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теориялардың бинарлық критерийі алынды. Бинарлық дөңестік рангісі – параметрлік 
анықталатын эквиваленттік қатынастар бос жиынмен анықталатын эквиваленттік 
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мал ды теориялардағы әлсіз ортогональды алгебралық емес 1-түрлер арасындағы байла-
ныс ты білдіреді. Көптеген жағдайларда әлсіз емес ортогональды алгебралық емес 1-түр-
лердің бинарлық дөңестік рангілері тең емес. Бұл жұмыстың негізгі нәтижесі (p, q)-бөлу 
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әлсіз ортогональды алгебралық емес 1-түрлері үшін екілік дөңес рангтарының теңдігі үшін 
қажетті және жеткілікті шарттарды табу болып табылады.

Түйінді сөздер: әлсіз o-минималдылық, дерлік омега-категориялық, (p, q)-бөлу формуласы, 
дөңестік ранг, әлсіз ортогональдық, эквиваленттік қатынас.
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Аннотация. Настоящая статья касается понятия слабой о-минимальности, введен-
ного М. Дикманном и первоначально исследованного Д. Макферсоном, Д. Маркером и
Ч. Стейнхорном. Слабая о-минимальность является обобщением понятия о-минимально-
сти, введенного А. Пиллэем и Ч. Стейнхорном в серии совместных статей. Как известно, 
упорядоченное поле вещественных чисел является примером о-минимальной структуры. 
Мы продолжаем изучение свойств почти омега-категоричных слабо о-минимальных тео-
рий. Почти омега-категоричность – это понятие, обобщающее понятие омега-категорич-
ности. Недавно был получен критерий бинарности почти омега-категоричных слабо о-ми-
нимальных теорий в терминах ранга выпуклости. Бинарный ранг выпуклости – это ранг 
выпуклости, в котором параметрически определимые отношения эквивалентности заме-
няются пусто-определимыми отношениями эквивалентности. (p, q)-секаторы выражают 
связь между не слабо ортогональными неалгебраическими 1-типами в слабо о-минимальных 
теориях. В большинстве случаев бинарные ранги выпуклости не слабо ортогональных не-
алгебраических 1-типов не совпадают. Основным результатом данной статьи является 
нахождение необходимых и достаточных условий равенства бинарных рангов выпуклости 
для не слабо ортогональных неалгебраических 1-типов в почти омега-категоричных слабо 
о-минимальных теориях в терминах (p, q)-секаторов.
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Preliminaries
Let L be a countable first-order language. 
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symbol < which is interpreted as a linear order in 
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whenever 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏 we have 𝑐𝑐 ∈ 𝐴𝐴. This paper concerns the notion of weak o-minimality that was 
initially deeply studied by D. Macpherson, D. Marker, and C. Steinhorn in [1]. A weakly o-minimal 
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 1. Preliminaries 
 Let 𝐿𝐿 be a countable first-order language. Throughout this paper we consider 𝐿𝐿-structures and 
suppose that 𝐿𝐿 contains a binary relation symbol < which is interpreted as a linear order in these 
structures. A subset 𝐴𝐴 of a linearly ordered structure 𝑀𝑀 is convex if for all 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴 and 𝑐𝑐 ∈ 𝑀𝑀 
whenever 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏 we have 𝑐𝑐 ∈ 𝐴𝐴. This paper concerns the notion of weak o-minimality that was 
initially deeply studied by D. Macpherson, D. Marker, and C. Steinhorn in [1]. A weakly o-minimal 
structure is a linearly ordered structure 𝑀𝑀 = 〈𝑀𝑀,<,… 〉 such that any definable (with parameters) 
subset of 𝑀𝑀 is a union of finitely many convex sets in 𝑀𝑀. We recall that such a structure 𝑀𝑀 is said 
to be o-minimal if any definable (with parameters) subset of 𝑀𝑀 is a union of finitely many intervals 
and points in 𝑀𝑀. Thus, weak o-minimality generalizes the notion of o-minimality. Real closed 
fields with a proper convex valuation ring provide an important example of weakly o-minimal (not 
o-minimal) structures [2, 3]. 

 B, and A < b means that A 
< {b}. For a subset A of M we introduce the 
following notations: 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

 and 
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• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

 we denote by 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
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 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
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said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
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 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
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 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
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 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

) if there exist an 
LA-formula 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

 and 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

 and 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
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𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
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parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
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So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

.
In other words, p is weakly orthogonal to 

q (denoting this by 
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equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
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extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
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𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
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theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
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 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
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We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
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equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
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 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
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 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
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𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
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 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
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dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
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Аннотация. Бұл жұмыс М. Дикманн енгізген және бастапқыда Д. Макферсон, Д. Маркер 
және Ч. Стейнхорн зерттеген әлсіз o-минималдылық түсінігіне қатысты. Әлсіз o-
минималдылық – бұл А. Пиллай мен Ч. Стейнхорнның бірлескен мақалалар сериясында 
енгізген o-минималдылығы ұғымының жалпылауы. Белгілі болғандай, нақты сандардың 
реттелген өрісі o-минималды құрылымның алгебралық мысалы болып табылады. Біз 
дерлік омега категориялық әлсіз o-минималды теориялардың қасиеттерін зерттеуді 
жалғастырамыз. Омега-категориялық дерлік – бұл омега категориялық түсінігін 
жалпылайтын ұғым. Жақында дөңестік рангісі бойынша дерлік омега категориялық әлсіз 
o-минималды теориялардың бинарлық критерийі алынды. Бинарлық дөңестік рангісі – 
параметрлік анықталатын эквиваленттік қатынастар бос жиынмен анықталатын 
эквиваленттік қатынастармен ауыстырылатын дөңестік рангісі. (p, q)-бөлу 
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2) RC(A) = 0 if A is finite and non-empty.
3) RC(A) ≥ 1 if A is infinite.
4) RC(A) ≥ α + 1 if there exists a 

parametrically definable equivalence relation 
E(x, y) such that there are 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
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 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

 ω, whenever i ≠ j we have          
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 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

);
• For every i 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

)) ≥ α and 
E(M, 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
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The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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The rank of convexity of a formula                      

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

, i.e., 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
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 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
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we put RC(A) = ∞. 
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 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
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Abstract. The present paper concerns the notion of weak o-minimality introduced by M. Dickmann 
and originally studied by D. Macpherson, D. Marker, and C. Steinhorn. Weak o-minimality is a 
generalization of the notion of o-minimality introduced by A. Pillay and C. Steinhorn in series of 
joint papers. As is known, the ordered field of real numbers is an example of an o-minimal 
structure. We continue studying properties of almost omega-categorical weakly o-minimal 
theories. Almost omega-categoricity is a notion generalizing the notion of omega-categoricity. 
Recently, a criterion for binarity of almost omega-categorical weakly o-minimal theories in terms 
of convexity rank has been obtained. Binary convexity rank is the convexity rank in which 
parametrically definable equivalence relations are replaced by ∅-definable equivalence relations. 
(p, q)-splitting formulas express a connection between non-weakly orthogonal non-algebraic 1-
types in weakly o-minimal theories. In many cases, the binary convexity ranks of non-weakly 
orthogonal non-algebraic 1-types are not equal. The main result of this paper is finding necessary 
and sufficient conditions for equality of the binary convexity ranks for non-weakly orthogonal 
non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in terms of (p, q)-
splitting formulas. 
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Аннотация. Бұл жұмыс М. Дикманн енгізген және бастапқыда Д. Макферсон, Д. Маркер 
және Ч. Стейнхорн зерттеген әлсіз o-минималдылық түсінігіне қатысты. Әлсіз o-
минималдылық – бұл А. Пиллай мен Ч. Стейнхорнның бірлескен мақалалар сериясында 
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 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

-type if 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

.

