑃𝑃1,𝑃𝑃2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑃𝑃1 ∼ 𝑃𝑃2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(�̅�𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(�̅�𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(�̅�𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple �̅�𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑝𝑝(�̅�𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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 Definition. Types 

эта теория допускает элиминацию кванторов, поскольку множество типов навязывается 
бескванторными формулами, и это приводит к тому, что она еще и является разрешимой.  
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Introduction 

It is well known that M. G. Peretyat’kin [6] has constructed the complete decidable 
theory 𝑇𝑇0 having exactly 3 nonisomorphic countable models by expanding a dense meet-tree 
structure [3] with constants 𝑐𝑐𝑛𝑛

(0), 𝑛𝑛 ∈ 𝜔𝜔, such that 𝑐𝑐𝑛𝑛
(0) < 𝑐𝑐𝑛𝑛+1

(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
Ehrenfeucht or 𝐼𝐼(𝑇𝑇, 𝜔𝜔) = 2𝜔𝜔. 

 

 

In our work, we study all possibilities of constant expansions of a dense meet-tree 
structure 〈𝑀𝑀;<,⊓〉 by using a general theory of classification of countable models of complete 
theories [7]. Moreover, we describe some distributions of countable models of these theories in 
terms of Rudin–Keisler preorders and distribution functions of numbers of limit models. For 
instance, in the monograph [7] it is shown that the numbers of countable models for constant 
expansions of 𝑇𝑇d𝑚𝑚𝑚𝑚 with one sequence (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔 of constants, with two sequences 
(𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔 of constants, and three sequences (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛

(2))𝑛𝑛∈𝜔𝜔 of 
constants are 3, 6 and 34, respectively. 

 

Main Provisions 

The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
by 𝐼𝐼(𝑇𝑇, 𝜆𝜆). 

 Definition [4]. A theory 𝑇𝑇 is called Ehrenfeucht if 1 < 𝐼𝐼(𝑇𝑇, 𝜔𝜔) < 𝜔𝜔. 

 Definition [1]. A type 𝑝𝑝(𝑥𝑥) ∈ 𝑆𝑆(𝑇𝑇) is said to be powerful in a theory 𝑇𝑇 if every model 
ℳ of 𝑇𝑇 realizing 𝑝𝑝 also realizes every type 𝑞𝑞 ∈ 𝑆𝑆(𝑇𝑇), i.e., ℳ ⊨ 𝑆𝑆(𝑇𝑇). 

The powerful types, that always are represented in Ehrenfeucht theories [1], play an 
important role for the finding the number of countable models. If a complete theory does not 
have a powerful type, then it has infinitely many countable models. Indeed, we take a type 𝑝𝑝0, 
since it is not powerful, there is a type 𝑝𝑝1 and a model ℳ0 that realizes the type 𝑝𝑝0 and omits the 
type 𝑝𝑝1, since the types 𝑝𝑝0, 𝑝𝑝1 are not powerful, again there is a type 𝑝𝑝2 and a model ℳ1 that 
realizes the types 𝑝𝑝0, 𝑝𝑝1 and omits the type 𝑝𝑝2 and etc. Thus, any Ehrenfeucht theory has a 
powerful type. 

 and q are said to be domination-equivalent, realization-equivalent, Rudin-
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Interrelations of types in theories are defined, in many aspects, by the Rudin-Keisler 
preorders. The next definitions and notations are taken from [7]. Let ℳ𝑝𝑝 denote the class of 
isomorphic models that are prime over a realization of the type 𝑝𝑝. 

Definition. Let 𝑝𝑝 and 𝑞𝑞 be types in 𝑆𝑆(𝑇𝑇). We say that the type 𝑝𝑝 is dominated by a type 
𝑞𝑞, or 𝑝𝑝 does not exceed 𝑞𝑞 under the Rudin-Keisler preorder (written 𝑝𝑝 ≤RK 𝑞𝑞), if ℳ𝑞𝑞 ⊨ 𝑝𝑝, that 
is, ℳ𝑝𝑝 is an elementary submodel of ℳ𝑞𝑞 (written ℳ𝑝𝑝 ⪯ ℳ𝑞𝑞). Besides, we say that a model ℳ𝑝𝑝 
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(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑃𝑃1,𝑃𝑃2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑃𝑃1 ∼ 𝑃𝑃2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
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the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
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  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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isomorphic models that are prime over a realization of the type 𝑝𝑝. 

