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Abstract. The paper [11] raised the question of describing the cardinality and types of approximations for 
natural families of theories. In the present paper, a partial answer to this question is given, and the study 
of approximation and topological properties of natural classes of theories is also continued. We consider a 
cycle graph consisting of one cycle or, in other words, a  certain number of vertices (at least 3 if the graph 
is simple) connected into a closed chain. It is shown that an infinite cycle graph is approximated by finite 
cycle graphs. Approximations of regular graphs by finite regular graphs are considered. On the other hand, 
approximations of acyclic regular graphs by finite regular graphs are considered. It is proved that any infinite 
regular graph is pseudofinite. And also, for any k, any k-regular graph is homogeneous and pseudofinite. 
Examples of pseudofinite 3-regular and 4-regular graphs are given.
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Андатпа. [11] Жұмыста теориялардың табиғи үйірлері үшін аппроксимациялардың қуаты мен 
түрлерін сипаттау мәселесі көтерілген. Бұл жұмыста қойылған сұраққа ішінара жауап берілген 
және біз теориялардың табиғи класстарының аппроксимацияларын зерттеуді жалғастырамыз. Бір 
циклден немесе басқаша айтқанда, тұйық тізбекте қосылған шыңдардың белгілі бір санынан (граф 
қарапайым болса, кемінде 3) тұратын граф цикл қарастырылады. Шексіз граф цикл ақырлы граф 
циклдармен жуықталатыны көрсетілген. Тұрақты графтардың ақырлы тұрақты графтар арқылы 
аппроксимациялары қарастырылады. Сонымен қатар, ациклдік графтардың ақырлы тұрақты 
графтар арқылы аппроксимациялары қарастырылады.  Шексіз тұрақты графтың псевдоақырлы 
екені дәлелденді. Сондай-ақ, кез келген k үшін кез келген k-тұрақты граф біртекті және псевдоақырлы 
екені дәлелденді. Псевдоақырлы 3-тұрақты және 4-тұрақты графтардың мысалдары келтірілген.

Түйінді сөздер: тұрақты граф, теориялар аппроксимациясы, псевдоақырлы теория.
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Аннотация. В работе [11] поставлен вопрос об описании мощности и видов аппроксимаций для 
естественных семейств теорий. В настоящей работе дается частичный ответ на этот вопрос, 
а также продолжается изучение аппроксимации и топологических свойств естественных классов 
теорий. Рассмотрен граф цикл, состоящий из одного цикла, или, другими словами, некоторого 
количества вершин (не менее 3, если граф простой), соединенных в замкнутую цепь. Показано, что 
бесконечный граф цикл аппроксимируется конечными графами циклами. Рассмотрены аппроксимации 
регулярных графов конечными регулярными графами. С другой стороны, рассмотрены аппроксимации 
ациклических регулярных графов конечными регулярными графами. Доказано, что любой бесконечный 
регулярный граф псевдоконечен. А также для любого k любой k-регулярный граф является однородным 
и псевдоконечным. Приведены примеры псевдоконечных 3-регулярных и 4-регулярных графов. 

Ключевые слова: регулярный граф, аппроксимация теории, псевдоконечная теория.

Introduction 
A graph is an anlgebraic system 𝛤𝛤 =

⟨𝐺𝐺, 𝑅𝑅⟩, where 𝑅𝑅 is a binary predicate symbol. 
The elements of the universe 𝐺𝐺 are called the 
vertices of the graph 𝛤𝛤, and the elements of the 
binary relation 𝑅𝑅 ⊆ 𝐺𝐺2 are arcs. If (a,b) and 
(b,a) are arcs then the set [𝑎𝑎, 𝑏𝑏] =
{(𝑎𝑎, 𝑏𝑏), (𝑏𝑏, 𝑎𝑎)} is called an edge. It is identified 
with the arcs (𝑎𝑎, 𝑏𝑏) and (𝑏𝑏, 𝑎𝑎). This edge 𝑢𝑢 
connects the vertices 𝑎𝑎 and 𝑏𝑏, which are called 
the endpoints of 𝑢𝑢. If a vertex 𝑎𝑎 ∈ 𝐺𝐺 is an 
endpoint of an edge 𝑢𝑢 ∈ 𝑅𝑅, then 𝑎𝑎 and 𝑢𝑢 are 
incident. The degree of a vertex 𝑎𝑎 in a graph 𝛤𝛤, 
written 𝑑𝑑𝑑𝑑𝑑𝑑𝛤𝛤(𝑎𝑎) or simply 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) is the 
number of edges incident to 𝑎𝑎, except that each 
loop at 𝑎𝑎 counts twice. A vertex of degree 0 is 
called isolated, a vertex of degree 1 is called a 
hanging vertex. A graph that contains no cycles 
is called an acyclic graph. A connected acyclic 
graph is called a tree. Any graph without cycles 
is also called a forest so that the connected 
components  of a forest are trees. Subsystems 
of the graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ are called subgraphs.  