The set of all 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

-types of the theory 
T is denoted by 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

. A countable theory 
T is said to be almost ω-categorical if for any 
types 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

 there are only 
finitely many types 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 
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is an almost omega-categorical theory with 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical. 

 then a dense linear order is 
interpreted in T. Nonetheless there exists an 
example (constructed by M.G. Peretyat'kin in 
[8]) of a theory with the condition 

 Let 𝐴𝐴 and 𝐵𝐵 be arbitrary subsets of a linearly ordered structure 𝑀𝑀. Then the expression 𝐴𝐴 < 𝐵𝐵 
means that 𝑎𝑎 < 𝑏𝑏 whenever 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵, and 𝐴𝐴 < 𝑏𝑏 means that 𝐴𝐴 < {𝑏𝑏}. For a subset 𝐴𝐴 of 
𝑀𝑀 we introduce the following notations: 𝐴𝐴+: = {𝑏𝑏 ∈ 𝑀𝑀 | 𝐴𝐴 < 𝑏𝑏} and 𝐴𝐴−: = {𝑏𝑏 ∈  𝑀𝑀 | 𝑏𝑏 < 𝐴𝐴}. For 
an arbitrary one-type 𝑝𝑝 we denote by 𝑝𝑝(𝑀𝑀) the set of realizations of 𝑝𝑝 in 𝑀𝑀. If 𝐵𝐵 ⊆ 𝑀𝑀 and 𝐸𝐸 is an 
equivalence relation on 𝑀𝑀 then we denote by 𝐵𝐵/𝐸𝐸 the set of equivalence classes (𝐸𝐸-classes) which 
have representatives in 𝐵𝐵. If 𝑓𝑓 is a function on 𝑀𝑀, then we denote by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) the domain of 𝑓𝑓. A 
theory 𝑇𝑇 is said to be binary if every formula of 𝑇𝑇 is equivalent in 𝑇𝑇 to a Boolean combination of 
formulas with at most two free variables. 
 Further throughout the paper we consider an arbitrary complete theory 𝑇𝑇 (if unless otherwise 
stated), where 𝑀𝑀 is a sufficiently saturated model of 𝑇𝑇. 
 Definition 1.1 Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
We say that 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞 (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if there exist an 𝐿𝐿𝐴𝐴-formula 
𝐻𝐻(𝑥𝑥, 𝑦𝑦), 𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) and 𝛽𝛽1, 𝛽𝛽2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝛽𝛽1 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼) and 𝛽𝛽2 ∈ 𝐻𝐻(𝑀𝑀, 𝛼𝛼). 
 In other words, p is weakly orthogonal to q (denoting this by 𝑝𝑝 ⊥w 𝑞𝑞) if 𝑝𝑝(𝑥𝑥) ∪ 𝑞𝑞(𝑦𝑦) has a unique 
extension to a complete 2-type over 𝐴𝐴. 
 Lemma 1.2 [4] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀. Then the relation of non-
weak orthogonality is an equivalence relation on 𝑆𝑆1(𝐴𝐴). 
 The definition of convexity rank for a set was introduced in [5].  
 Definition 1.3 Let T be a weakly o-minimal theory, M be a sufficiently saturated model of the 
theory T, A ⊆ M. The convexity rank of the set A (RC(A)) is defined as follows: 
 1) RC(A) = –1 if A = ∅. 
 2) RC(A) = 0 if A is finite and non-empty. 
 3) RC(A) ≥ 1 if A is infinite. 
 4) RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y) such that 
there are ib ∈ A, i ∈ ω, which satisfy the following:  

• For any i, j ∈ ω, whenever i ≠ j we have M ⊨ ¬E( ji bb , ); 
• For every i ∈ ω RC(E(M, ib )) ≥ α and E(M, ib ) is a convex subset of A.  

 5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit). 
 If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α for all α), 
we put RC(A) = ∞. 
 The rank of convexity of a formula 𝜑𝜑(𝑥𝑥, �̅�𝑎), where �̅�𝑎 ∈ 𝑀𝑀, is defined as the rank of convexity of 
the set 𝜑𝜑(𝑀𝑀, �̅�𝑎). The rank of convexity of a 1-type p is defined as the rank of convexity of the set 
𝑝𝑝(𝑀𝑀), i.e., 𝑅𝑅𝑅𝑅(𝑝𝑝): =  𝑅𝑅𝑅𝑅(𝑝𝑝(𝑀𝑀)). In particular, a theory has convexity rank 1 if there are no 
definable (with parameters) equivalence relations with infinitely many infinite convex classes. 
 We say that the convexity rank of an arbitrary set 𝐴𝐴 is binary and denote it by 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) if 
parametrically definable equivalence relations are replaced by ∅-definable (i.e., binary) 
equivalence relations. 
 Definition 1.4 [6, 7] Let 𝑇𝑇 be a complete theory, and 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅). A type 
𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏)∈𝑆𝑆𝑏𝑏(∅) is said to be a (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-type if  
 

𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ⊇  𝑝𝑝1(𝑥𝑥1) ∪ … ∪ 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏). 
 
The set of all (𝑝𝑝1, … , 𝑝𝑝𝑏𝑏)-types of the theory 𝑇𝑇 is denoted by 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). A countable theory T is 
said to be almost -categorical if for any types 𝑝𝑝1(𝑥𝑥1), … , 𝑝𝑝𝑏𝑏(𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆1(∅) there are only finitely 
many types 𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑏𝑏) ∈ 𝑆𝑆𝑝𝑝1,…,𝑝𝑝𝑛𝑛(𝑇𝑇). 
 Almost omega-categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. 
So, in [6] it was proved that if 𝑇𝑇 is an almost omega-categorical theory with 𝐼𝐼(𝑇𝑇,) = 3 then a 
dense linear order is interpreted in 𝑇𝑇. Nonetheless there exists an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 𝐼𝐼(𝑇𝑇,) = 3 that is not almost omega-categorical.  

that is not almost omega-categorical.
In [9] the authors established almost omega-

categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for 
algebraic closure holds in almost omega-
categorical quite o-minimal theories. Recently 
in [10], orthogonality of any family of pairwise 
weakly orthogonal non-algebraic 1-types over 

UDC 510.67 
IRSTI 27.03.66  
 
https://doi.org/10.55452/1998-6688-2022-19-2- 
  
 
ON (p, q)-SPLITTING FORMULAS IN ALMOST OMEGA-CATEGORICAL WEAKLY 

O-MINIMAL THEORIES 
 

IZBASAROV A.A.1, KULPESHOV B.SH.1, EMELYANOV D.YU.2 
 

1Kazakh-British Technical University, 050000, Almaty, Kazakhstan 
2Novosibirsk State Technical University, 630073, Novosibirsk, Russia 

