o BECTHMK KA3AXCTAHCKO-BPUTAHCKOIO TEXHUYECKOIO YHUBEPCUTETA, N°2 (61), 2022 o

UDC 510.67
IRSTI 27.03.66

https://doi.org/10.55452/1998-6688-2022-19-2-20-28

ON (p, Q)-SPLITTING FORMULAS IN ALMOST OMEGA-CATEGORICAL
WEAKLY O-MINIMAL THEORIES

IZBASAROV A.A.!, KULPESHOV B.SH.!, EMELYANOV D.YU.?

'Kazakh-British Technical University, 050000, Almaty, Kazakhstan
’Novosibirsk State Technical University, 630073, Novosibirsk, Russia

Abstract. The present paper concerns the notion of weak o-minimality introduced by M. Dickmann
and originally studied by D. Macpherson, D. Marker, and C. Steinhorn. Weak o-minimality is a
generalization of the notion of o-minimality introduced by A. Pillay and C. Steinhorn in series of
joint papers. As is known, the ordered field of real numbers is an example of an o-minimal structure.
We continue studying properties of almost omega-categorical weakly o-minimal theories. Almost
omega-categoricity is a notion generalizing the notion of omega-categoricity. Recently, a criterion
for binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank
has been obtained. Binary convexity rank is the convexity rank in which parametrically definable
equivalence relations are replaced by @ - definable equivalence relations. (p, q)-splitting formulas
express a connection between non-weakly orthogonal non-algebraic 1-types in weakly o-minimal
theories. In many cases, the binary convexity ranks of non-weakly orthogonal non-algebraic
I-types are not equal. The main result of this paper is finding necessary and sufficient conditions
for equality of the binary convexity ranks for non-weakly orthogonal non-algebraic I-types in
almost omega-categorical weakly o-minimal theories in terms of (p, q)-splitting formulas.

Keywords: weak o-minimality, almost omega-categoricity, (p, q)-splitting formula, convexity rank,
weak orthogonality, equivalence relation.

JAEPJIIK OMETA-KATETI'OPUSAJIBIK 9JICI3 O-MUHUMAJI/IbI
TEOPUAJIAPBIHJA (p, q)-CEKATOPJIAP TYPAJIbI

I3BBACAPOB A.A.', KVJIIIEIIOB B.111.', EMEJIBSIHOB /1.10.?

'Kasaxcman-bpuman mexnukanvlx ynusepcumemi, 050000, Aaimamet K., Kazaxcman
2Hosocibip memnexemmix mexnukanvlk ynusepcumemi, 630073, Hosocubupck k., Peceil

Anoamna. Byn oscymvic M. Jluxmann eneizeen dcone bacmanxwvioa /. Maxgepcon, /]. Mapxep
acone Y. Cmeunxopn 3epmmezen 27Ci3 O-MUHUMANLOBLLILIK MYCiHIciHe Kamblcmbl. OICI3
o-MuHumanowvinvlk — oyn A. Hunnai men 4. Cmetinxopnuwiy OipieckeH Makaiaiap cepusicblHoa
eH2i32eH O-MUHUMANObLIbIZbL YebIMbIHLIY dHcananvliaysl. bencini Ooneamoail, Haxmel canoapowiy
pemmenzen opici 0-MUHUMALObL KYPOLIBLMHBIY Al2eOpanblK Mblcanbl 601bln maobwiiadsl. biz deprix
ome2a Kame2opusiiblK 2J1CI3 O-MUHUMANObL MeOpUsIapobly Kacuemmepin 3epmmeyoi Haieac-
muipamol3. Omeza-kame2opusinblK 0epiik — Oyl ome2a Kame20pUusLiblK MyCiHieIH HCaanbliatmolH
yevim. JKaxwinoa oenecmik paneici OotibiHuia Oeplik ome2a Kame2opusivblK diCi3 0O-MUHUMATLObL
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meopusinapovly OUHAPILIK Kpumepuiii anvlHovl. bunapnvly dewecmix paweici — napamempiix
AHLIKMANAMbIH IKEUBATICHMMIK KAMbIHACAP 00C JHCUbIHMEH AHLIKMANAMbIH IKEUBAIeHMMIK
KamvlHACmapmeH ayblCIMulpbliamuli 00HecmiK paueici. (p, q)-6eny gopmynanrapvl aa1ci3 o-MuHu-
Manobl meopuanapoassl 21ci3 OpmocoHaIbObl aneedpanvliy emec 1-myprep apacvbiHoazel bOaiiia-
Hbicmbl 0i10ipedi. Kenmeeen scagoaiinapoa anciz emec opmoz2ouanbobl aieeopanvik emec 1-myp-
J1epoiy OuHapavlx 0oyecmik paueinepi mey emec. byn socymvicmoly neeizei Homuoiceci (p, q)-6ony
dopmynanapsl mypevicblHan Oepiik ome2a Kame2opusiblK 2JICI3 O-MUHUMALObL MeopUusiapoadsl
271CI3 OPMO2OHAILOBL AleeOPanblK emec 1-mypnepi yulin exkilik 0oHec paHemapuvlHbly meyoici Yulin
Kaoscemmi Jicane dHcemKinikmi wiapmmaposl maoy 6016in madowliaosl.

