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ON DISTRIBUTIONS OF COUNTABLE MODELS FOR CONSTANT EXPANSIONS OF THE
DENSE MEET-TREE THEORY. I

Abstract. We study all possible constant expansions of the structure of the dense meet-tree (M; <, IT) [3]. Here, a dense
meet-tree is a lower semilattice without the least and greatest elements. An example of this structure with the constant
expansion is a theory that has exactly three pairwise non-isomorphic countable models [6], which is a good example in the
context of Ehrenfeucht theories. We study all possible constant expansions of the structure of the dense meet-tree by using
a general theory of classification of countable models of complete theories [7], as well as the description of the specificity
for the theory of a dense-meet tree, namely, some distributions of countable models of these theories in terms of Rudin—
Keisler preorders and distribution functions of numbers of limit models. In this paper, we give a new proof of the theorem
that the dense meet-tree theory is countable categorical and complete, which was originally proved by Peretyat’kin. Also,
this theory admits quantifier elimination since complete types are forced by a set of quantifier-free formulas, and this leads
to the fact that it is decidable.
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TBIFbI3 AFAIIl TEOPUSICBHIH TYPAKThI BAVBITY YIIIH ECENTEJIETIH
MOJEJBAEPAI BOJ1Y TYPAJIBI. I

Angarna. (M; <, [1) TaburarTa THIFBI3 aFam Ta, 00C aFaml Ta Ke31ecedi. ThIFbI3 aFallThl OHIIpicTe KoOipek maiganaHaib.
ConpbIKTaH f1a 613 THIFBI3 Cy aFallibl KYPBUIBIMBIH OaWBITYNbIH [3] GapibIK TYpiepiH 3epTTeiimi3z. MyHia THIFBI3 aFail
JIeT €H YJIKEH JKOHEe CH KIIIKeHTal »JIEeMEHTTepi KOK TOMEHTI KapThl TOpABI aiTaMbr3. OCBI TYpPakThl KEHEHUTINTCH
KYPBUTBIMHBIH MBICANTBI PETiHAE YII JKYNTHIK H30MOP(THl €MeC CaHaNbIMIBI MOJAET Oap TEOpHsHBI amyFa OOiassl
[6] >xoHE 01 DpeH(OUXT TEOPHUIAPBIHBIH MBICAIBI PETiHIE KapacTHIPBUIAABL. THIFBI3 aFaIlThIH KYPBUIBIMBIH OapiIbIK
MYMKiH OOJIaTBIH TYPaKThl KEHEIOiH 3epTTey YIIiH 0i3 TONBIK TCOPHsIIAPABIH CAHAJIBIMABI MOICIBACPIH JKIKTEYMiH
YKaJITBI TEOPUACHIH [7], COHBIMEH KaTap, OJapAbIH epeKIIeNiKTepiH, aTam aiiTkanaa, Pynua-Keiicnep perrepi skoHe MIeKTi
MOJIETTBACP CaHIAPBIHBIH YIIECTIpy (YHKIIUIAPE! TYPFBICBIHAH OCHI TEOPHSIIAPIBIH CaHAIBIMIBI MOJCTBACPIHIH KeHOip
yiecripimaepin 3eprreiimis. by makanana anrampeiaaa [lepeTsSThKUH AOJICNACTCH THIFBI3 aFalll TEOPHSACHI CaHAIBIMIbI
TTOpEeXKETIK JKOHE TONBIK €KeHAIr Typaibl TEOpeMaHBIH JkaHa momnernidn Oepemi3. Conmali-ak, Oyi1 Teopus KBaHTOPIAP/IBI
KOIOFa MYMKIHIIK Oeperi. OUTKeHI THITEp KUBIHTHIFBI KBAHTOPIBIK eMec (hopMymnanap apKbUIbl )KYKTeIei )KOHEe COll
cebernTi, menriTiMIl TeopHs OOTybIHA OKETe .