 
Abstract. The present paper concerns the notion of weak o-minimality introduced by M. Dickmann 
and originally studied by D. Macpherson, D. Marker, and C. Steinhorn. Weak o-minimality is a 
generalization of the notion of o-minimality introduced by A. Pillay and C. Steinhorn in series of 
joint papers. As is known, the ordered field of real numbers is an example of an o-minimal 
structure. We continue studying properties of almost omega-categorical weakly o-minimal 
theories. Almost omega-categoricity is a notion generalizing the notion of omega-categoricity. 
Recently, a criterion for binarity of almost omega-categorical weakly o-minimal theories in terms 
of convexity rank has been obtained. Binary convexity rank is the convexity rank in which 
parametrically definable equivalence relations are replaced by ∅-definable equivalence relations. 
(p, q)-splitting formulas express a connection between non-weakly orthogonal non-algebraic 1-
types in weakly o-minimal theories. In many cases, the binary convexity ranks of non-weakly 
orthogonal non-algebraic 1-types are not equal. The main result of this paper is finding necessary 
and sufficient conditions for equality of the binary convexity ranks for non-weakly orthogonal 
non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in terms of (p, q)-
splitting formulas. 
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Аннотация. Бұл жұмыс М. Дикманн енгізген және бастапқыда Д. Макферсон, Д. Маркер 
және Ч. Стейнхорн зерттеген әлсіз o-минималдылық түсінігіне қатысты. Әлсіз o-
минималдылық – бұл А. Пиллай мен Ч. Стейнхорнның бірлескен мақалалар сериясында 
енгізген o-минималдылығы ұғымының жалпылауы. Белгілі болғандай, нақты сандардың 
реттелген өрісі o-минималды құрылымның алгебралық мысалы болып табылады. Біз 
дерлік омега категориялық әлсіз o-минималды теориялардың қасиеттерін зерттеуді 
жалғастырамыз. Омега-категориялық дерлік – бұл омега категориялық түсінігін 
жалпылайтын ұғым. Жақында дөңестік рангісі бойынша дерлік омега категориялық әлсіз 
o-минималды теориялардың бинарлық критерийі алынды. Бинарлық дөңестік рангісі – 
параметрлік анықталатын эквиваленттік қатынастар бос жиынмен анықталатын 
эквиваленттік қатынастармен ауыстырылатын дөңестік рангісі. (p, q)-бөлу 
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Theorem 1.5 [10] Let T be an almost omega-
categorical weakly o-minimal theory, 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 
be non-algebraic. Then 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
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𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
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Abstract. The present paper concerns the notion of weak o-minimality introduced by M. Dickmann 
and originally studied by D. Macpherson, D. Marker, and C. Steinhorn. Weak o-minimality is a 
generalization of the notion of o-minimality introduced by A. Pillay and C. Steinhorn in series of 
joint papers. As is known, the ordered field of real numbers is an example of an o-minimal 
structure. We continue studying properties of almost omega-categorical weakly o-minimal 
theories. Almost omega-categoricity is a notion generalizing the notion of omega-categoricity. 
Recently, a criterion for binarity of almost omega-categorical weakly o-minimal theories in terms 
of convexity rank has been obtained. Binary convexity rank is the convexity rank in which 
parametrically definable equivalence relations are replaced by ∅-definable equivalence relations. 
(p, q)-splitting formulas express a connection between non-weakly orthogonal non-algebraic 1-
types in weakly o-minimal theories. In many cases, the binary convexity ranks of non-weakly 
orthogonal non-algebraic 1-types are not equal. The main result of this paper is finding necessary 
and sufficient conditions for equality of the binary convexity ranks for non-weakly orthogonal 
non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in terms of (p, q)-
splitting formulas. 
 
Keywords: weak o-minimality, almost omega-categoricity, (p, q)-splitting formula, convexity rank, 
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Аннотация. Бұл жұмыс М. Дикманн енгізген және бастапқыда Д. Макферсон, Д. Маркер 
және Ч. Стейнхорн зерттеген әлсіз o-минималдылық түсінігіне қатысты. Әлсіз o-
минималдылық – бұл А. Пиллай мен Ч. Стейнхорнның бірлескен мақалалар сериясында 
енгізген o-минималдылығы ұғымының жалпылауы. Белгілі болғандай, нақты сандардың 
реттелген өрісі o-минималды құрылымның алгебралық мысалы болып табылады. Біз 
дерлік омега категориялық әлсіз o-минималды теориялардың қасиеттерін зерттеуді 
жалғастырамыз. Омега-категориялық дерлік – бұл омега категориялық түсінігін 
жалпылайтын ұғым. Жақында дөңестік рангісі бойынша дерлік омега категориялық әлсіз 
o-минималды теориялардың бинарлық критерийі алынды. Бинарлық дөңестік рангісі – 
параметрлік анықталатын эквиваленттік қатынастар бос жиынмен анықталатын 
эквиваленттік қатынастармен ауыстырылатын дөңестік рангісі. (p, q)-бөлу 

-definable subset, 
let 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

: 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 be the projection which 
drops the last coordinate, and let 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

. For 
each 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 let 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
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sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
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 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
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type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
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 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
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 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 the set 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is convex and 
bounded above but does not have a supremum 
in M. We let ~ be the 
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Abstract. The present paper concerns the notion of weak o-minimality introduced by M. Dickmann 
and originally studied by D. Macpherson, D. Marker, and C. Steinhorn. Weak o-minimality is a 
generalization of the notion of o-minimality introduced by A. Pillay and C. Steinhorn in series of 
joint papers. As is known, the ordered field of real numbers is an example of an o-minimal 
structure. We continue studying properties of almost omega-categorical weakly o-minimal 
theories. Almost omega-categoricity is a notion generalizing the notion of omega-categoricity. 
Recently, a criterion for binarity of almost omega-categorical weakly o-minimal theories in terms 
of convexity rank has been obtained. Binary convexity rank is the convexity rank in which 
parametrically definable equivalence relations are replaced by ∅-definable equivalence relations. 
(p, q)-splitting formulas express a connection between non-weakly orthogonal non-algebraic 1-
types in weakly o-minimal theories. In many cases, the binary convexity ranks of non-weakly 
orthogonal non-algebraic 1-types are not equal. The main result of this paper is finding necessary 
and sufficient conditions for equality of the binary convexity ranks for non-weakly orthogonal 
non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in terms of (p, q)-
splitting formulas. 
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Аннотация. Бұл жұмыс М. Дикманн енгізген және бастапқыда Д. Макферсон, Д. Маркер 
және Ч. Стейнхорн зерттеген әлсіз o-минималдылық түсінігіне қатысты. Әлсіз o-
минималдылық – бұл А. Пиллай мен Ч. Стейнхорнның бірлескен мақалалар сериясында 
енгізген o-минималдылығы ұғымының жалпылауы. Белгілі болғандай, нақты сандардың 
реттелген өрісі o-минималды құрылымның алгебралық мысалы болып табылады. Біз 
дерлік омега категориялық әлсіз o-минималды теориялардың қасиеттерін зерттеуді 
жалғастырамыз. Омега-категориялық дерлік – бұл омега категориялық түсінігін 
жалпылайтын ұғым. Жақында дөңестік рангісі бойынша дерлік омега категориялық әлсіз 
o-минималды теориялардың бинарлық критерийі алынды. Бинарлық дөңестік рангісі – 
параметрлік анықталатын эквиваленттік қатынастар бос жиынмен анықталатын 
эквиваленттік қатынастармен ауыстырылатын дөңестік рангісі. (p, q)-бөлу 

 -definable equivalence 
relation on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 given by 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 for all 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, and 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

.

Let 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, and for each tuple 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 we 
denote by 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 the ~ -class of 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
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following holds: 
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Abstract. The present paper concerns the notion of weak o-minimality introduced by M. Dickmann 
and originally studied by D. Macpherson, D. Marker, and C. Steinhorn. Weak o-minimality is a 
generalization of the notion of o-minimality introduced by A. Pillay and C. Steinhorn in series of 
joint papers. As is known, the ordered field of real numbers is an example of an o-minimal 
structure. We continue studying properties of almost omega-categorical weakly o-minimal 
theories. Almost omega-categoricity is a notion generalizing the notion of omega-categoricity. 
Recently, a criterion for binarity of almost omega-categorical weakly o-minimal theories in terms 
of convexity rank has been obtained. Binary convexity rank is the convexity rank in which 
parametrically definable equivalence relations are replaced by ∅-definable equivalence relations. 
(p, q)-splitting formulas express a connection between non-weakly orthogonal non-algebraic 1-
types in weakly o-minimal theories. In many cases, the binary convexity ranks of non-weakly 
orthogonal non-algebraic 1-types are not equal. The main result of this paper is finding necessary 
and sufficient conditions for equality of the binary convexity ranks for non-weakly orthogonal 
non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in terms of (p, q)-
splitting formulas. 
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Аннотация. Бұл жұмыс М. Дикманн енгізген және бастапқыда Д. Макферсон, Д. Маркер 
және Ч. Стейнхорн зерттеген әлсіз o-минималдылық түсінігіне қатысты. Әлсіз o-
минималдылық – бұл А. Пиллай мен Ч. Стейнхорнның бірлескен мақалалар сериясында 
енгізген o-минималдылығы ұғымының жалпылауы. Белгілі болғандай, нақты сандардың 
реттелген өрісі o-минималды құрылымның алгебралық мысалы болып табылады. Біз 
дерлік омега категориялық әлсіз o-минималды теориялардың қасиеттерін зерттеуді 
жалғастырамыз. Омега-категориялық дерлік – бұл омега категориялық түсінігін 
жалпылайтын ұғым. Жақында дөңестік рангісі бойынша дерлік омега категориялық әлсіз 
o-минималды теориялардың бинарлық критерийі алынды. Бинарлық дөңестік рангісі – 
параметрлік анықталатын эквиваленттік қатынастар бос жиынмен анықталатын 
эквиваленттік қатынастармен ауыстырылатын дөңестік рангісі. (p, q)-бөлу 