A path is a simple graph whose vertices 
can be ordered so that two vertices are adjacent 
if and only if they are consecutive in the list. If 
for two vertices 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 there is a path 
connecting them, then there is sure to be a 
minimal path connecting these vertices. We 
denote the length of this path by 𝜌𝜌(𝑎𝑎, 𝑏𝑏). If 𝛤𝛤 
has no such path, then 𝜌𝜌(𝑎𝑎, 𝑏𝑏) = ∞. A tree is a 
path if and only if 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) ≤ 2 for each vertex 
a of the tree. 

Definition [12]. example For a tree 
fixed form vertex 𝑎𝑎, well the graph value 
𝑑𝑑(𝑎𝑎) ≜ 𝑚𝑚𝑎𝑎𝑚𝑚{𝜌𝜌(𝑎𝑎, 𝑏𝑏): 𝑏𝑏 ∈ 𝐺𝐺} is called the 
eccentricity of 𝑎𝑎. The eccentricity of a vertex is 
equal to the distance from this vertex to the 
most distant from it. The maximum among all 
the eccentricities of the vertices is called the 
diameter of the graph 𝛤𝛤 and is denoted by 
𝑑𝑑(𝛤𝛤):  𝑑𝑑(𝛤𝛤) ≜ 𝑚𝑚𝑎𝑎𝑚𝑚{𝑑𝑑(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. A vertex 𝑎𝑎 
is called peripheral if 𝑑𝑑(𝑎𝑎) = 𝑑𝑑(𝛤𝛤). The 
minimal eccentricity of the graph 𝛤𝛤 is called its 
radius and is denoted by 𝑟𝑟(𝛤𝛤): 𝑟𝑟(𝛤𝛤) ≜
𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. The vertex 𝑎𝑎 is called 

central if 𝑑𝑑(𝑎𝑎) = 𝑟𝑟(𝛤𝛤). The set of all central 
vertices of a graph is called its center. 

Definition [4]. An infinite graph 𝛤𝛤 =
⟨𝐺𝐺, 𝑅𝑅⟩ of the form 𝑅𝑅 =
{(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), (𝑎𝑎2, 𝑎𝑎3),… },   𝐺𝐺 =
{𝑎𝑎0, 𝑎𝑎1, … } is called a ray, and a double ray is 
an infinite graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ of the form  

 
𝐺𝐺 = {… , 𝑎𝑎−2, 𝑎𝑎−1, 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, … }, 

 
𝑅𝑅 = {… , (𝑎𝑎−2, 𝑎𝑎−1), (𝑎𝑎−1, 𝑎𝑎0),
(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), … }; 

 
in both cases the 𝑎𝑎𝑛𝑛’s are assumed to be 

distinct. 
Definition [7]. A regular graph is a graph 

where each vertex has the same number of 
neighbors. A regular graph with vertices of 
degree 𝑘𝑘 is called a k-regular graph or regular 
graph of degree 𝑘𝑘. 

Definition [6, 9]. A graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ is 
said to be homogeneous if, for 𝑈𝑈, 𝑉𝑉 ⊆ 𝐺𝐺, the 
statement that ⟨𝑈𝑈, 𝑅𝑅 ↾ 𝑈𝑈2⟩ ≡ ⟨𝑉𝑉, 𝑅𝑅 ↾ 𝑉𝑉2⟩ 
implies the existence of an automorphism of 𝛤𝛤 
mapping U to V. 