Tipexk ce31ep: Ke3IECETIH aFaml, CAaHAIBIMIBI MOJICIb, OAUBITY, DPEeH(OUXT TCOPHUSITAPHL.
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O PACIIPEJIEJTEHUSIX CYETHBIX MOJIEJIEM JIJII KOHCTAHTHBIX OBOTAIIIEHUA
TEOPUMU IIVIOTHOI'O JEPEBA BCTPEU. I

AHHOTanusi. Mbl H3ydaeM BCEBO3MO)KHBIE KOHCTAaHTHBIE 000TaIeHUs CTPYKTYPBI INTOTHOTO JiepeBa Betped (M; <, IT) [3].
371ech MO/ ITIOTHBIM JIEPEBOM BCTPEY MBI TOHUMAEM HIDKHIOIO ITOJTyPEIIeTKy 0e3 HanOOoIbIIIero M HANMEHBIIIETO AIIEMEHTA.
B kauecTBe npuMepa 3TOH CTPYKTYPHI ¢ KOHCTAaHTHBIM 00O0TallleHHEM MOXKHO B3Th TEOPHIO, KOTOPAsi IMEET B TOUHOCTH
TP NMOMTApHO HEN30MOP(HBIE CUCTHBIC MOJIEIH [ 6], KOTOPBIi SIBISIETCSI XOPOIIMM HPUMEPOM B KOHTEKCTE 9PEH(OIXTOBBIX
Teopuii. MBI H3ydaeM BCEBO3MOKHBIE KOHCTAHTHBIE 000TaIIEHHsI CTPYKTYPBI IUIOTHOTO JIEPEBa BCTPEY, HCIIOIb3Ys OOILYI0
TEOPHIO KITaCCH(MKAIINH CIETHBIX MOJICIICH ITOTHBIX TeOpHH [ 7], a TakxkKe ONUcanue cennuUKH TEOPUH IIIOTHOTO JIepeBa,
a IMEHHO HEKOTOPBIE pacIpeIeIeHUs] CUETHBIX MOJIENIEN ITUX TEOPUIl B TepMHUHaX npennopsnkos Pynuna—Keiicnepa u
(yHKIMH pacripesienieHust Yices IpeelbHbIX Mozieeld. B 9Toil cTaTbe MBI 1aeM HOBOE JJOKA3aTeIbCTBO TEOPEMBI, UYTO
9Ta TEOPHsI TUIOTHOTO JIepeBa BCTPEY SIBISCTCS CYCTHO-KATETOPUYHON M TTOJHOM, KOTOpOe OBUIO M3HAYAIBHO JI0KAa3aHO
IepersTekunbM. Takxke 3Ta TEOpHs IOMyCKaeT MMUMUHALUIO KBAHTOPOB, MOCKOJIBKY MHOKECTBO TUIIOB HaBSA3bIBAECTCS
6eCcKBaHTOPHBIMU (POPMYIIaMH, U 3TO TIPHUBOHUT K TOMY, YTO OHA €IIE U SBISIETCS Pa3peIIMMON.

KaroueBnle cjioBa: JACPEBO BCTPLCY, CHCTHAS MOACIIb, O60l"aHIeHI/I€, TEOpUn 3p€H(1)017[XTa.

Introduction

It is well known that M. G. Peretyat’kin [6] has constructed the complete decidable theory 77
having exactly 3 nonisomorphic countable models by expanding a dense meet-tree structure [3] with
constants C,(LO), n € o, such that Cr(10) < C1(1(-)|-)1’ n € ®. Consequently, the theory was used as a base to produce
examples in the context of Ehrenfeucht theories. Also, in [2] it was shown that a theory 7 by expanding
T, with countably many distinct constants is either Ehrenfeucht or I(T, w) = 2.

In our work, we study all possibilities of constant expansions of a dense meet-tree structure
(M; <, II) by using a general theory of classification of countable models of complete theories [7].
Moreover, we describe some distributions of countable models of these theories in terms of Rudin—Keisler
preorders and distribution functions of numbers of limit models. For instance, in the monograph [7]
it is shown that the numbers of countable models for constant expansions of 7, ~ with one sequence

(C-,(ll))necu of constants, with two sequences (Cflo))new, (C,Sl))new, of constants, and three sequences
(C,(lo))new, (C,(ll))new, (C7(12))new of constants are 3, 6 and 34, respectively.

Main Provisions

The number of pairwise non-isomorphic models of cardinality A of a theory 7T'is denoted by (7, 1).

Definition [4]. A theory 7T 'is called Ehrenfeuchtif 1 < I(T,w) < w.

Definition [1]. A type P(x) € S(T) s said to be powerful in a theory T if every model M of T
realizing p also realizes every type q € S(T),i.e., M & S(T).