 -definable total order on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, defined as 
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minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 
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say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

. Also, we say 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 
iff 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, i.e. there exists 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 such 
that c < w. If  

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is not ~ -equivalent to 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 then 
there is some 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 such that 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 
or 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, and so < induces a total order 
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 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
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�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
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say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
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type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
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𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

. We call such a set 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 a sort (in this 
case, 
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Abstract. The present paper concerns the notion of weak o-minimality introduced by M. Dickmann 
and originally studied by D. Macpherson, D. Marker, and C. Steinhorn. Weak o-minimality is a 
generalization of the notion of o-minimality introduced by A. Pillay and C. Steinhorn in series of 
joint papers. As is known, the ordered field of real numbers is an example of an o-minimal 
structure. We continue studying properties of almost omega-categorical weakly o-minimal 
theories. Almost omega-categoricity is a notion generalizing the notion of omega-categoricity. 
Recently, a criterion for binarity of almost omega-categorical weakly o-minimal theories in terms 
of convexity rank has been obtained. Binary convexity rank is the convexity rank in which 
parametrically definable equivalence relations are replaced by ∅-definable equivalence relations. 
(p, q)-splitting formulas express a connection between non-weakly orthogonal non-algebraic 1-
types in weakly o-minimal theories. In many cases, the binary convexity ranks of non-weakly 
orthogonal non-algebraic 1-types are not equal. The main result of this paper is finding necessary 
and sufficient conditions for equality of the binary convexity ranks for non-weakly orthogonal 
non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in terms of (p, q)-
splitting formulas. 
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Аннотация. Бұл жұмыс М. Дикманн енгізген және бастапқыда Д. Макферсон, Д. Маркер 
және Ч. Стейнхорн зерттеген әлсіз o-минималдылық түсінігіне қатысты. Әлсіз o-
минималдылық – бұл А. Пиллай мен Ч. Стейнхорнның бірлескен мақалалар сериясында 
енгізген o-минималдылығы ұғымының жалпылауы. Белгілі болғандай, нақты сандардың 
реттелген өрісі o-минималды құрылымның алгебралық мысалы болып табылады. Біз 
дерлік омега категориялық әлсіз o-минималды теориялардың қасиеттерін зерттеуді 
жалғастырамыз. Омега-категориялық дерлік – бұл омега категориялық түсінігін 
жалпылайтын ұғым. Жақында дөңестік рангісі бойынша дерлік омега категориялық әлсіз 
o-минималды теориялардың бинарлық критерийі алынды. Бинарлық дөңестік рангісі – 
параметрлік анықталатын эквиваленттік қатынастар бос жиынмен анықталатын 
эквиваленттік қатынастармен ауыстырылатын дөңестік рангісі. (p, q)-бөлу 

-definable sort) in 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, where 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is the 
Dedekind completion of M, and view 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 as 
naturally embedded in 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

. Similarly, we can 

obtain a sort in 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 by considering infima instead 
of suprema.

Thus, we will consider definable functions 
from M to its Dedekind completion 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, more 
pre cisely in definable sorts of the structure                  

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, rep resenting infima or suprema of definable 
sets.

Let 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 be infinite,  

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
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[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is locally increasing (locally 
decreasing, locally constant}) on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 if for any 
element 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 there is an infinite interval 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 
containing 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 so that 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is strictly increasing 
(strictly decreasing, constant) on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

; we also 
say 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is locally monotonic on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 if it is locally 
increasing or locally decreasing on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

.
Let 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 be an А-definable function on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, 
Е be an А-definable equivalence relation on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

. 
We say 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is strictly increasing (decreasing) 
on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

if for any 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 with 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 and 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
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 we have 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
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�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
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sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

.
Proposition 1.6 [13] Let M be a weakly 

o-mini mal structure, 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 be 
a non-algebraic type. Then any A-definable 
function of which the domain contains the set 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 
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 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 
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 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
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𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
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�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
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sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
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 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
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 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
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 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
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�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

, 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 
be non-algebraic.

(1) An 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 -formula 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is said to be 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

-preserving (or 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

-stable) if there exist elements 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 such that 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 and 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

.
(2) A 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

-preserving formula 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is said 
to be convex-to-right (left) if there exists an 
element 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 such that 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is 
convex, α is the left (right) endpoint of the set 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 and 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
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 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
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 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
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 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
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𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

-preserving convex-to-right (left) formula. 
We say that 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is said to be equivalence-
generating if for any 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 such that 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 the following holds:

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

.
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formula 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 we will consider the function 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

, where 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

. Also, obviously 
that for any 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-splitting formula 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 the 
function 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is not constant on 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

.
We will also say [17] that for a 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-split-
ting formula 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 the set 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 
is everywhere dense in 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 if for any 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 with 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 there exists 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 such that 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

.
Example 2.1. Let 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

,  be a 
linearly ordered structure so that M is a disjoint 
union of interpretations of unary predicates 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 
and 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 with 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

. We identify the 
interpretation of 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 with 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

, ordered as usual, 
and the interpretation of 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 with 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

, 
ordered lexicographically. The relation E is an 
equivalence relation on 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

:

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

The relation R is defined as follows:

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

It is not difficult to establish that M is 
a countably categorical weakly o-minimal 
structure. Let 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly . 

Obviously, 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 and 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 determine complete 
types over 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly , 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is not weakly orthogonal to 
orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

and orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is a orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

-splitting formula. The function orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is strictly 
increasing on 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

, and the set 
orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

is not everywhere dense in 
orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

.
 Theorem 2.2 Let T be an almost omega-

categorical weakly o-minimal theory, M be a 
sufficiently saturated model of 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
be non-algebraic, 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is not weakly orthogonal 
to 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

. Suppose that there exists an 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable 

equivalence relation 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 partitioning 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
into infinitely many infinite convex classes. 
Then the following conditions are equivalent:

(1) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
for some (any) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

;
(2) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

;
(3) for any 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

-splitting formula 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
there exists an 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence relation 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 partitioning 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 into infinitely many 
infinite convex classes so that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is constant 

Lemma 1.9 [15] Let Т be a weakly o-mini-
mal theory, 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 be non-
algebraic. Suppose that 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is a 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

-preserving 
convex-to-right (left) formula that is also equi-
va lence-generating. Then

(1) 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is a  

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

-preserving 
convex-to-left (right) formula which is also 
equiva lence-generating.

(2) 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is an equi-
valence relation on 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 partitioning it into 
infinitely many infinite convex classes.

Proposition 1.10 [10] Let Т be an almost 
omega-categorical weakly o-minimal theory, 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 be non-algebraic. Then any                               

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

-pre serving convex-to-right (left) formula is 
equi valence-gene ra ting.

In this work we present a criterion for equa-
lity of the binary convexity ranks for non-weak-
ly orthogonal non-algebraic 1-types in almost 
omega-categorical weakly o-minimal theo ries.