In this paper, we consider a cycle graph 
consisting of one cycle or, in other words, a 
certain number of vertices (at least 3 if the 
graph is simple) connected into a closed chain. 
The cycle graph with 𝑚𝑚 vertices is denoted by 
𝐶𝐶𝑛𝑛 . Every vertex of 𝐶𝐶𝑛𝑛  has  degree 2. We 
will consider approximations of regular graphs. 

In 1965 James Ax [1] investigated fields 
𝐹𝐹 having the property that every absolutely 
irreducible variety over 𝐹𝐹 has a 𝐹𝐹-rational 
point. It was shown that the non-principal 
ultraproduct of finite fields has such property. 
Yuri Leonidovich Ershov in [5] called such 
fields regularly closed. In 1968, James Ax, in 
his work [2], first introduced the concept of 
pseudofiniteness to show the decidability of the 
theory of all finite fields, i.e. there is an 
algorithm to decide whether a given statement 
is true for all finite fields. It was proved that 
pseudofinite fields are exactly those infinite 
fields that have every elementary property 
common to all finite fields, that is, pseudofinite 
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for two vertices 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 there is a path 
connecting them, then there is sure to be a 
minimal path connecting these vertices. We 
denote the length of this path by 𝜌𝜌(𝑎𝑎, 𝑏𝑏). If 𝛤𝛤 
has no such path, then 𝜌𝜌(𝑎𝑎, 𝑏𝑏) = ∞. A tree is a 
path if and only if 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) ≤ 2 for each vertex 
a of the tree. 

Definition [12]. example For a tree 
fixed form vertex 𝑎𝑎, well the graph value 
𝑑𝑑(𝑎𝑎) ≜ 𝑚𝑚𝑎𝑎𝑚𝑚{𝜌𝜌(𝑎𝑎, 𝑏𝑏): 𝑏𝑏 ∈ 𝐺𝐺} is called the 
eccentricity of 𝑎𝑎. The eccentricity of a vertex is 
equal to the distance from this vertex to the 
most distant from it. The maximum among all 
the eccentricities of the vertices is called the 
diameter of the graph 𝛤𝛤 and is denoted by 
𝑑𝑑(𝛤𝛤):  𝑑𝑑(𝛤𝛤) ≜ 𝑚𝑚𝑎𝑎𝑚𝑚{𝑑𝑑(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. A vertex 𝑎𝑎 
is called peripheral if 𝑑𝑑(𝑎𝑎) = 𝑑𝑑(𝛤𝛤). The 
minimal eccentricity of the graph 𝛤𝛤 is called its 
radius and is denoted by 𝑟𝑟(𝛤𝛤): 𝑟𝑟(𝛤𝛤) ≜
𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. The vertex 𝑎𝑎 is called 

central if 𝑑𝑑(𝑎𝑎) = 𝑟𝑟(𝛤𝛤). The set of all central 
vertices of a graph is called its center. 

Definition [4]. An infinite graph 𝛤𝛤 =
⟨𝐺𝐺, 𝑅𝑅⟩ of the form 𝑅𝑅 =
{(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), (𝑎𝑎2, 𝑎𝑎3),… },   𝐺𝐺 =
{𝑎𝑎0, 𝑎𝑎1, … } is called a ray, and a double ray is 
an infinite graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ of the form  

 
𝐺𝐺 = {… , 𝑎𝑎−2, 𝑎𝑎−1, 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, … }, 

 
𝑅𝑅 = {… , (𝑎𝑎−2, 𝑎𝑎−1), (𝑎𝑎−1, 𝑎𝑎0),
(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), … }; 

 
in both cases the 𝑎𝑎𝑛𝑛’s are assumed to be 

distinct. 
Definition [7]. A regular graph is a graph 

where each vertex has the same number of 
neighbors. A regular graph with vertices of 
degree 𝑘𝑘 is called a k-regular graph or regular 
graph of degree 𝑘𝑘. 

Definition [6, 9]. A graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ is 
said to be homogeneous if, for 𝑈𝑈, 𝑉𝑉 ⊆ 𝐺𝐺, the 
statement that ⟨𝑈𝑈, 𝑅𝑅 ↾ 𝑈𝑈2⟩ ≡ ⟨𝑉𝑉, 𝑅𝑅 ↾ 𝑉𝑉2⟩ 
implies the existence of an automorphism of 𝛤𝛤 
mapping U to V. 