Tyiiinoi co3oep: anciz o-MUHUMALOBLILIK, OepPliK oMe2a-Kame2opusivik, (p, q)-6eay gopmynacel,
06HeCmiK pame, 21Ci3 OPMO2OHANbObIK, IKEUBANEHMMIK KAMbIHAC.

O (p, Q)-CEKATOPAX B ITIOYTHU OMETI'A-KATEI'OPUYHbBIX
CJABO O-MUHUMAJIBHBIX TEOPUAX

N3BACAPOB A.A., KVJIIIEWOB Bb.111.", EMEJIbSAHOB /1.10.?

'Kasaxcmancko-Bpumanckui mexuuueckuil ynusepcumem, 050000, o. Aamameol, Kazaxcman
’Hosocubupckuii 20cy0apcmeeHublil mexHUYecKuil YyHusepcumen,
630073, e. Hosocubupck, Poccus

Aunnomayun. Hacmoswas cmamvs xacaemcsi NOHAMUS CLAOOU O-MUHUMATILHOCMU, 668e0eH-
Ho2o M. Jluxmanuom u nepsonauanvHo ucciedoseannoco Jl. Maxgepconom, J[. Mapkepom u
Y. Cmeiinxoprnom. Cnabas o-MuHUMAIbHOCMb A67158emcs 0000ujeHueM NOHAMUL O-MUHUMATbHO-
cmu, 66edenno2o A. IHunnvsem u 4. Cmetinxopnom 6 cepuu cosmecmuvix cmameti. Kax uzeecmmno,
VROPAOOYEeHHOe NoJle 8eujeCMBEeHHbIX YUCel ABNAeMCS NPUMEPOM O-MUHUMALbHOU CMPYKMYpb.
Mbu1 npodondcaem uzyuenue ceouUCmE NOYMU OMe2A-KAMe2OPUYHbIX C1a00 O-MUHUMALbHBIX Neo-
putl. Iloumu omeza-kamezopuunocms — 5mo nousimue, obobujaoujee noHamue ome2a-Kame2opuu-
Hocmu. Hedaeno Ovin nonyuen kpumepuii OUHAPHOCMU NOYMU OMe2a-KAMe20PULHbIX c1ab0 O-Mu-
HUMANbHBIX Meopull 8 MepMUHAx panea evinykiocmu. Bunapuwiii pane evlnyxiocmu — s3mo pawue
BLINYKJIOCMU, 8 KOMOPOM NApamempuyecku onpeoeiumvle OMHOUEHUST IK8UBATEHMHOCU 3aMe-
HAIOMCS NYCMO-0NPedenumMbiMU OMHOUEHUAMU IKEUBALEHMHOCIMU. (D, q)-CeKamopbl 8blpaicaiom
CBA3b MeHCOY He C1aD0 OPMOSOHANLHBIMU HedlleebpaudecKumu [-munamu 8 ciabo o-MuHUMATbHbIX
meopusx. B oonvuuncmee ciyuaes bunapuvie paneu 8blNYKIOCMU He Clab0 OpmMO2OHANIbHBIX He-
ancebpauyeckux I-munos me cosnadarom. OCHOGHbIM pe3yIbMamomM OAHHOU CMamvlU sA61Aemcs
HaxoodicoeHue HeobxXo0UMbIX U OOCMAMOYHbIX YCILOBULL PABEHCMBA ODUHAPHBIX PAH208 8bINYKIOCU
07151 He clabo OPMO2OHANILHBIX HedlleeOpauyeckux 1-munos ¢ noumu ome2a-Kame20puiHvlx c1aoo
O-MUHUMATILHBIX MEopUsX 8 mepMUHax (p, q)-cekamopoa.