Results
Recall the notion of a 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-splitting formula 
introduced in [16] for non-algebraic isolated  
1-types. Let 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 be non-
algebraic, 

 In [9] the authors established almost omega-categoricity of Ehrenfeucht quite o-minimal theories 
and that the Exchange Principle for algebraic closure holds in almost omega-categorical quite o-
minimal theories. Recently in [10], orthogonality of any family of pairwise weakly orthogonal 
non-algebraic 1-types over ∅ for such theories and binarity of almost omega-categorical quite o-
minimal theories were proved. Also, in [11], binarity of almost omega-categorical weakly o-
minimal theories of convexity rank 1 was established. At last, in the work [12], a criterion for 
binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was 
found. 
 Theorem 1.5 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝 ∈  𝑆𝑆1(∅) be 
non-algebraic. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) < . 
 Recall some notions originally introduced in [1]. Let 𝑌𝑌 ⊂  𝑀𝑀𝑏𝑏+1 be an ∅-definable subset, let 𝜋𝜋 ∶
𝑀𝑀𝑏𝑏+1 → 𝑀𝑀𝑏𝑏 be the projection which drops the last coordinate, and let 𝑍𝑍: = 𝜋𝜋(𝑌𝑌). For each �̅�𝑎 ∈ 𝑍𝑍 
let 𝑌𝑌�̅�𝑎: = {𝑦𝑦 ∶ (�̅�𝑎, 𝑦𝑦) ∈ 𝑌𝑌}. Suppose that for every �̅�𝑎 ∈ 𝑍𝑍 the set 𝑌𝑌�̅�𝑎 is convex and bounded above 
but does not have a supremum in 𝑀𝑀. We let  be the ∅-definable equivalence relation on 𝑀𝑀𝑏𝑏 given 
by  
 

�̅�𝑎 ∼ �̅�𝑏 for all �̅�𝑎, �̅�𝑏 ∈ 𝑀𝑀𝑏𝑏 ∖ 𝑍𝑍, and �̅�𝑎 ∼ �̅�𝑏  sup 𝑌𝑌�̅�𝑎 = sup 𝑌𝑌�̅�𝑏 if �̅�𝑎, �̅�𝑏 ∈ 𝑍𝑍. 
 
 Let �̅�𝑍 ≔ 𝑍𝑍/∼, and for each tuple �̅�𝑎 ∈ 𝑍𝑍 we denote by [�̅�𝑎] the -class of �̅�𝑎. There is a natural ∅-
definable total order on 𝑀𝑀 ∪ �̅�𝑍, defined as follows. Let �̅�𝑎 ∈ 𝑍𝑍 and 𝑐𝑐 ∈ 𝑀𝑀. Then [�̅�𝑎] < 𝑐𝑐 if and only 
if 𝑤𝑤 < 𝑐𝑐 for all 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎. Also, we say 𝑐𝑐 < [�̅�𝑎] iff ¬([�̅�𝑎] < 𝑐𝑐), i.e. there exists 𝑤𝑤 ∈ 𝑌𝑌�̅�𝑎 such that 𝑐𝑐 ≤
𝑤𝑤. If �̅�𝑎 is not -equivalent to �̅�𝑏 then there is some 𝑥𝑥 ∈ 𝑀𝑀 such that [�̅�𝑎] < 𝑥𝑥 < [�̅�𝑏] or [�̅�𝑏] < 𝑥𝑥 <
[�̅�𝑎], and so < induces a total order on 𝑀𝑀 ∪ �̅�𝑍. We call such a set �̅�𝑍 a sort (in this case, ∅-definable 
sort) in �̅�𝑀, where �̅�𝑀 is the Dedekind completion of 𝑀𝑀, and view �̅�𝑍 as naturally embedded in �̅�𝑀. 
Similarly, we can obtain a sort in �̅�𝑀 by considering infima instead of suprema. 
 Thus, we will consider definable functions from 𝑀𝑀 to its Dedekind completion �̅�𝑀, more precisely 
in definable sorts of the structure �̅�𝑀, representing infima or suprema of definable sets. 
 Let 𝐴𝐴, 𝐷𝐷 ⊆  𝑀𝑀, 𝐷𝐷 be infinite, 𝑍𝑍 ⊆ �̅�𝑀 be an 𝐴𝐴-definable sort and 𝑓𝑓 ∶ 𝐷𝐷 → 𝑍𝑍 be an 𝐴𝐴-definable 
function. We say 𝑓𝑓 is locally increasing (locally decreasing, locally constant}) on 𝐷𝐷 if for any 
element 𝑎𝑎 ∈ 𝐷𝐷 there is an infinite interval 𝐽𝐽 ⊆ 𝐷𝐷 containing {𝑎𝑎} so that 𝑓𝑓 is strictly increasing 
(strictly decreasing, constant) on 𝐽𝐽; we also say 𝑓𝑓 is locally monotonic on 𝐷𝐷 if it is locally 
increasing or locally decreasing on 𝐷𝐷. 
 Let 𝑓𝑓 be an 𝐴𝐴-definable function on 𝐷𝐷 ⊆ 𝑀𝑀, 𝐸𝐸 be an 𝐴𝐴-definable equivalence relation on 𝐷𝐷. We 
say 𝑓𝑓 is strictly increasing (decreasing) on 𝐷𝐷/𝐸𝐸 if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐷𝐷 with 𝑎𝑎 < 𝑏𝑏 and ¬𝐸𝐸(𝑎𝑎, 𝑏𝑏) we 
have 𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏) (𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏)). 
 Proposition 1.6 [13] Let 𝑀𝑀 be a weakly o-minimal structure, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be a non-algebraic 
type. Then any 𝐴𝐴-definable function of which the domain contains the set 𝑝𝑝(𝑀𝑀) is locally 
monotonic or locally constant on 𝑝𝑝(𝑀𝑀). 
 Definition 1.7 [14] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑝𝑝 ∈ 𝑆𝑆1(𝐴𝐴) be non-
algebraic. 
 (1) An 𝐿𝐿𝐴𝐴-formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be 𝑝𝑝-preserving (or 𝑝𝑝-stable) if there exist elements 
𝛼𝛼, 𝛾𝛾1, 𝛾𝛾2 ∈ 𝑝𝑝(𝑀𝑀) such that  
 

[𝐹𝐹(𝑀𝑀, 𝛼𝛼)\ {𝛼𝛼}] ∩ 𝑝𝑝(𝑀𝑀)  ≠ ∅ and 𝛾𝛾1 < 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) < 𝛾𝛾2. 
 

 (2) A 𝑝𝑝-preserving formula 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be convex-to-right (left) if there exists an element 
𝛼𝛼 ∈ 𝑝𝑝(𝑀𝑀) such that 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩ 𝑝𝑝(𝑀𝑀) is convex, 𝛼𝛼 is the left (right) endpoint of the set 𝐹𝐹(𝑀𝑀, 𝛼𝛼) ∩
𝑝𝑝(𝑀𝑀) and 𝛼𝛼 ∈ 𝐹𝐹(𝑀𝑀, 𝛼𝛼). 
 Definition 1.8 [15] Let 𝐹𝐹(𝑥𝑥, 𝑦𝑦) be a 𝑝𝑝-preserving convex-to-right (left) formula. We say that 
𝐹𝐹(𝑥𝑥, 𝑦𝑦) is said to be equivalence-generating if for any 𝛼𝛼, 𝛽𝛽 ∈ 𝑝𝑝(𝑀𝑀) such that 𝑀𝑀 ⊨ 𝐹𝐹(𝛽𝛽, 𝛼𝛼) the 
following holds: 

 is not weakly orthogonal to                                                                        

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

. Extending the definition of 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-splitting 
formula to non-isolated case, we say that an                 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 -formula 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is a 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-splitting 
formula, if there is 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 such that 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

, 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

,

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is convex, and 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

.

If 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

, 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 are 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-splitting 
formulas then we say that 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is not less 
than 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 if there is 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 such that 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

. We say 
that 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 
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𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 and 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 are equivalent 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 if 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

f or some 
(any) 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

.
Obviously, if  

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 are non-algebraic 
and 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

 is not weakly orthogonal to 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

, then there 
is at least one 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-splitting formula, and the 
set of all 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-splitting formulas is partitioned 
into a linearly ordered set of equivalence classes 
with respect to ~. For every 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-splitting 
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on each E'-class and the set 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is 
everywhere dense in 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

;
(4) for any 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

-splitting formula 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
the function 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is constant on each E-class, 
the set 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is everywhere dense in 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

, and 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is maximal with this 
property.