Definition. Let 𝑝𝑝 and 𝑞𝑞 be types in 𝑆𝑆(𝑇𝑇). We say that the type 𝑝𝑝 is dominated by a type 
𝑞𝑞, or 𝑝𝑝 does not exceed 𝑞𝑞 under the Rudin-Keisler preorder (written 𝑝𝑝 ≤RK 𝑞𝑞), if ℳ𝑞𝑞 ⊨ 𝑝𝑝, that 
is, ℳ𝑝𝑝 is an elementary submodel of ℳ𝑞𝑞 (written ℳ𝑝𝑝 ⪯ ℳ𝑞𝑞). Besides, we say that a model ℳ𝑝𝑝 
is dominated by a model ℳ𝑞𝑞, or ℳ𝑝𝑝 does not exceed ℳ𝑞𝑞 under the Rudin-Keisler preorder, and 
write ℳ𝑝𝑝 ≤RK ℳ𝑞𝑞. 

 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
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(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑃𝑃1,𝑃𝑃2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑃𝑃1 ∼ 𝑃𝑃2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(�̅�𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(�̅�𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(�̅�𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple �̅�𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑝𝑝(�̅�𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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эта теория допускает элиминацию кванторов, поскольку множество типов навязывается 
бескванторными формулами, и это приводит к тому, что она еще и является разрешимой.  
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Introduction 

It is well known that M. G. Peretyat’kin [6] has constructed the complete decidable 
theory 𝑇𝑇0 having exactly 3 nonisomorphic countable models by expanding a dense meet-tree 
structure [3] with constants 𝑐𝑐𝑛𝑛

(0), 𝑛𝑛 ∈ 𝜔𝜔, such that 𝑐𝑐𝑛𝑛
(0) < 𝑐𝑐𝑛𝑛+1

(0) , 𝑛𝑛 ∈ 𝜔𝜔. Consequently, the theory 
was used as a base to produce examples in the context of Ehrenfeucht theories. Also, in [2] it was 
shown that a theory 𝑇𝑇 by expanding 𝑇𝑇dmt with countably many distinct constants is either 
Ehrenfeucht or 𝐼𝐼(𝑇𝑇, 𝜔𝜔) = 2𝜔𝜔. 

 

 

In our work, we study all possibilities of constant expansions of a dense meet-tree 
structure 〈𝑀𝑀;<,⊓〉 by using a general theory of classification of countable models of complete 
theories [7]. Moreover, we describe some distributions of countable models of these theories in 
terms of Rudin–Keisler preorders and distribution functions of numbers of limit models. For 
instance, in the monograph [7] it is shown that the numbers of countable models for constant 
expansions of 𝑇𝑇d𝑚𝑚𝑚𝑚 with one sequence (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔 of constants, with two sequences 
(𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔 of constants, and three sequences (𝑐𝑐𝑛𝑛

(0))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛
(1))𝑛𝑛∈𝜔𝜔, (𝑐𝑐𝑛𝑛

(2))𝑛𝑛∈𝜔𝜔 of 
constants are 3, 6 and 34, respectively. 

 

Main Provisions 

The number of pairwise non-isomorphic models of cardinality 𝜆𝜆 of a theory 𝑇𝑇 is denoted 
by 𝐼𝐼(𝑇𝑇, 𝜆𝜆). 

 Definition [4]. A theory 𝑇𝑇 is called Ehrenfeucht if 1 < 𝐼𝐼(𝑇𝑇, 𝜔𝜔) < 𝜔𝜔. 

 Definition [1]. A type 𝑝𝑝(𝑥𝑥) ∈ 𝑆𝑆(𝑇𝑇) is said to be powerful in a theory 𝑇𝑇 if every model 
ℳ of 𝑇𝑇 realizing 𝑝𝑝 also realizes every type 𝑞𝑞 ∈ 𝑆𝑆(𝑇𝑇), i.e., ℳ ⊨ 𝑆𝑆(𝑇𝑇). 

The powerful types, that always are represented in Ehrenfeucht theories [1], play an 
important role for the finding the number of countable models. If a complete theory does not 
have a powerful type, then it has infinitely many countable models. Indeed, we take a type 𝑝𝑝0, 
since it is not powerful, there is a type 𝑝𝑝1 and a model ℳ0 that realizes the type 𝑝𝑝0 and omits the 
type 𝑝𝑝1, since the types 𝑝𝑝0, 𝑝𝑝1 are not powerful, again there is a type 𝑝𝑝2 and a model ℳ1 that 
realizes the types 𝑝𝑝0, 𝑝𝑝1 and omits the type 𝑝𝑝2 and etc. Thus, any Ehrenfeucht theory has a 
powerful type. 