The powerful types, that always are represented in Ehrenfeucht theories [1], play an important
role for the finding the number of countable models. If a complete theory does not have a powerful type,
then it has infinitely many countable models. Indeed, we take a type Py, since it is not powerful, there is
atype P1 and a model My that realizes the type Po and omits the type P1, since the types PosP1 are
not powerful, again there is a type P2 and a model M that realizes the types P, p; and omits the type
P2 and etc. Thus, any Ehrenfeucht theory has a powerful type.

Interrelations of types in theories are defined, in many aspects, by the Rudin-Keisler preorders.
The next definitions and notations are taken from [7]. Let M, denote the class of isomorphic models that
are prime over a realization of the type P .

Definition. Let p and q be types in S(T). we say that the type P is dominated by a type q, or
p does not exceed q under the Rudin-Keisler preorder (written P =gk 9), if M, E p, that is, M, is
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an elementary submodel of M, (written M}, < My). Besides, we say that a model M,, is dominated by
a model My, or My, does not exceed My under the Rudin-Keisler preorder, and write M <gx M.
Definition. Types p and q are said to be domination-equivalent, realization-equivalent, Rudin-
Keisler equivalent, or RK-equivalent (written P ~rk 9)if P <grk g and q <gg p. Models M, and M,
are said to be domination-equivalent, Rudin-Keisler equivalent, or RK-equivalent (written M, < M).

If M, and M, are not domination-equivalent then they are non-isomorphic. Moreover,
nonisomorphic models may be found among domination-equivalent ones.

Definition. Denote by RK(T) the set PM of isomorphism types of models My, p € S(T), on

which the relation of domination is induced by <, , a relation deciding domination among M, that is,

RK(T) = (PM; <gg). We say that isomorphism types M;, M, € PM are domination-equivalent (written
M, ~ M,) if so are their representatives.

Amodel M of atheory T'is called limit if M is not prime over tuples and M = Unew My for
some elementary chain (M}y)neq of prime models of T over tuples. In this case the model M is said to
be limit over a sequence q of types or q-limit, where q=(qn)new, My = My ,n € w. If the sequence q
consists of a unique type ¢ then the q-limit model is called limit over the type q.

Definition [5]. A theory T is said to be A-based, where A is some set of formulae without
parameters, if any formula of 7 is equivalent in 7 to a Boolean combination of formulae in A.

For A-based theories T, it is also said that 7" has quantifier elimination or quantifier reduction up
to A.

Definition [5, 7]. Let Abe a set of formulae of a theory 7, and p(x) a type of T lying in S(7). The
type p(%) is said to be A-based if p(¥) is isolated by a set of formulas @% € p, where @ € A, § € {0,1}.

The following lemma, being a corollary of Compactness Theorem, noticed in [5].

Lemma 1. A theory T is A-based if and only if for any tuple a of any (some) weakly saturated
model of T, the type tp(Q) is A-based.

The following fact is well-known using Lemma 1.

Fact. The theory T, are based by the set of quantifier-free formulae and formulae describing
non/existence of least/greatest elements and in/comparability of elements.

Materials and Methods

Let M —(M; <, II) be a lower semilattice without least and greatest elements such that:

(a) for each pair of incomparable elements, their join does not exist;

(b) for each pair of distinct comparable elements, there is an element between them;

(c) for each element a there exist infinitely many pairwise incomparable elements greater than o,
whose infimum is equal to a.

Structure M — (M; <, I1) will be called dense meet-tree.

Definition. Let A = (4; <,M) and B = (B; <,M) be two L-structure of a dense meet-tree.
A function fp,: A, = B, with A, = {a, ..., a,} a finite subset of 4 and B,, = {by, ..., by,} a finite
subset of B is called a partial isomorphism if

A E @ay,..an) & BF o(f(a), .., f(an)),

holds for every atomic £ -formula @ (X1, ..., Xp,).

Notation. We write x || y to mean that x £y and 'y £ x, where x < y means xy vy = x-

Results and Discussions

Lemma 2. Let fn: A, - B, be a partial isomorphism between two models A and B of DMT,
where An € Aand B, C B besubsetswith cardinalityn. Then, forany a,., € A\A,, thereis bu+1 € B
, such that fn+1:= fo U {(@ns+1, bns1)} is also a partial isomorphism with — fq 1 A, = for