Proof of Theorem 2.2. Let for a 
definiteness 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

. Then there 
exist 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence relations 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 partitioning 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
into infinitely many infinite convex classes so 
that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 for some 
(any) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

. Obviously, by the hypotheses 
of the theorem 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

.
(1) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 (2). Obviously, since each E-class 
is infinite, i.e. 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

.
(2) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 (3). Suppose that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

. Assume the contrary: there exists 
a 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

-splitting formula 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 such that for 
any 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence relation 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
partitioning 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 into infinitely many infinite 
convex classes 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is 
not constant on each E'-class. Then 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is not 
constant on each E1-class. But then 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 must be 
strictly monotonic (strictly increasing or strictly 
decreasing) on each E1-class. Indeed, 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 can not 
be locally monotonic (non-strictly monotonic) 
on each E1-class, since otherwise an 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable 

equivalence relation 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 partitioning 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
into infinitely many infinite convex classes is 
appeared, so that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 for 
some (any) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 which contradicts the 
hypothesis that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is minimal among 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly 

-definable non-trivial equivalence relations 
on 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

. Thus, 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is strictly monotonic on 
each E1-class. If the set 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is not 
everywhere dense in 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

, then there exist 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 such that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 and for any 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 either 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 or 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

. 
If  

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is strictly increasing on each E1-class, 
then consider the following formula: 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

.
If 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is strictly decreasing on each E1-class, 
then consider the following formula:

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

.
It not difficult to see that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is a 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

-preserving convex-to-right formula. Then 
by almost omega-categoricity of T it must be 
equivalence-generating, whence we also have 
a contradiction with the fact that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
is minimal among 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable non-trivial 

equivalence relations on 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

.
Further we consider the behaviour of the 

function 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 on each 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

, where 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

. It must be strictly monotonic 
on each 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 and 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
must be everywhere dense in 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

, since 
otherwise an 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence relation 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is appeared with the property 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 which 
contradicts the fact that E2 is an immediate 
successor of E1 among all 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable 

equivalence relations on 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

. Similarly, it can 
be proved that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is strictly monotonic on each 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

, where 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 and 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 
is strictly monotonic on 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

.
Consider the following formulas: 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

... ... ...

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

One can understand that 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

are equivalence relations partitioning 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 into infinitely many infinite convex class-
es and 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

, whence 
we have 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
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′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 which contradicts our 
assumption.

(3) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 (4). By Theorem 1.5 there exist 
only finitely many 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence 

relations partitioning 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 
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′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
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′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 into infinitely many 
infinite convex classes. Therefore, there exists a 
maximal 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence relation with 

this property. 
(4) 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 (1). Let for any 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

-split ting formu-
la 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 the function 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
is constant on each E-class. Clearly,
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infinitely many infinite convex classes with the 
property 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

, then consider 
the following formula:

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

Obviously, 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

  
which also contradicts the fact that 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 is an 
immediate successor of  Ei  among all 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -defi-

nable equivalence relations on 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

. Simi-
larly, we can prove that there is no 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly  -defin-

able equivalence relation 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 partition-
ing 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 into infinitely many infinite con-
vex classes so that 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

for any k with 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  
 

or 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  
. 

Thus, 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  , i.e., 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  .

Corollary 2.3. Let  T be an almost 
omega-categorical weakly o-minimal theory, 

 Corollary 2.3. Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝, 𝑞𝑞 ∈  𝑆𝑆1(∅) be 
non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (2) there exists a (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) and for any ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely 
many infinite convex classes the function 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸-class; 
 (3) there exists a (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) and the function 𝑓𝑓𝑅𝑅 is locally monotonic (not locally constant) on 𝑝𝑝(𝑀𝑀). 
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 be non-algebraic, 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 is not weakly 
orthogonal to 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

. Then the following conditions 
are equivalent:

(1) 

 Corollary 2.3. Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝, 𝑞𝑞 ∈  𝑆𝑆1(∅) be 
non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (2) there exists a (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) and for any ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely 
many infinite convex classes the function 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸-class; 
 (3) there exists a (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) and the function 𝑓𝑓𝑅𝑅 is locally monotonic (not locally constant) on 𝑝𝑝(𝑀𝑀). 
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-splitting formula 

 Corollary 2.3. Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝, 𝑞𝑞 ∈  𝑆𝑆1(∅) be 
non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Then the following conditions are equivalent: 
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 (3) there exists a (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅
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 such that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is everywhere 
dense in 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 and for any 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable 

equivalence relation 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 
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′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
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′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 partitioning 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
into infinitely many infinite convex classes the 
function 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is not constant on each E-class;
(3) there exists a 

 Corollary 2.3. Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑝𝑝, 𝑞𝑞 ∈  𝑆𝑆1(∅) be 
non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (2) there exists a (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) and for any ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely 
many infinite convex classes the function 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸-class; 
 (3) there exists a (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) and the function 𝑓𝑓𝑅𝑅 is locally monotonic (not locally constant) on 𝑝𝑝(𝑀𝑀). 
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𝑝𝑝(𝑀𝑀) is everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) and the function 𝑓𝑓𝑅𝑅 is locally monotonic (not locally constant) on 𝑝𝑝(𝑀𝑀). 
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 such that 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is everywhere 
dense in 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 and the function 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is locally 
monotonic (not locally constant) on 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

.
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𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

.

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

Obviously, 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 for some 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

. Then 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 for 
any 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

. Fix an arbitrary 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

-splitting 
formula  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 and consider the behaviour of 
the function 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 on each 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

, 
where 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

. The function 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 can not 
be constant on each 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 
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′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
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′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

, since 
otherwise 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is constant on each 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

-class 
which contradicts maximality of 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 with 
this property. Consequently, 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 must be strictly 
monotonic on each 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

, since 
otherwise if it is locally monotonic (non-strictly 
monotonic) on each 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

, then an 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence relation 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 is 
appeared with the property that 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

which contradicts the 
fact that 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 is an immediate successor of 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 among all 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence 

relations on 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 . Similarly, we can prove that 
the function 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

 is strictly monotonic on each 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

, where 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 and 

orthogonal to 𝑞𝑞, 𝑅𝑅𝑅𝑅(𝑝𝑝) = 1, 𝑅𝑅𝑅𝑅(𝑞𝑞) = 2 and 𝑅𝑅(𝑥𝑥, 𝑦𝑦) is a (𝑝𝑝, 𝑞𝑞)-splitting formula. The function 𝑓𝑓𝑅𝑅 
is strictly increasing on 𝑝𝑝(𝑀𝑀), and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒). 
 Theorem 2.2 Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑀𝑀 be a sufficiently 
saturated model of 𝑇𝑇, 𝑝𝑝, 𝑞𝑞 ∈ 𝑆𝑆1(∅) be non-algebraic, 𝑝𝑝 is not weakly orthogonal to 𝑞𝑞. Suppose that 
there exists an ∅-definable equivalence relation 𝐸𝐸(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many 
infinite convex classes. Then the following conditions are equivalent: 
 (1) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞) + 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀); 
 (2) 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞); 
 (3) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) there exists an ∅-definable equivalence relation 
𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes so that 𝑓𝑓𝑅𝑅 is constant on 
each 𝐸𝐸′-class and the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒); 
 (4) for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸-class, the set 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) is maximal with this property. 
 Proof of Theorem 2.2. Let for a definiteness 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) = 𝑅𝑅. Then there exist ∅-definable 
equivalence relations 𝐸𝐸1(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑏𝑏−1(𝑥𝑥, 𝑦𝑦) partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite 
convex classes so that 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑏𝑏−1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). Obviously, by the 
hypotheses of the theorem 𝑅𝑅 ≥ 2. 
 (1) () (2). Obviously, since each 𝐸𝐸-class is infinite, i.e. 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸(𝑅𝑅, 𝑀𝑀)) ≥ 1. 
 (2) () (3). Suppose that 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑞𝑞). Assume the contrary: there exists a (𝑝𝑝, 𝑞𝑞)-
splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) such that for any ∅-definable equivalence relation 𝐸𝐸′(𝑥𝑥, 𝑦𝑦) partitioning 
𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is not constant on each 
𝐸𝐸′-class. Then 𝑓𝑓𝑅𝑅 is not constant on each 𝐸𝐸1-class. But then 𝑓𝑓𝑅𝑅 must be strictly monotonic (strictly 
increasing or strictly decreasing) on each 𝐸𝐸1-class. Indeed, 𝑓𝑓𝑅𝑅 can not be locally monotonic (non-
strictly monotonic) on each 𝐸𝐸1-class, since otherwise an ∅-definable equivalence relation 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes is appeared, so that 𝐸𝐸0(𝑅𝑅, 𝑀𝑀) ⊂
𝐸𝐸1(𝑅𝑅, 𝑀𝑀) for some (any) 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) which contradicts the hypothesis that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal 
among ∅-definable non-trivial equivalence relations on 𝑝𝑝(𝑀𝑀). Thus, 𝑓𝑓𝑅𝑅 is strictly monotonic on 
each 𝐸𝐸1-class. If the set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) is not everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), then there exist 
𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) such that 𝑏𝑏1 < 𝑏𝑏2 and for any 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀) either 𝑓𝑓𝑅𝑅(𝑅𝑅) ≤ 𝑏𝑏1 or 𝑏𝑏2 ≤ 𝑓𝑓𝑅𝑅(𝑅𝑅). If 𝑓𝑓𝑅𝑅 is 
strictly increasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑢𝑢 < 𝑡𝑡 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 If 𝑓𝑓𝑅𝑅 is strictly decreasing on each 𝐸𝐸1-class, then consider the following formula: 
 