ϵ S(T), on 
which the relation of domination is induced by <RK, a relation deciding domination among 
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 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑃𝑃1,𝑃𝑃2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑃𝑃1 ∼ 𝑃𝑃2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
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 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑃𝑃1,𝑃𝑃2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑃𝑃1 ∼ 𝑃𝑃2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(�̅�𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(�̅�𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(�̅�𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple �̅�𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑝𝑝(�̅�𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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preorders. The next definitions and notations are taken from [7]. Let ℳ𝑝𝑝 denote the class of 
isomorphic models that are prime over a realization of the type 𝑝𝑝. 

Definition. Let 𝑝𝑝 and 𝑞𝑞 be types in 𝑆𝑆(𝑇𝑇). We say that the type 𝑝𝑝 is dominated by a type 
𝑞𝑞, or 𝑝𝑝 does not exceed 𝑞𝑞 under the Rudin-Keisler preorder (written 𝑝𝑝 ≤RK 𝑞𝑞), if ℳ𝑞𝑞 ⊨ 𝑝𝑝, that 
is, ℳ𝑝𝑝 is an elementary submodel of ℳ𝑞𝑞 (written ℳ𝑝𝑝 ⪯ ℳ𝑞𝑞). Besides, we say that a model ℳ𝑝𝑝 
is dominated by a model ℳ𝑞𝑞, or ℳ𝑝𝑝 does not exceed ℳ𝑞𝑞 under the Rudin-Keisler preorder, and 
write ℳ𝑝𝑝 ≤RK ℳ𝑞𝑞. 

 Definition. Types 𝑝𝑝 and 𝑞𝑞 are said to be domination-equivalent, realization-equivalent, 
Rudin-Keisler equivalent, or RK-equivalent (written 𝑝𝑝 ∼𝑅𝑅𝑅𝑅 𝑞𝑞) if 𝑝𝑝 ≤RK 𝑞𝑞 and 𝑞𝑞 ≤RK 𝑝𝑝. Models 
ℳ𝑝𝑝 and ℳ𝑞𝑞 are said to be domination-equivalent, Rudin-Keisler equivalent, or RK-equivalent 
(written ℳ𝑝𝑝 ∼𝑅𝑅𝑅𝑅 ℳ𝑞𝑞). 

If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
nonisomorphic models may be found among domination-equivalent ones. 

 Definition. Denote by 𝑅𝑅𝑅𝑅(𝑇𝑇) the set 𝑃𝑃𝑃𝑃 of isomorphism types of models ℳ𝑝𝑝, 𝑝𝑝 ∈
𝑆𝑆(𝑇𝑇), on which the relation of domination is induced by ≤𝑅𝑅𝑅𝑅, a relation deciding domination 
among ℳ𝑝𝑝, that is, 𝑅𝑅𝑅𝑅(𝑇𝑇) = ⟨𝑃𝑃𝑃𝑃;≤𝑅𝑅𝑅𝑅⟩. We say that isomorphism types 𝑃𝑃1,𝑃𝑃2 ∈ 𝑃𝑃𝑃𝑃 are 
domination-equivalent (written 𝑃𝑃1 ∼ 𝑃𝑃2) if so are their representatives.  

A model ℳ of a theory 𝑇𝑇 is called limit if ℳ is not prime over tuples and ℳ =
⋃𝑛𝑛∈𝜔𝜔 ℳ𝑛𝑛 for some elementary chain (ℳ𝑛𝑛)𝑛𝑛∈𝜔𝜔 of prime models of 𝑇𝑇 over tuples. In this case 
the model ℳ is said to be limit over a sequence q of types or  q-limit, where  q = (𝑞𝑞𝑛𝑛)𝑛𝑛∈𝜔𝜔, 
ℳ𝑛𝑛 =ℳ𝑞𝑞𝑛𝑛, 𝑛𝑛 ∈ 𝜔𝜔. If the sequence q consists of a unique type 𝑞𝑞 then the q-limit model is called 
limit over the type 𝑞𝑞. 

Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(�̅�𝑥) a type of 𝑇𝑇 lying in 
𝑆𝑆(𝑇𝑇). The type 𝑝𝑝(�̅�𝑥) is said to be 𝛥𝛥-based if 𝑝𝑝(�̅�𝑥) is isolated by a set of formulas 𝜑𝜑𝛿𝛿 ∈ 𝑝𝑝, where 
𝜑𝜑 ∈ Δ, 𝛿𝛿 ∈ {0,1}. 

 The following lemma, being a corollary of Compactness Theorem, noticed in [5]. 