Proof. We choose an element Qniq € A\A, with the minimal index and we put that

¢(an+1,an) = diag(@nyy, an), where a,, = (a4, ay, ..., a,) is some ordering of the set A. Suppose
that @; < Qu4q for L € I, apyq < @; for j €] and apyql|ay for k € K such that
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ax ( /\(al- < XA /\(x <a) A /\(x I ak))

i€l i€l k€K

where @;, aj, Ay € a, = (aq,a,, ...a,). Then since a; ¥ ag and a; £ a; we have the following

/\ (ai<aj)/\ /\ (aj [ ak) .

i€l,je] j€JkEK

It can be seen that a, are comparable with each other and they are less than o, consequently, there is a
maximal element among them, say @;,. By construction, we have bio = m‘galx ; and
l

/\(bio <b;) A /\ (b; Il by)

J€J j€J,kEK

Now to find b,,;; we reduce our proof to the consideration of eight cases.
Case (i):1 = @, ] # @, K # @. We want to show that there exists such bp4; and

N\ Buir <) A \Gusa 15

jeJ keK

when Ap4q = Hje] a;.

By the fact that there is no minimal element there exists b'nyr < b, for every j € J such that
e =bp1 NMby, k€ J. Since ¢ < b', 11, this implies that ¢, are comparable to each other and among
them there is a maximal element, say Ck,. Let bp+q € (Cko’ b';41). Then bpyqr < bj for every jE]J
and bpy1 % by forevery k € J-

Now we prove that b, ,, £ by. For this, we assume that bn41 = Dy, thensince b; > bpyq = by
we have bj = by which contradicts b; Il by, and therefore by 1 Il by.

Case (ii)):1 # @, ] = @, K # @. By the fact that a;, is maximal element among o, we have

3x ( N <onr e ak)> = 3x ( N, <)r @i ak)>.

i€l k€EK i€l kEK

Since bi, = max by, it is clear that bn+1 > by, and by, || by forevery k € K follows from
axiom (c), as there exist infinitely many incomparable elements by, by, ..., by, ..., which greater than
b io, that is, b, > b;;. Then one of b, will be incomparable with bp+41.

Case (iii): 1 # @, ] # @, K = @ In this case, we will just take bpyq1 = b'pyq.

Case (iv):1 =@, ] = @, K # @. In this case, a,,4]||ax, k € K.

Let @;, = Apyq1 M Ay, Ko € K. Then we have @iy < An+1 and Apy1||ag, where k € K. As in
the Case (i), we find bn41.

Case (v):1 = @, ] + @, K = @. Similar to Cases (ii) and (iii)

Case (vi): 1 # @,] = @, K = @. Similar to Cases (ii) and (iii).

Case (vii):1 # @, ] # @, K # @. Note that, a;, is maximal element among a;, i € [
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(a1, < @ne) A \(@nir < @) A P\ @en 1) )

jeJ kek

Here we take K = K; U K, with the condition that their intersection is empty. Also, taking k € K; is
equivalent to taking k € K and a; » < . Then we rewrite our expression as follows

(a1, < @ne) A P\ (@i < @) A f\ (a1, < @) A @ @)

jeJ kek,

A\ (@, @) A (@i 1) |

keK,

Let’s denote d® = []je; a;. It easy can be seen that d* = a,41. Now, we consider each case
separately to find by 4q:
. J— a
1. ¥f Ap+1 = d? then byt = H]-E]bj.
2.if apyq < d? then

(aio < lpyr < dP) A /\(aio < i) A (Gneq I ag) A /\(ai0 I ax) A (anss Il ag) |

keK, keK,

By the axiom (b) there is b’,;; € (b; ,dP), where d® = [1je; bj. Besides, we will take a’
as the meet d® N by, k € K . Since d,lz < dﬁ, then they are comparable to each other and among
them there is a maximal element, say d,léo. By using the fact that d?||by and d;’éo < db, we take
bns1 € (dp,dP), more precisely, Dny1 € (dRyd”) 0 (byy, dP). Hence, b; < by, < byyy <bj for
every LEL,J €],

It remains to prove that b, Il by for every k € K. Assume the contrary, that bpiq < by
. Since bpyq < dP we obtain bpyq < b Nd? =db < d,bCO < by41. This contradiction shows that
bni1 £ by,

In the next case, we also assume the contrary, that bn+1 > br. Using bni1 > b;,, together
with the given fact that bpnyq1 > by we will obtain that b;, and by are comparable, that is, b;, =
by or b;, < by. This would contradict our assumption, because if we take b, = by then ay o = Ak
and Gny1 > Qg = A, but Apeq | ag; if by, < bi, this implies that d% > a; and A% = apyq,
consequently, @k and @n+1 are comparable.