Knrwueswvie cnosa: crabas O-MUHUMATIbHOCMb, NOYNu omezca-Kamecopuinocms, (p, q)—ceKamop,
PaHe 6blnyKi10oCmu, crnabas OpMmMocOHANIbHOCMb, ONMHOWEHUE DKEUBAIEHNTHOCMU.

Preliminaries these structures. A subset 4 of a linearly ordered
Let L be a countable first-order language. structure M is convex if for all a,b € 4 and ¢ €
Throughout this paper we consider L-structures M whenever <a < b we have ¢ € 4. This paper
and suppose that L contains a binary relation concerns the notion of weak o-minimality that
symbol <which is interpreted as a linear orderin ~ was initially deeply studied by D. Macpherson,
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D. Marker, and C. Steinhorn in [1]. A weakly
o-minimal structure is a linearly ordered
structure M = (M, <, ... ) such that any definable
(with parameters) subset of M is a union of
finitely many convex sets in M. We recall that
such a structure M is said to be o-minimal if
any definable (with parameters) subset of M is a
union of finitely many intervals and points in M.
Thus, weak o-minimality generalizes the notion
of o-minimality. Real closed fields with a proper
convex valuation ring provide an important
example of weakly o-minimal (not o-minimal)
structures [2, 3].

Let 4 and B be arbitrary subsets of
a linearly ordered structure M. Then the
expression 4 < B means that o < b whenever
o € Aand b € B, and 4 < b means that A
< {b}. For a subset 4 of M we introduce the
following notations: A*:={b € M | A < b} and
A7:={b € M|b < A}. For an arbitrary one-
type p we denote by p(M) the set of realizations
of p in M. If BS M and E is an equivalence
relation on M then we denote by B/E the set
of equivalence classes (E-classes) which have
representatives in B. If fis a function on M, then
we denote by ( /) the domain of M. A theory
T is said to be binary if every formula of f'is
equivalent in 7 to a Boolean combination of
formulas with at most two free variables.

Further throughout the paper we consider an
arbitrary complete theory 7 (if unless otherwise
stated), where M is a sufficiently saturated
model of T.

Definition 1.1 Let 7 be a weakly o-minimal
theory, M =T,AS M,p,q € S;(A) be non-
algebraic. We say that p is not weakly orthogonal
to ¢ (denoting this by p £ q) if there exist an
L -formula H(x,y), « € p(M) and B3, € q(M)
such that f; € H(M,a) and B2 € H(M, a).

In other words, p is weakly orthogonal to
g (denoting this by p LY q) if p(x) U q(¥) has a
unique extension to a complete 2-type over 4.

Lemma 1.2 [4] Let T'be a weakly o-minimal
theory, M =T, A € M. Then the relation of
non-weak orthogonality is an equivalence
relation on §S,(4).

The definition of convexity rank for a set
was introduced in [5].
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Definition 1.3 Let T be a weakly o-minimal
theory, M be a sufficiently saturated model of
the theory T, A & M. The convexity rank of the
set A (RC(A)) is defined as follows:

1)RC(A)=-1ifA=0.

2) RC(A) = 0 if A is finite and non-empty.

3) RC(A) > 1 if A is infinite.

4) RC(A) > a + 1 if there exists a
parametrically definable equivalence relation
E(x, y) such that there are b,€ A, i € ®, which
satisty the following:

 For any 1, ] € o, whenever 1 # j we have
M E —E(b,,b;);

* For every i € ® RC(E(M, b,)) > o and
E(M, b,) is a convex subset of A.

5) RC(A) > 6 if RC(A) > a for all a <6 (o
is limit).

IfRC(A) = a for some a, we say that RC(A)
is defined. Otherwise (i.e. if RC(A)) > a for all
a), we put RC(A) = .

The rank of convexity of a formula
¢@(x,a), where a € M, is defined as the rank
of convexity of the set @(M,a). The rank
of convexity of a l-type p is defined as
the rank of convexity of the set p(M), i.e.,
RC(p):= RC(p(M)). In particular, a theory
has convexity rank 1 if there are no definable
(with parameters) equivalence relations with
infinitely many infinite convex classes.