  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple �̅�𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑝𝑝(�̅�𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 

  Fact.  The theory 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 are based by the set of quantifier-free formulae and formulae 
describing non/existence of least/greatest elements and in/comparability of elements. 
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isomorphic models that are prime over a realization of the type 𝑝𝑝. 
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If ℳ𝑝𝑝 and ℳ𝑞𝑞 are not domination-equivalent then they are non-isomorphic. Moreover, 
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Definition [5]. A theory 𝑇𝑇 is said to be 𝛥𝛥-based, where Δ is some set of formulae without 
parameters, if any formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of formulae in Δ. 

For Δ-based theories 𝑇𝑇, it is also said that 𝑇𝑇 has quantifier elimination or quantifier 
reduction up to Δ. 

  Definition [5, 7].  Let Δ be a set of formulae of a theory 𝑇𝑇, and 𝑝𝑝(�̅�𝑥) a type of 𝑇𝑇 lying in 
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  Lemma 1.  A theory 𝑇𝑇 is 𝛥𝛥-based if and only if for any tuple �̅�𝑎 of any (some) weakly 
saturated model of 𝑇𝑇, the type 𝑡𝑡𝑝𝑝(�̅�𝑎) is 𝛥𝛥-based. 

 The following fact is well-known using Lemma 1. 
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 and 
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(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
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𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
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𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 a finite subset of  A and 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 a finite 
subset of B is called a  partial isomorphism if

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

, 

holds for every atomic  

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 -formula 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  
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(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
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holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   
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𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  
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than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 
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than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  
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(b) for each pair of distinct comparable elements, there is an element between them;   
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than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  
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subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  
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Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 and B  of  DMT, 
where 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 and 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼
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where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max
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 𝑏𝑏𝑖𝑖 and  

 be subsets with cardinality n. Then, for any 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼
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where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 
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). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max
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 there is 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

, such that 
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Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
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Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

. 
Proof. We choose an element 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 with the minimal index and we put that 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

, where 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
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), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 
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∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 is some ordering of the set A. Suppose 
that 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
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holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
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there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 for 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

  for 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 and 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 for 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  
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МАТЕМАТИЧЕСКИЕ НАУКИ

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

where 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   
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Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
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∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾
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It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max
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Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
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subset of 𝐵𝐵 is called a  partial isomorphism if 
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holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 and 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

 we have the following

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  

It can be seen that αi are comparable with each other and they are less than αj, consequently, there is a 
maximal element among them, say 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and  . By construction, we have 

Materials and Methods  

Let ℳ = 〈𝑀𝑀; <,⊓〉 be a lower semilattice without least and greatest elements such that:  

(a) for each pair of incomparable elements, their join does not exist;  

(b) for each pair of distinct comparable elements, there is an element between them;   

(c) for each element 𝑎𝑎 there exist infinitely many pairwise incomparable elements greater 
than 𝑎𝑎, whose infimum is equal to 𝑎𝑎. 

Structure ℳ = 〈𝑀𝑀; <,⊓〉 will be called dense meet-tree.  

Definition. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of a dense meet-tree. 
A function 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 with 𝐴𝐴𝑛𝑛 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} a finite subset of 𝐴𝐴 and 𝐵𝐵𝑛𝑛 = {𝑏𝑏1, … , 𝑏𝑏𝑛𝑛} a finite 
subset of 𝐵𝐵 is called a  partial isomorphism if 

 𝒜𝒜 ⊨ 𝜑𝜑(𝑎𝑎1, … 𝑎𝑎𝑛𝑛) ⟺ ℬ ⊨ 𝜑𝜑(𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)),  

holds for every atomic ℒ-formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).   

Notation.  We write 𝑥𝑥 ∥ 𝑦𝑦 to mean that 𝑥𝑥 ≰ 𝑦𝑦 and 𝑦𝑦 ≰ 𝑥𝑥, where 𝑥𝑥 ≤ 𝑦𝑦 means 𝑥𝑥 ⊓ 𝑦𝑦 = 𝑥𝑥.   

 

 

 

Results and Discussions  

Lemma 2.  Let 𝑓𝑓𝑛𝑛: 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 be a partial isomorphism between two models 𝒜𝒜 and ℬ of  
DMT, where 𝐴𝐴𝑛𝑛 ⊆ 𝐴𝐴 and 𝐵𝐵𝑛𝑛 ⊆ 𝐵𝐵 be subsets with cardinality 𝑛𝑛. Then, for any 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 
there is 𝑏𝑏𝑛𝑛+1 ∈ 𝐵𝐵, such that 𝑓𝑓𝑛𝑛+1: = 𝑓𝑓𝑛𝑛 ∪ {(𝑎𝑎𝑛𝑛+1, 𝑏𝑏𝑛𝑛+1)} is also a partial isomorphism with 
𝑓𝑓𝑛𝑛+1 ↾ 𝐴𝐴𝑛𝑛 = 𝑓𝑓𝑛𝑛.  