𝑆𝑆(𝑥𝑥, 𝑏𝑏1): =  𝑏𝑏1 ≤ 𝑥𝑥 ∧ ∃𝑢𝑢[𝑓𝑓𝑅𝑅(𝑢𝑢) ≤ 𝑏𝑏1 ∧ ∀𝑡𝑡(𝑡𝑡 < 𝑢𝑢 ∧ 𝐸𝐸1(𝑢𝑢, 𝑡𝑡) → 𝑥𝑥 < 𝑓𝑓𝑅𝑅(𝑡𝑡))]. 
 

 It not difficult to see that 𝑆𝑆(𝑥𝑥, 𝑦𝑦) is a 𝑞𝑞-preserving convex-to-right formula. Then by almost 
omega-categoricity of 𝑇𝑇 it must be equivalence-generating, whence we also have a contradiction 
with the fact that 𝐸𝐸1(𝑥𝑥, 𝑦𝑦) is minimal among ∅-definable non-trivial equivalence relations on 
𝑝𝑝(𝑀𝑀). 
 Further we consider the behaviour of the function 𝑓𝑓𝑅𝑅 on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1, where 𝑅𝑅 ∈ 𝑝𝑝(𝑀𝑀). It 
must be strictly monotonic on each 𝐸𝐸2(𝑅𝑅, 𝑀𝑀)/𝐸𝐸1 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑅𝑅

𝑝𝑝(𝑀𝑀) must be everywhere dense in 
𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒), since otherwise an ∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the 
property 𝐸𝐸1(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸′′(𝑅𝑅, 𝑀𝑀) ⊂ 𝐸𝐸2(𝑅𝑅, 𝑀𝑀) which contradicts the fact that 𝐸𝐸2 is an immediate 
successor of 𝐸𝐸1 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, it can be proved 
that 𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑅𝑅, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 1 ≤ 𝑘𝑘 ≤ 𝑅𝑅– 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑏𝑏−1. 
 Consider the following formulas: 

is strictly monotonic on 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

.
Consider the following formulas:

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

... ... ...

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

Then it can be established that 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 are equivalence 
relations partitioning 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 into infinitely many 
infinite convex classes so that 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

, whence 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

. 
Further, if there exists an 

𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≥ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]] (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑀𝑀 ⊨ ∀𝑥𝑥[𝑥𝑥 ≤ 𝛽𝛽 → [𝐹𝐹(𝑥𝑥, 𝛼𝛼) ↔ 𝐹𝐹(𝑥𝑥, 𝛽𝛽)]]. 
 

 Lemma 1.9 [15] Let 𝑇𝑇 be a weakly o-minimal theory, 𝑀𝑀 ⊨ 𝑇𝑇, 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic. 
Suppose that 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is a 𝑟𝑟-preserving convex-to-right (left) formula that is also equivalence-
generating. Then 
 (1) 𝐺𝐺(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is a 𝑟𝑟-preserving convex-to-left (right) formula which is also equivalence-
generating. 
 (2) 𝐸𝐸(𝑥𝑥, 𝑦𝑦): = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∨ 𝐹𝐹(𝑦𝑦, 𝑥𝑥) is an equivalence relation on 𝑟𝑟(𝑀𝑀) partitioning it into infinitely 
many infinite convex classes. 
 Proposition 1.10 [10] Let 𝑇𝑇 be an almost omega-categorical weakly o-minimal theory, 𝑟𝑟 ∈ 𝑆𝑆1(∅) 
be non-algebraic. Then any 𝑟𝑟-preserving convex-to-right (left) formula is equivalence-generating. 
 In this work we present a criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories. 
 
 2. Results 
 Recall the notion of a (𝑟𝑟, 𝑞𝑞)-splitting formula introduced in [16] for non-algebraic isolated  
1-types. Let 𝐴𝐴 ⊆ 𝑀𝑀, 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) be non-algebraic, 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞. Extending 
the definition of (𝑟𝑟, 𝑞𝑞)-splitting formula to non-isolated case, we say that an 𝐿𝐿𝐴𝐴-formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) 
is a (𝑟𝑟, 𝑞𝑞)-splitting formula, if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that  
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, ¬𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ≠ ∅, 
 

𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) is convex, and [𝜑𝜑(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀)]− = [𝑞𝑞(𝑀𝑀)]−. 
 
 If 𝜑𝜑1(𝑥𝑥, 𝑦𝑦), 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are (𝑟𝑟, 𝑞𝑞)-splitting formulas then we say that 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is not less than 
𝜑𝜑2(𝑥𝑥, 𝑦𝑦) if there is 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such that 𝜑𝜑1(𝑎𝑎, 𝑀𝑀) ∩ 𝑞𝑞(𝑀𝑀) ⊆ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀). We say that (𝑟𝑟, 𝑞𝑞)-
splitting formulas 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) are equivalent (𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∼ 𝜑𝜑2(𝑥𝑥, 𝑦𝑦)) if 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) ∩
𝑞𝑞(𝑀𝑀) = 𝜑𝜑2(𝑥𝑥, 𝑦𝑦) ∩ 𝑞𝑞(𝑀𝑀) for some (any) 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀). 
 Obviously, if 𝑟𝑟, 𝑞𝑞 ∈ 𝑆𝑆1(𝐴𝐴) are non-algebraic and 𝑟𝑟 is not weakly orthogonal to 𝑞𝑞, then there is at 
least one (𝑟𝑟, 𝑞𝑞)-splitting formula, and the set of all (𝑟𝑟, 𝑞𝑞)-splitting formulas is partitioned into a 
linearly ordered set of equivalence classes with respect to . For every (𝑟𝑟, 𝑞𝑞)-splitting formula 
𝜑𝜑(𝑥𝑥, 𝑦𝑦) we will consider the function 𝑓𝑓𝜑𝜑, where 𝑓𝑓𝜑𝜑 ≔ sup 𝜑𝜑(𝑥𝑥, 𝑀𝑀). Also, obviously that for any 
(𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝜑𝜑 is not constant on 𝑟𝑟(𝑀𝑀). 
 We will also say [17] that for a (𝑟𝑟, 𝑞𝑞)-splitting formula 𝜑𝜑(𝑥𝑥, 𝑦𝑦) the set 𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑟𝑟𝑓𝑓𝜑𝜑