Case (viii): I = @,] = @, K = 0. Since it is impossible, we do not consider this case.

Thus, in each case we have found bn+1 in the set B, and this completes our proof.

Theorem 1. The theory DMT of dense meet-trees is w-categorical.

Proof. Let A = (A; <,M) and B = (B; <,1) be two L-structure of the dense meet-tree theory.
Since they are dense, A and B must both be infinite. Fix some enumerations (@;)i<w of 4 and (b)) j<w
of B. We will build an isomorphism f:A — B inductively, by extending increasing sequence of partial
isomorphisms /. from some subset of 4 to B such that a ., belongs to the domain of f, and b, belongs
to the codomain of £, _ ..
We start f, being the empty function, namely /, is an isomorphism between the empty substructure
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of 4 and the empty substructure of B. So suppose we inductively have constructed /, and we are going to
constructf . If n+1 is even, then we apply Lemma 2 on @, and f, to construct a partial isomorphism /|
which extends f and whose domain includes @ __, (this is the forth in back and forth).

In the back part, the odd stages of the construction, are handled in the same way, with the roles of
A and B reversed, that is, if n+1 is odd, then we consider f, ', which is a partial isomorphism from some
finite subset of B to some finite subset of 4. So by Lemma 2 there is a partial isomorphism f = whose
domain includes both » _ and the image of /. Then we put f,,, = f,;}}4, which is a partial isomorphism.

Therefore, f = U<, f; Will be desired isomorphism between 4 and B.

Theorem 1. immediately implies:

Corollary. The theory DMT of dense meet-trees is complete.

By Lemma 1 theories of dense meet-tree, admit the quantifier elimination since complete types
are forced by collections of quantifier free formulas. Moreover the theory of a dense meet-tree is finitely
axiomatizable. Using Corollary we obtain the following its generalization:

Theorem 2. The theory of dense meet-tree is decidable.

Conclusion

We investigated dense meet-tree, which is a lower semilattice without the least and greatest
elements. It is proven that theories of dense meet-tree are countably categorical by using back-and-forth
argument, and hence they are decidable.

REFERENCES

1 Benda M., Remarks on countable models. Fund. Math. 1974. Vol. 81, No. 2. P. 107-119.

2 Dauletiyarova A.B., Sudoplatov S.V. Some expansions of theories with dense orders and given numbers of
countable models. Algebra and Model Theory 13. Collection of papers, NSTU, Novosibirsk, 2021. P. 63—-68.

3 Mennuni R. Weakly binary expansions of dense meet-trees. Mathematical Logic Quarterly. 2022. Vol. 68, no. 1.
P.32-47. https://doi.org/10.1002/malq.202000045

4 Millar T. S., Decidable Ehrenfeucht theories. Proc. Sympos. Pure Math. 1985. Vol. 42. P. 311-321.

5 Palyutin E.~A., Saffe J., Starchenko S.~S. Models of superstable Horn theories. Algebra and Logic. 1985. Vol.
24, no. 3. P. 171-210.

6 Peretyat'’kin M. G. On complete theories with a finite number of denumerable models. Algebra and Logic. 1973.
Vol. 12, no. 5. P. 310-326.

7 Sudoplatov S.V. (2018) Classification of Countable Models of Complete Theories, NSTU, Novosibirsk.

Information about author

Dauletiyarova Aigerim Baissultanovna

Master, PhD student of Suleyman Demirel University, 040900, Kaskelen, Kazakhstan
ORCID ID: 0000-0003-0051-870X

Email: d_aigera95@mail.ru

ABTOp Typajbl MdJIiMeT

JdynerusipoBa Aiirepim balicyJITaHKBI3bI

Maructp, Cyneiimana Jlemupens atsinaarsl YHuBepcuteTiHig PhD noxropantsi, 040900,
Kackenen, Kazaxcran

ORCID ID: 0000-0003-0051-870X

Email: d_aigera95@mail.ru

32



XUMNKO-TEXHOJTIOTMYECKUE HAYKH

HNudopmanus 006 aBTope

JaynerusipoBa Aiirepum bajicyi1TaHoBHA

Maructp, PhD nokxropant Yausepcutera umenu Cyneiimana [lemupens, 040900, r. Kackenen,
Ka3axcran

ORCID ID: 0000-0003-0051-870X

Email: d_aigera95@mail.ru

33