Proof. We choose an element 𝑎𝑎𝑛𝑛+1 ∈ 𝐴𝐴\𝐴𝐴𝑛𝑛 with the minimal index and we put that 
𝜑𝜑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎𝑛𝑛+1, 𝑎𝑎𝑛𝑛), where 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is some ordering of the set 𝐴𝐴. 
Suppose that 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑛𝑛+1 for 𝑑𝑑 ∈ 𝐼𝐼, 𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘 for 𝑘𝑘 ∈ 𝐾𝐾 such that 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥)
𝑖𝑖∈𝐼𝐼

∧ ⋀(𝑥𝑥 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼

 ∧ ⋀(𝑥𝑥 ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

), 

where 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗, 𝑎𝑎𝑘𝑘 ∈ 𝑎𝑎𝑛𝑛 = (𝑎𝑎1, 𝑎𝑎2, … 𝑎𝑎𝑛𝑛). Then since 𝑎𝑎𝑗𝑗 ≰ 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑘𝑘 ≰ 𝑎𝑎𝑗𝑗 we have the following 

( ⋀ (𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗)
𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑎𝑎𝑗𝑗 ∥ 𝑎𝑎𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

). 

It can be seen that 𝑎𝑎𝑖𝑖 are comparable with each other and they are less than 𝑎𝑎𝑗𝑗, consequently, 
there is a maximal element among them, say 𝑎𝑎𝑖𝑖0. By construction, we have 𝑏𝑏𝑖𝑖0 = max

𝑖𝑖∈𝐼𝐼
 𝑏𝑏𝑖𝑖 and   and 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

Now to find 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 we reduce our proof to the consideration of eight cases. 
Case (i):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. We want to show that there exists such  

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 and 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

when 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

.  
By the fact that there is no minimal element there exists 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, for every 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 such that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Since 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, this implies that ck are comparable to each other and among 
them there is a maximal element, say 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Let 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Then 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 for every  

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 
and  

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 for every 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

.
Now we prove that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. For this, we assume that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, then since 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 
we have 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 which contradicts 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, and therefore 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. 
Case (ii):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. By the fact that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 is maximal element among αі we have

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 

Since 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, it is clear that 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, and 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 for every 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 follows from 
axiom (c), as there exist infinitely many incomparable elements 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, which greater than 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, that is, 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Then one of bk will be incomparable with 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. 
Case (iii): 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. In this case, we will just take 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. 
Case (iv):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. In this case, 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

.
Let 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Then we have 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 and 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

, where 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. As in 
the Case (ii), we find 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. 
Case (v):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Similar to Cases (ii) and (iii) 
Case (vi): 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Similar to Cases (ii) and (iii). 
Case (vii):

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

. Note that, 

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

 is maximal element among

(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 
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(⋀(𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑗𝑗)
𝑗𝑗∈𝐽𝐽

∧  ⋀ (𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘)
𝑗𝑗∈𝐽𝐽,𝑘𝑘∈𝐾𝐾

) 

Now to find 𝑏𝑏𝑛𝑛+1 we reduce our proof to the consideration of eight cases.  

Case (i): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. We want to show that there exists such 𝑏𝑏𝑛𝑛+1 and  

(⋀(𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗) ∧ ⋀(𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

) 

when 𝑎𝑎𝑛𝑛+1 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 .   

By the fact that there is no minimal element there exists 𝑏𝑏′𝑛𝑛+1 < 𝑏𝑏𝑗𝑗, for every 𝑗𝑗 ∈ 𝐽𝐽 such 
that 𝑐𝑐𝑘𝑘 = 𝑏𝑏′𝑛𝑛+1 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐽𝐽. Since 𝑐𝑐𝑘𝑘 < 𝑏𝑏′𝑛𝑛+1, this implies that 𝑐𝑐𝑘𝑘 are comparable to each other 
and among them there is a maximal element, say 𝑐𝑐𝑘𝑘0. Let 𝑏𝑏𝑛𝑛+1 ∈ (𝑐𝑐𝑘𝑘0, 𝑏𝑏′𝑛𝑛+1). Then 𝑏𝑏𝑛𝑛+1 < 𝑏𝑏𝑗𝑗 
for every 𝑗𝑗 ∈ 𝐽𝐽 and 𝑏𝑏𝑛𝑛+1 ≮ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐽𝐽. 