We say that the convexity rank of an arbitrary
set A is binary and denote it by RCp;n(4) if
parametrically definable equivalence relations
are replaced by @-definable (i.e., binary)
equivalence relations.

Definition 1.4 [6, 7] Let T be a complete
theory, and p1(x1), ..., Pn (%) € S1(0). A type
q(xq, -, X)) ESR(D) is said to be a (P1, .-, Pn)
-type if

q(x1, o, ) 2 p1(x1) U ..U pp(xp).

The set of all (py, ..., Pn)-types of the theory
T is denoted by Sp,,..p,(T). A countable theory
T is said to be almost w-categorical if for any
types p1(x1), .., Pn(x) € S1(0@) there are only
finitely many types q(xq, ..., xn) € Sp, . (T).

Almost omega-categoricity is closely con-
nected with the notion of Ehrenfeuchtness
of a theory. So, in [6] it was proved that if T
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is an almost omega-categorical theory with
I(T,w) =3 then a dense linear order is
interpreted in 7. Nonetheless there exists an
example (constructed by M.G. Peretyat'kin in
[8]) of a theory with the condition (T, ») = 3
that is not almost omega-categorical.

In [9] the authors established almost omega-
categoricity of Ehrenfeucht quite o-minimal
theories and that the Exchange Principle for
algebraic closure holds in almost omega-
categorical quite o-minimal theories. Recently
in [10], orthogonality of any family of pairwise
weakly orthogonal non-algebraic 1-types over
@ for such theories and binarity of almost
omega-categorical quite o-minimal theories
were proved. Also, in [11], binarity of almost
omega-categorical weakly o-minimal theories
of convexity rank 1 was established. At last, in
the work [12], a criterion for binarity of almost
omega-categorical weakly o-minimal theories
in terms of convexity rank was found.

Theorem 1.5 [10] Let 7'be an almost omega-
categorical weakly o-minimal theory, p € S;(0)
be non-algebraic. Then RCp;, (p) < .

Recall some notions originally introduced
in[1]. Let Y € M™*! be an @-definable subset,
let m: M™*1 - M™ be the projection which
drops the last coordinate, and let Z: = m(Y). For
each a € Z let Y;:={y : (a,y) € Y}. Suppose
that for every @ € Z the set Yz is convex and
bounded above but does not have a supremum
in M. We let ~ be the @ -definable equivalence
relation on M" given by

a~bforalla, b e M\ Z, and
a~b<osupY; =supYifa,b € Z.

Let Z := Z/~, and for each tuple @ € Z we
denote by [a] the ~ -class of @. There is a natural
@ -definable total order on M U Z, defined as
follows. Leta € Zand ¢ € M. Then a < c ifand
only if < ¢ for all w € Y. Also, we say ¢ < [a]
iff —([a] <c), ie. there exists W € Yz such
that ¢ < w. If @ is not ~ -equivalent to b then
there is some x € M such that [a] < x < [p]
or [b] < x <a, and so < induces a total order
on M UZ. We call such a set Z a sort (in this
case, @-definable sort) in M, where M is the
Dedekind completion of M, and view Z as
naturally embedded in M. Similarly, we can

obtain a sort in M by considering infima instead
of suprema.

Thus, we will consider definable functions
from M to its Dedekind completion M, more
precisely in definable sorts of the structure
M, representing infima or suprema of definable
sets.

Let A,D € M, D beinfinite, Z S M be an
A-definablesortand f : D — Z beanA-definable
function. We say f is locally increasing (locally
decreasing, locally constant}) on D if for any
clement a € D there is an infinite interval | € D
containing {a} so that f is strictly increasing
(strictly decreasing, constant) on J; we also
say f is locally monotonic on D if it is locally
increasing or locally decreasing on D.

Let f be an A-definable function on D € M,
E be an A-definable equivalence relation on D.
We say f is strictly increasing (decreasing)
on D/Eif for any a,b € D with a <b and
=E(a,b) we have f(a) < f(b) (f(a) > f(b)).

Proposition 1.6 [13] Let M be a weakly
o-minimal structure, A < M,p € S;(A) be
a non-algebraic type. Then any A-definable
function of which the domain contains the set
p(M) is locally monotonic or locally constant
on p(M).

Definition 1.7 [14] Let T be a weakly
o-minimal theory, M T, AS M, p € S;(4)
be non-algebraic.