𝑝𝑝(𝑀𝑀) is 
everywhere dense in 𝑞𝑞(𝑀𝑀𝑒𝑒𝑒𝑒) if for any 𝑏𝑏1, 𝑏𝑏2 ∈ 𝑞𝑞(𝑀𝑀) with 𝑏𝑏1 < 𝑏𝑏2 there exists 𝑎𝑎 ∈ 𝑟𝑟(𝑀𝑀) such 
that 𝑏𝑏1 < 𝑓𝑓𝜑𝜑(𝑎𝑎) < 𝑏𝑏2. 
 Example 2.1. Let 𝑀𝑀 = 〈𝑀𝑀; <, 𝑃𝑃1

1, 𝑃𝑃2
1, 𝐸𝐸2, 𝑅𝑅2〉 be a linearly ordered structure so that 𝑀𝑀 is a disjoint 

union of interpretations of unary predicates 𝑃𝑃1 and 𝑃𝑃2 with 𝑃𝑃1(𝑀𝑀) < 𝑃𝑃2(𝑀𝑀). We identify the 
interpretation of 𝑃𝑃1 with ℚ, ordered as usual, and the interpretation of 𝑃𝑃2 with ℚ × ℚ, ordered 
lexicographically. The relation 𝐸𝐸 is an equivalence relation on 𝑃𝑃2(𝑀𝑀): 
 

𝐸𝐸((𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2)) ⇔ 𝑎𝑎1 = 𝑐𝑐1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 (𝑎𝑎1, 𝑎𝑎2), (𝑐𝑐1, 𝑐𝑐2) ∈ 𝑃𝑃2(𝑀𝑀). 
 
 The relation 𝑅𝑅 is defined as follows: 
 

𝑅𝑅(𝑎𝑎, (𝑏𝑏1, 𝑏𝑏2)) ⇔ 𝑏𝑏1 ≤ 𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑅𝑅𝑦𝑦 𝑎𝑎 ∈ 𝑃𝑃1(𝑀𝑀), (𝑏𝑏1, 𝑏𝑏2) ∈ 𝑃𝑃2(𝑀𝑀). 
 

 It is not difficult to establish that 𝑀𝑀 is a countably categorical weakly o-minimal structure. Let 
𝑟𝑟: = {𝑃𝑃1(𝑥𝑥)}, 𝑞𝑞: = {𝑃𝑃2(𝑥𝑥)}. Obviously, 𝑟𝑟 and 𝑞𝑞 determine complete types over ∅, 𝑟𝑟 is not weakly -definable equivalence 

relation 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 
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′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
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′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 partitioning 

 
𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ [𝑥𝑥 ≤ 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 ≤ 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2))] ∧
∧ [𝑥𝑥 > 𝑦𝑦 → ∃𝑡𝑡1∃𝑡𝑡2(𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2))] 

 
 One can understand that 𝐸𝐸1

′(𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1
′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 𝑞𝑞(𝑀𝑀) into 

infinitely many infinite convex classes and 𝐸𝐸1
′(𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1

′ (𝑏𝑏, 𝑀𝑀), whence we have 
𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 which contradicts our assumption. 
 (3) () (4). By Theorem 1.5 there exist only finitely many ∅-definable equivalence relations 
partitioning 𝑝𝑝(𝑀𝑀) into infinitely many infinite convex classes. Therefore, there exists a maximal 
∅-definable equivalence relation with this property. 
 (4) () (1). Let for any (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) the function 𝑓𝑓𝑅𝑅(𝑥𝑥) ≔ sup 𝑅𝑅(𝑥𝑥, 𝑀𝑀) is 
constant on each 𝐸𝐸-class. Clearly, 
 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 (𝑎𝑎𝑛𝑛𝑦𝑦) 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). 
 
 Obviously, 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≡ 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) for some 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Then 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)) = 𝑖𝑖 for any 𝑎𝑎 ∈
𝑝𝑝(𝑀𝑀). Fix an arbitrary (𝑝𝑝, 𝑞𝑞)-splitting formula 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and consider the behaviour of the function 
𝑓𝑓𝑅𝑅 on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, where 𝑎𝑎 ∈ 𝑝𝑝(𝑀𝑀). The function 𝑓𝑓𝑅𝑅 can not be constant on each 
𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, since otherwise 𝑓𝑓𝑅𝑅 is constant on each 𝐸𝐸𝑏𝑏+1-class which contradicts maximality of 
𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) with this property. Consequently, 𝑓𝑓𝑅𝑅 must be strictly monotonic on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, 
since otherwise if it is locally monotonic (non-strictly monotonic) on each 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑏𝑏, then an 
∅-definable equivalence relation 𝐸𝐸′′(𝑥𝑥, 𝑦𝑦) is appeared with the property that 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂
𝐸𝐸′′(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an immediate successor of 𝐸𝐸𝑏𝑏(𝑥𝑥, 𝑦𝑦) 
among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we can prove that the function 
𝑓𝑓𝑅𝑅 is strictly monotonic on each 𝐸𝐸𝑘𝑘+1(𝑎𝑎, 𝑀𝑀)/𝐸𝐸𝑘𝑘, where 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 and 𝑓𝑓𝑅𝑅 is strictly 
monotonic on 𝑝𝑝(𝑀𝑀)/𝐸𝐸𝑛𝑛−1. 
 Consider the following formulas: 

𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑏𝑏+1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 

… … … 
𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑛𝑛−1(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑥𝑥 < 𝑓𝑓(𝑡𝑡2) ∧ 𝑓𝑓(𝑡𝑡1) < 𝑦𝑦 < 𝑓𝑓(𝑡𝑡2)], 
 

 Then it can be established that 𝐸𝐸𝑏𝑏+1
′ (𝑥𝑥, 𝑦𝑦), … , 𝐸𝐸𝑛𝑛−1

′ (𝑥𝑥, 𝑦𝑦) are equivalence relations partitioning 
𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes so that 𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀) ⊂ ⋯ ⊂ 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀), whence 

𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) ≥ 𝑛𝑛 − 𝑖𝑖. Further, if there exists an ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) 
partitioning 𝑞𝑞(𝑀𝑀) into infinitely many infinite convex classes with the property 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂
𝐸𝐸𝑏𝑏+1

′ (𝑏𝑏, 𝑀𝑀), then consider the following formula: 
 

𝐸𝐸∗(𝑥𝑥, 𝑦𝑦) ≔ ∃𝑡𝑡1∃𝑡𝑡2[𝐸𝐸𝑞𝑞(𝑡𝑡1, 𝑡𝑡2) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡1 < 𝑓𝑓(𝑦𝑦) ∧ 𝑓𝑓(𝑥𝑥) < 𝑡𝑡2 < 𝑓𝑓(𝑦𝑦)] 
 
 Obviously, 𝐸𝐸𝑏𝑏(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸∗(𝑎𝑎, 𝑀𝑀) ⊂ 𝐸𝐸𝑏𝑏+1(𝑎𝑎, 𝑀𝑀) which also contradicts the fact that 𝐸𝐸𝑏𝑏+1 is an 
immediate successor of 𝐸𝐸𝑏𝑏 among all ∅-definable equivalence relations on 𝑝𝑝(𝑀𝑀). Similarly, we 
can prove that there is no ∅-definable equivalence relation 𝐸𝐸𝑞𝑞(𝑥𝑥, 𝑦𝑦) partitioning 𝑞𝑞(𝑀𝑀) into 
infinitely many infinite convex classes so that 𝐸𝐸𝑘𝑘

′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑘𝑘+1
′ (𝑏𝑏, 𝑀𝑀) for any 𝑘𝑘 with 

𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2 or 𝐸𝐸𝑛𝑛−1
′ (𝑏𝑏, 𝑀𝑀) ⊂ 𝐸𝐸𝑞𝑞(𝑏𝑏, 𝑀𝑀).  

 Thus, 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) = 𝑛𝑛 − 𝑖𝑖, i.e., 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑝𝑝) = 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝑞𝑞) + 𝑅𝑅𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛(𝐸𝐸(𝑎𝑎, 𝑀𝑀)).  

 into 
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