In this paper, we consider a cycle graph 
consisting of one cycle or, in other words, a 
certain number of vertices (at least 3 if the 
graph is simple) connected into a closed chain. 
The cycle graph with 𝑚𝑚 vertices is denoted by 
𝐶𝐶𝑛𝑛 . Every vertex of 𝐶𝐶𝑛𝑛  has  degree 2. We 
will consider approximations of regular graphs. 

In 1965 James Ax [1] investigated fields 
𝐹𝐹 having the property that every absolutely 
irreducible variety over 𝐹𝐹 has a 𝐹𝐹-rational 
point. It was shown that the non-principal 
ultraproduct of finite fields has such property. 
Yuri Leonidovich Ershov in [5] called such 
fields regularly closed. In 1968, James Ax, in 
his work [2], first introduced the concept of 
pseudofiniteness to show the decidability of the 
theory of all finite fields, i.e. there is an 
algorithm to decide whether a given statement 
is true for all finite fields. It was proved that 
pseudofinite fields are exactly those infinite 
fields that have every elementary property 
common to all finite fields, that is, pseudofinite 



веСтНИК КазаХСтаНСКо-БрИтаНСКого теХНИЧеСКого УНИверСИтета, №1 (60), 2022

46

Introduction 
A graph is an anlgebraic system 𝛤𝛤 =

⟨𝐺𝐺, 𝑅𝑅⟩, where 𝑅𝑅 is a binary predicate symbol. 
The elements of the universe 𝐺𝐺 are called the 
vertices of the graph 𝛤𝛤, and the elements of the 
binary relation 𝑅𝑅 ⊆ 𝐺𝐺2 are arcs. If (a,b) and 
(b,a) are arcs then the set [𝑎𝑎, 𝑏𝑏] =
{(𝑎𝑎, 𝑏𝑏), (𝑏𝑏, 𝑎𝑎)} is called an edge. It is identified 
with the arcs (𝑎𝑎, 𝑏𝑏) and (𝑏𝑏, 𝑎𝑎). This edge 𝑢𝑢 
connects the vertices 𝑎𝑎 and 𝑏𝑏, which are called 
the endpoints of 𝑢𝑢. If a vertex 𝑎𝑎 ∈ 𝐺𝐺 is an 
endpoint of an edge 𝑢𝑢 ∈ 𝑅𝑅, then 𝑎𝑎 and 𝑢𝑢 are 
incident. The degree of a vertex 𝑎𝑎 in a graph 𝛤𝛤, 
written 𝑑𝑑𝑑𝑑𝑑𝑑𝛤𝛤(𝑎𝑎) or simply 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) is the 
number of edges incident to 𝑎𝑎, except that each 
loop at 𝑎𝑎 counts twice. A vertex of degree 0 is 
called isolated, a vertex of degree 1 is called a 
hanging vertex. A graph that contains no cycles 
is called an acyclic graph. A connected acyclic 
graph is called a tree. Any graph without cycles 
is also called a forest so that the connected 
components  of a forest are trees. Subsystems 
of the graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ are called subgraphs.  

A path is a simple graph whose vertices 
can be ordered so that two vertices are adjacent 
if and only if they are consecutive in the list. If 
for two vertices 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 there is a path 
connecting them, then there is sure to be a 
minimal path connecting these vertices. We 
denote the length of this path by 𝜌𝜌(𝑎𝑎, 𝑏𝑏). If 𝛤𝛤 
has no such path, then 𝜌𝜌(𝑎𝑎, 𝑏𝑏) = ∞. A tree is a 
path if and only if 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) ≤ 2 for each vertex 
a of the tree. 