Now we prove that 𝑏𝑏𝑛𝑛+1 ≱ 𝑏𝑏𝑘𝑘. For this, we assume that 𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘, then since 𝑏𝑏𝑗𝑗 >
𝑏𝑏𝑛𝑛+1 ≥ 𝑏𝑏𝑘𝑘 we have 𝑏𝑏𝑗𝑗 ≥ 𝑏𝑏𝑘𝑘 which contradicts 𝑏𝑏𝑗𝑗 ∥ 𝑏𝑏𝑘𝑘, and therefore 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘.  

Case (ii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. By the fact that 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖 we 
have 

∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖 < 𝑥𝑥) ∧ ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

) ≡  ∃𝑥𝑥 (⋀(𝑎𝑎𝑖𝑖0 < 𝑥𝑥) ∧  ⋀(𝑥𝑥 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

). 

 Since 𝑏𝑏𝑖𝑖0 = max
𝑖𝑖∈𝐼𝐼

 𝑏𝑏𝑖𝑖, it is clear that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, and 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾 follows 
from axiom (c), as there exist infinitely many incomparable elements 𝑏𝑏𝑘𝑘1, 𝑏𝑏𝑘𝑘2, … , 𝑏𝑏𝑘𝑘𝑠𝑠, …, which 
greater than 𝑏𝑏𝑖𝑖0, that is, 𝑏𝑏𝑘𝑘𝑠𝑠 > 𝑏𝑏𝑖𝑖0. Then one of 𝑏𝑏𝑘𝑘 will be incomparable with 𝑏𝑏𝑛𝑛+1.  

Case (iii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. In this case, we will just take 𝑏𝑏𝑛𝑛+1 = 𝑏𝑏′𝑛𝑛+1.  

Case (iv): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 ≠ ∅. In this case, 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. 

Let 𝑎𝑎𝑖𝑖0 = 𝑎𝑎𝑛𝑛+1 ⊓ 𝑎𝑎𝑘𝑘0, 𝑘𝑘0 ∈ 𝐾𝐾. Then we have 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 and 𝑎𝑎𝑛𝑛+1||𝑎𝑎𝑘𝑘, where 𝑘𝑘 ∈ 𝐾𝐾. As 
in the Case (ii), we find 𝑏𝑏𝑛𝑛+1.  

Case (v): 𝐼𝐼 = ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii)  

Case (vi): 𝐼𝐼 ≠ ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Similar to Cases (ii) and (iii).  

Case (vii): 𝐼𝐼 ≠ ∅, 𝐽𝐽 ≠ ∅, 𝐾𝐾 ≠ ∅. Note that, 𝑎𝑎𝑖𝑖0 is maximal element among 𝑎𝑎𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

 ∧ ⋀(𝑎𝑎𝑛𝑛+1  ∥  𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾

). 

Here we take Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 with the condition that their intersection is empty. Also, taking Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 is 
equivalent to taking 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 
Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Then we rewrite our expression as follows 
Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 Let’s denote 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. It easy can be seen that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Now, we consider each case 
separately to find 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

:
1. if  

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 then 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

.
2. if 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 then

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

By the axiom (b) there is 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, where 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Besides, we will take 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 
as the meet 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 . Since 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, then they are comparable to each other and among 
them there is a maximal element,  say 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

.  By using the fact that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, we take 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

,  more precisely, 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Hence, 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 for 
every 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

.
It remains to prove that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 for every 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Assume the contrary, that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Since 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 we obtain 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. This contradiction shows that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

.
In the next case, we also assume the contrary, that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Using 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, together 
with the given fact that  

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 we will obtain that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 are comparable, that is, 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 or 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. This would contradict our assumption, because if we take 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 then 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 
and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, but 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

; if  

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, this implies that 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and  

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

, 
consequently, 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 are comparable. 
Case (viii): 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

. Since it is impossible, we do not consider this case.
Thus, in each case we have found 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 in the set В, and this completes our proof. 
Theorem 1.  The theory  DMT of dense meet-trees is ω-categorical. 
Proof. Let 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 be two 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

-structure of the dense meet-tree theory. 
Since they are dense, А and В must both be infinite. Fix some enumerations 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing 

 of А and 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
case separately to find 𝑏𝑏𝑛𝑛+1: 

1. if 𝑎𝑎𝑛𝑛+1 = 𝑑𝑑𝑎𝑎 then 𝑏𝑏𝑛𝑛+1 =  ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . 