(1) An L, -formula F(x,y) is said to be P
-preserving (or p-stable) if there exist elements
a,Y1,Y2 € p(M) such that

[F(M, )\ {a}] np(M) # @ and
v1 <FM,a) np(M) <y,

(2) A p-preserving formula F(x,y) is said
to be convex-to-right (left) if there exists an
element @ € p(M) such that F(M,a) N p(M) is
convex, o is the left (right) endpoint of the set
p(M) and a € F(M, a).

Definition 1.8 [15] Let F(x,¥) be a p
-preserving convex-to-right (left) formula.
We say that F(x,y) is said to be equivalence-
generating if for any «,f € p(M) such that
M E F(B, a) the following holds:

M EVx[x =B > [F(x,a) & F(x, B)]]
(resp.M E Vx[x < B > [F(x,a) & F(x, D],
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Lemma 1.9 [15] Let T be a weakly o-mini-
mal theory, M £ T,A S M,p € S;(A) be non-
algebraic. Suppose that F(x, ) is a p-preserving
convex-to-right (left) formula that is also equi-
valence-generating. Then

(1) G(x,y):=F(y,x) is a p-preserving
convex-to-left (right) formula which is also
equivalence-generating.

(2) E(q,y):=F(x,y) VF(y,x) is an equi-
valence relation on p(M) partitioning it into
infinitely many infinite convex classes.

Proposition 1.10 [10] Let 7 be an almost
omega-categorical weakly o-minimal theory,
p € S;(@) be non-algebraic. Then any
p-preserving convex-to-right (left) formula is
equivalence-generating.

In this work we present a criterion for equa-
lity of the binary convexity ranks for non-weak-
ly orthogonal non-algebraic 1-types in almost
omega-categorical weakly o-minimal theories.

Results

Recall the notion ofa (p, q)-splitting formula
introduced in [16] for non-algebraic isolated
I-types. Let AS M, p,q € S;(4) be non-
algebraic, P is not weakly orthogonal to
q. Extending the definition of (p, q)-splitting
formula to non-isolated case, we say that an
L, -formula @(x,¥) is a (p,q)-splitting
formula, if there is a € p(M) such that

p(a,M) N q(M) # D, —p(a,M) nqg(M) = @,
¢(a, M) n q(M) is convex, and
[p(a, M) N q(M)]™ = [q(M)]".

If ¢1(x,y), @2(x,¥) are (p,q)-splitting
formulas then we say that ¢1(X,¥) is not less
than @,(x,y) if there is a € p(M) such that
@1(a, M) N qg(M) S @,(x,y) N q(M). We say
that (p, q)-25-splitting formulas ©1(x,y) and
®2(x,y) are equivalent (91 (x,y) ~ @2(x,y)) if
915 Y) 0 (M) = @,(x,y) N (T or some
(any) a € p(M).

Obviously, if p,q € S;(A) arenon-algebraic
and p is not weakly orthogonal to ¢, then there
is at least one (p, q)-splitting formula, and the
set of all (P, @)-splitting formulas is partitioned
into a linearly ordered set of equivalence classes
with respect to ~. For every (p,q)-splitting
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formula ¢(x,y) we will consider the function
f?, where f¢ = sup ¢(x,M). Also, obviously
that for any (0, @)-splitting formula ¢ (x,y) the
function f? is not constant on p(M).

We will also say [17] that for a (p, q)-split-
ting formula @(x,¥) the set Rangef"’p(M)
is everywhere dense in q(M°?) if for any
by, by € q(M)  with by < b, there
a € p(M) such that b; < f?(a) < b,.

Example 2.1. Let M =(M; <,P},P},E%, be a
linearly ordered structure so that M is a disjoint
union of interpretations of unary predicates P1
and P2 with P;(M) < P,(M). We identify the
interpretation of P; with Q, ordered as usual,
and the interpretation of P, with QX Q,
ordered lexicographically. The relation £ is an
equivalence relation on P,(M):

exists

E((ap ay), (¢, Cz)) S a =
c1 for any (aq,a;), (¢c1,¢;) € P,(M)
The relation R is defined as follows:

R(a, (by,by)) © by < a for any

a € Py(M), (by, by) € P,(M).

It is not difficult to establish that M is
a countably categorical weakly o-minimal
structure.  Let  p:={P,(x)},q:= {P,(x)}.
Obviously, p and gq determine complete
types over @, p is not weakly orthogonal to
q,RC(p) = 1,RC(q) =2and R(x,y) is a (p,q)
-splitting formula. The function f® is strictly
increasing on P(M), and the set Range f®
is not everywhere dense in g(M®9).

Theorem 2.2 Let T be an almost omega-
categorical weakly o-minimal theory, M be a
sufficiently saturated model of T, p,q € S, (@)
be non-algebraic, p is not weakly orthogonal
to q. Suppose that there exists an @-definable
equivalence relation E(x, y) partitioning p(M)
into infinitely many infinite convex classes.
Then the following conditions are equivalent:

(1) RCphin(p) = RChin(q) + RCpin(E(a, M))
for some (any) a € p(M);

(2) RCpin(p) > RCphin(q);

(3) for any (p, q)-splitting formula R(x,y)
there exists an @-definable equivalence relation
E'(x,y) partitioning p(M) into infinitely many
infinite convex classes so that f® is constant

p(M)
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on each E'-class and the set Range pr(M) is
everywhere dense in q(M¢9);

(4) for any (p, q)-splitting formula R(x,y)
the function f® is constant on each E-class,
the set Range f Rp(M) is everywhere dense in
q(M®?), and E'(x,y) is maximal with this

property.

Proof of Theorem 2.2. Let for a
definiteness RCpin(p) =n. Then there
exist  (@-definable equivalence relations

Ei(x,y), .., En_1(x,¥) partitioning p(M)
into infinitely many infinite convex classes so
that E,(a,M) c --- c E,,_;(a,M) for some
(any) a € p(M). Obviously, by the hypotheses
of the theorem n = 2.

(1) (=) (2). Obviously, since each E-class
is infinite, i.e. RCp;, (E(a, M)) = 1.

(2) (=) (3). Suppose that RCy;,(p) >
> RChin(q). Assume the contrary: there exists
a (p, q@)-splitting formula R(x,y) such that for
any @-definable equivalence relation E'(x,y)
partitioning p(M) into infinitely many infinite
convex classes fR(x):=supR(x,M) is
not constant on each E’-class. Then f R is not
constant on each £ -class. But then f® must be
strictly monotonic (strictly increasing or strictly
decreasing) on each E -class. Indeed, fR can not
be locally monotonic (non-strictly monotonic)
on each E -class, since otherwise an @-definable
equivalencerelation Eo (X, ) partitioning p(M)
into infinitely many infinite convex classes is
appeared, so that Ey(a,M) cE; (a,M) for
some (any) a € p(M) which contradicts the
hypothesis that E;(X,Y) is minimal among @
-definable non-trivial equivalence relations
on P(M). Thus, fR is strictly monotonic on
each E -class. If th; set Rgnge fRPf_lM) is n‘ot
everywhere dense in q(M®?), then there exist
by, by € q(M) such that b; < b, and for any
a € p(M) either fR(a) < by or b, < fR(a).
If fR is strictly increasing on each E ~Class,
then consider the following formula:

S(x,b)i= by < x AJu[fRW) < by A
AVE(u < t AE;(uw,t) - x < fR(D))]

If fR is strictly decreasing on each E -class,
then consider the following formula:

S(x,by):= by < xAEIu[fR(u) < b, A

AVE(t <uAE(wt) - x < fR(D)].

It not difficult to see that S(x,y) is a ¢
-preserving convex-to-right formula. Then
by almost omega-categoricity of 7 it must be
equivalence-generating, whence we also have
a contradiction with the fact that E,(x,y)
is minimal among @-definable non-trivial
equivalence relations on p(M).

Further we consider the behaviour of the
function fR on each E,(a,M)/E;, where
a € p(M). Tt must be strictly monotonic
on each Ez(a,M)/Ei and Range pr(M)
must be everywhere dense in q(M¢?), since
otherwise an (-definable equivalence relation
E"(x,y) 1is appeared with the property
Ei(a,M) c E"(a,M) c E,(a, M) which
contradicts the fact that E, is an immediate
successor of E, among all @-definable
equivalence relations on p(M). Similarly, it can
be proved that f® is strictly monotonic on each
Exs1(a,M)/Ey, where 1 < k <n-2 and f*
is strictly monotonic on p(M)/E,_1.