2. if 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎 then 

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1 < 𝑑𝑑𝑎𝑎) ∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘) ∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

    By the axiom (b) there is 𝑏𝑏′𝑛𝑛+1 ∈ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏), where 𝑑𝑑𝑏𝑏 = ∏ 𝑏𝑏𝑗𝑗𝑗𝑗∈𝐽𝐽 . Besides, we will take 
𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 

It remains to prove that 𝑏𝑏𝑛𝑛+1 ∥ 𝑏𝑏𝑘𝑘 for every 𝑘𝑘 ∈ 𝐾𝐾. Assume the contrary, that 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘. 
Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing  

of В. We will build an isomorphism 

Here we take 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 with the condition that their intersection is empty. Also, taking 𝑘𝑘 ∈
𝐾𝐾1 is equivalent to taking 𝑘𝑘 ∈ 𝐾𝐾 and 𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘. Then we rewrite our expression as follows  

((𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑛𝑛+1) ∧ ⋀(𝑎𝑎𝑛𝑛+1 < 𝑎𝑎𝑗𝑗)
𝑗𝑗∈𝐽𝐽 

∧ ⋀ (𝑎𝑎𝑖𝑖0 < 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾1

∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)

∧ ⋀ (𝑎𝑎𝑖𝑖0 ∥ 𝑎𝑎𝑘𝑘) ∧ (𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘)
𝑘𝑘∈𝐾𝐾2

). 

Let’s denote 𝑑𝑑𝑎𝑎 = ∏ 𝑎𝑎𝑗𝑗𝑗𝑗∈𝐽𝐽 . It easy can be seen that 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1. Now, we consider each 
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𝑘𝑘∈𝐾𝐾2

). 
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𝑑𝑑𝑘𝑘

𝑏𝑏 as the meet 𝑑𝑑𝑏𝑏 ⊓ 𝑏𝑏𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾. Since 𝑑𝑑𝑘𝑘
𝑏𝑏 < 𝑑𝑑𝑏𝑏, then they are comparable to each other and 

among them there is a maximal element, say 𝑑𝑑𝑘𝑘0
𝑏𝑏 . By using the fact that 𝑑𝑑𝑏𝑏||𝑏𝑏𝑘𝑘 and 𝑑𝑑𝑘𝑘0

𝑏𝑏 < 𝑑𝑑𝑏𝑏, we 
take 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0

𝑏𝑏 , 𝑑𝑑𝑏𝑏), more precisely, 𝑏𝑏𝑛𝑛+1 ∈ (𝑑𝑑𝑘𝑘0
𝑏𝑏 , 𝑑𝑑𝑏𝑏) ∩ (𝑏𝑏𝑖𝑖0, 𝑑𝑑𝑏𝑏). Hence, 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑛𝑛+1 <

𝑏𝑏𝑗𝑗 for every 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽. 
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Since 𝑏𝑏𝑛𝑛+1 ≤ 𝑑𝑑𝑏𝑏 we obtain 𝑏𝑏𝑛𝑛+1 ≤ 𝑏𝑏𝑘𝑘 ⊓ 𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑘𝑘

𝑏𝑏 ≤ 𝑑𝑑𝑘𝑘0
𝑏𝑏 < 𝑏𝑏𝑛𝑛+1. This contradiction shows that 

𝑏𝑏𝑛𝑛+1 ≰ 𝑏𝑏𝑘𝑘. 

In the next case, we also assume the contrary, that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘. Using 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑖𝑖0, together 
with the given fact that 𝑏𝑏𝑛𝑛+1 > 𝑏𝑏𝑘𝑘 we will obtain that 𝑏𝑏𝑖𝑖0 and 𝑏𝑏𝑘𝑘 are comparable, that is, 𝑏𝑏𝑖𝑖0 ≥
𝑏𝑏𝑘𝑘 or 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘. This would contradict our assumption, because if we take 𝑏𝑏𝑖𝑖0 ≥ 𝑏𝑏𝑘𝑘 then 𝑎𝑎𝑘𝑘0 ≥
𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 > 𝑎𝑎𝑖𝑖0 ≥ 𝑎𝑎𝑘𝑘, but 𝑎𝑎𝑛𝑛+1 ∥ 𝑎𝑎𝑘𝑘; if 𝑏𝑏𝑖𝑖0 < 𝑏𝑏𝑘𝑘, this implies that 𝑑𝑑𝑎𝑎 > 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑎𝑎 ≥ 𝑎𝑎𝑛𝑛+1, 
consequently, 𝑎𝑎𝑘𝑘 and 𝑎𝑎𝑛𝑛+1 are comparable.  

Case (viii): 𝐼𝐼 = ∅, 𝐽𝐽 = ∅, 𝐾𝐾 = ∅. Since it is impossible, we do not consider this case. 

Thus, in each case we have found 𝑏𝑏𝑛𝑛+1 in the set 𝐵𝐵, and this completes our proof.  

Theorem 1.  The theory  DMT of dense meet-trees is 𝜔𝜔-categorical.  

Proof. Let 𝒜𝒜 = 〈𝐴𝐴; <,⊓〉 and ℬ = 〈𝐵𝐵; <,⊓〉 be two ℒ-structure of the dense meet-tree 
theory. Since they are dense, 𝐴𝐴 and 𝐵𝐵 must both be infinite. Fix some enumerations (𝑎𝑎𝑖𝑖)𝑖𝑖<𝜔𝜔 of 𝐴𝐴 
and (𝑏𝑏𝑗𝑗)𝑗𝑗<𝜔𝜔 of 𝐵𝐵. We will build an isomorphism 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 inductively, by extending increasing  inductively, by extending increasing sequence of partial 

isomorphisms fn from some subset of А to В such that  an+1 belongs to the domain of f2i and bn+1 belongs 
to the codomain of f2i+1. 

We start f0 being the empty function, namely f0 is an isomorphism between the empty substructure 
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of  A and the empty substructure of B. So suppose we inductively have constructed fn and we are going to 
construct fn+1. If n+1 is even, then we apply Lemma 2 on an+1 and fn to construct a partial isomorphism fn+1 
which extends fn and whose domain includes an+1 (this is the  forth  in back and forth). 

In the back part, the odd stages of the construction, are handled in the same way, with the roles of 
A and B reversed, that is, if n+1 is odd, then we consider 

sequence of partial isomorphisms 𝑓𝑓𝑛𝑛 from some subset of 𝐴𝐴 to 𝐵𝐵 such that 𝑎𝑎𝑛𝑛+1 belongs to the 
domain of 𝑓𝑓2𝑖𝑖 and 𝑏𝑏𝑛𝑛+1 belongs to the codomain of 𝑓𝑓2𝑖𝑖+1.  

We start 𝑓𝑓0 being the empty function, namely 𝑓𝑓0 is an isomorphism between the empty 
substructure of 𝒜𝒜 and the empty substructure of ℬ. So suppose we inductively have constructed 
𝑓𝑓𝑛𝑛 and we are going to construct 𝑓𝑓𝑛𝑛+1. If 𝑛𝑛 + 1 is even, then we apply Lemma 2 on 𝑎𝑎𝑛𝑛+1 and 𝑓𝑓𝑛𝑛 
to construct a partial isomorphism 𝑓𝑓𝑛𝑛+1 which extends 𝑓𝑓𝑛𝑛 and whose domain includes 𝑎𝑎𝑛𝑛+1 (this 
is the  forth  in back and forth).  

In the back part, the odd stages of the construction, are handled in the same way, with the 
roles of 𝐴𝐴 and 𝐵𝐵 reversed, that is, if 𝑛𝑛 + 1 is odd, then we consider 𝑓𝑓𝑛𝑛−1, which is a partial 
isomorphism from some finite subset of 𝐵𝐵 to some finite subset of 𝐴𝐴. So by Lemma 2 there is a 
partial isomorphism 𝑓𝑓𝑛𝑛+1 whose domain includes both 𝑏𝑏𝑛𝑛+1 and the image of 𝑓𝑓𝑛𝑛. Then we put 
𝑓𝑓𝑛𝑛+1 = 𝑓𝑓𝑛𝑛+1−1 , which is a partial isomorphism.  

Therefore, 𝑓𝑓 = ⋃𝑖𝑖<𝜔𝜔 𝑓𝑓𝑖𝑖 will be desired isomorphism between 𝐴𝐴 and 𝐵𝐵.  

Theorem 1. immediately implies: 

Corollary.  The theory  DMT of dense meet-trees is complete.  

By Lemma 1 theories of dense meet-tree, admit the quantifier elimination since complete 
types are forced by collections of quantifier free formulas. Moreover the theory of a dense meet-
tree is finitely axiomatizable. Using Corollary we obtain the following its generalization:  

Theorem 2.  The theory of dense meet-tree is decidable. 

  

Conclusion 

 We investigated dense meet-tree, which is a lower semilattice without the least and 
greatest elements. It is proven that theories of dense meet-tree are countably categorical by using 
back-and-forth argument, and hence they are decidable. 
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