Consider the following formulas:

Ei(,y)=[x<y- 3t13t2(51(t1' t2) A f(t) <

<x <y <f(t))] Alx >y = 3t36(Ey(t, ) A

Af(t) <y <x<f(t))]

Ep_1(6,y) =[x <y = 3t;3t,(Ep_q (t1, £5) A

< f(tz))] A [x >y - Eltlflfz(En_l(tl, ty) A

Af(t) <y <x < f(t))]

One can understand that Ej(x,y),..,
Ey_1(x,y)are equivalence relations partitioning

(M) into infinitely many infinite convex class-
esand E{(b,M) c --- c E,_;(b, M), whence
we have RCp;,(q) = n which contradicts our
assumption.

(3) (=) (4). By Theorem 1.5 there exist
only finitely many @-definable equivalence
relations partitioning g (M) into infinitely many
infinite convex classes. Therefore, there exists a
maximal @-definable equivalence relation with
this property.

(4)(=) (1).Letforany (p, q)-splitting formu-
la R(x,y) the function fR(x) = supR(x, M)
is constant on each E-class. Clearly,
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RCbin(p) = RCbin(Q) + RCbin(E(a: M))
for some (any) a € p(M)

Obviously, FE(x, y) = E;(x,y) for some
1<i<n-—1. Then RCyy(E(a,M)) =i for
any a € p(M). Fix an arbitrary (p, q)-splitting
formula R(x,¥) and consider the behaviour of
the function f* on each Ei11(a, M)/E;,

where a € p(M). The function f® can not
be constant on each E;.;(a,M)/E;, since
otherwise f® is constant on each E;,,-class
which contradicts maximality of E;(x,y) with
this property. Consequently, fR must be strictly
monotonic on each E; ,(a,M)/E;, since
otherwise if it is locally monotonic (non-strictly
monotonic) on each Ejyi(a,M)/E;, then an
@-definable equivalence relation E'(x,y) is
appeared with the property that E;(a, M) c
E'"(a,M) c E;,1(a, M) which contradicts the
fact that E;,, is an immediate successor of
E;(x,y) among all @-definable equivalence
relations on p(M) . Similarly, we can prove that
the function f® is strictly monotonic on each
Ex+1(a,M)/Ey, where i <k <n—2 and fR
is strictly monotonic on p(M)/E,,_;.

Consider the following formulas:

Ei1(x,y) = 3t;3t5[Ei 4 (t1, t2) A
AN(t) <x <f(t) A f(t) <y < f(tr)]

En1(x,y) = 3t13t,[Ep1(t1, t2) A

ANf(t) <x < f(t) Af(t) <y < f(tr)]

Then it <can be established that
E{,1(x,y),....E,_1(x,y) are equivalence
relations partitioning g(M) into infinitely many

infinite convex classes so that E;,{(b,M) C -+
-+ C E}_1(b,M), whence RCp;,(q@) =n—i.

Further, ifthere existsan @-definableequivalence
relation E9(x,y) partitioning q(M) into

infinitely many infinite convex classes with the
property E9(b, M) c E;,,(b, M), then consider
the following formula:

E*(x,y) = 3t,36,[E9(t1, t3) A

A<ty <fOINf(X) <t <f()]

Obviously, E;(a,M) c E*(a,M) c E;,(a,M)
which also contradicts the fact that Li+1 is an
immediate successor of E, among all @-defi-
nable equivalence relations on p(M). Simi-
larly, we can prove that there is no @ -defin-
able equivalence relation E9(x,y) partition-
ing q(M) into infinitely many infinite con-
vex classes so that Ep(b,M) c E9(b,M) C
C Eper (b, M)forany kwith i + 1 <k <n—2
orE,_,(b,M) c E1(b,M).

Thus, RCy;,(q) =n —1i, i.e.,

RChin(P) = RCyin(@) + RCpin(E(a, M))-

Corollary 2.3. Let T be an almost
omega-categorical weakly o-minimal theory,
p,q € S1(D) be non-algebraic, p is not weakly
orthogonal to g. Then the following conditions
are equivalent:

(D RCyin(p) = RCpin(q);

(2) there exists a (p, q)-splitting formula
R(x,y) such that Range f RP(M) is everywhere
dense in q(M®?) and for any @-definable
equivalence relation E (x,y) partitioning p(M)
into infinitely many infinite convex classes the
function f R is not constant on each E-class;

(3) there exists a (P, q)-splitting formula
R(x,y) such that Range f Rp (m) 18 everywhere
dense in g(M®%) and the function fR is locally
monotonic (not locally constant) on p(M).
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