Definition [12]. example For a tree 
fixed form vertex 𝑎𝑎, well the graph value 
𝑑𝑑(𝑎𝑎) ≜ 𝑚𝑚𝑎𝑎𝑚𝑚{𝜌𝜌(𝑎𝑎, 𝑏𝑏): 𝑏𝑏 ∈ 𝐺𝐺} is called the 
eccentricity of 𝑎𝑎. The eccentricity of a vertex is 
equal to the distance from this vertex to the 
most distant from it. The maximum among all 
the eccentricities of the vertices is called the 
diameter of the graph 𝛤𝛤 and is denoted by 
𝑑𝑑(𝛤𝛤):  𝑑𝑑(𝛤𝛤) ≜ 𝑚𝑚𝑎𝑎𝑚𝑚{𝑑𝑑(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. A vertex 𝑎𝑎 
is called peripheral if 𝑑𝑑(𝑎𝑎) = 𝑑𝑑(𝛤𝛤). The 
minimal eccentricity of the graph 𝛤𝛤 is called its 
radius and is denoted by 𝑟𝑟(𝛤𝛤): 𝑟𝑟(𝛤𝛤) ≜
𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑(𝑎𝑎): 𝑎𝑎 ∈ 𝐺𝐺}. The vertex 𝑎𝑎 is called 

central if 𝑑𝑑(𝑎𝑎) = 𝑟𝑟(𝛤𝛤). The set of all central 
vertices of a graph is called its center. 

Definition [4]. An infinite graph 𝛤𝛤 =
⟨𝐺𝐺, 𝑅𝑅⟩ of the form 𝑅𝑅 =
{(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), (𝑎𝑎2, 𝑎𝑎3),… },   𝐺𝐺 =
{𝑎𝑎0, 𝑎𝑎1, … } is called a ray, and a double ray is 
an infinite graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ of the form  

 
𝐺𝐺 = {… , 𝑎𝑎−2, 𝑎𝑎−1, 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, … }, 

 
𝑅𝑅 = {… , (𝑎𝑎−2, 𝑎𝑎−1), (𝑎𝑎−1, 𝑎𝑎0),
(𝑎𝑎0, 𝑎𝑎1), (𝑎𝑎1, 𝑎𝑎2), … }; 

 
in both cases the 𝑎𝑎𝑛𝑛’s are assumed to be 

distinct. 
Definition [7]. A regular graph is a graph 

where each vertex has the same number of 
neighbors. A regular graph with vertices of 
degree 𝑘𝑘 is called a k-regular graph or regular 
graph of degree 𝑘𝑘. 

Definition [6, 9]. A graph 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ is 
said to be homogeneous if, for 𝑈𝑈, 𝑉𝑉 ⊆ 𝐺𝐺, the 
statement that ⟨𝑈𝑈, 𝑅𝑅 ↾ 𝑈𝑈2⟩ ≡ ⟨𝑉𝑉, 𝑅𝑅 ↾ 𝑉𝑉2⟩ 
implies the existence of an automorphism of 𝛤𝛤 
mapping U to V. 

In this paper, we consider a cycle graph 
consisting of one cycle or, in other words, a 
certain number of vertices (at least 3 if the 
graph is simple) connected into a closed chain. 
The cycle graph with 𝑚𝑚 vertices is denoted by 
𝐶𝐶𝑛𝑛 . Every vertex of 𝐶𝐶𝑛𝑛  has  degree 2. We 
will consider approximations of regular graphs. 

In 1965 James Ax [1] investigated fields 
𝐹𝐹 having the property that every absolutely 
irreducible variety over 𝐹𝐹 has a 𝐹𝐹-rational 
point. It was shown that the non-principal 
ultraproduct of finite fields has such property. 
Yuri Leonidovich Ershov in [5] called such 
fields regularly closed. In 1968, James Ax, in 
his work [2], first introduced the concept of 
pseudofiniteness to show the decidability of the 
theory of all finite fields, i.e. there is an 
algorithm to decide whether a given statement 
is true for all finite fields. It was proved that 
pseudofinite fields are exactly those infinite 
fields that have every elementary property 
common to all finite fields, that is, pseudofinite 
fields are infinite models of the theory of finite 
fields. He defined pseudofiniteness as follows: 

Definition. A field 𝐹𝐹 is pseudofinite if 𝐹𝐹 
is perfect, quasifinite and regularly closed. 

 The concept of “anotherpseudofinite 
structure” was first used in 1991 in the report of 
E. Hrushovski in meeting on Finite and Infinite 
Combinatorics in Sets and Logic [8], as well as 
in the joint works by E. Hrushovski and G. 
Cherlin. The following definition first occurs in 
[3]:  

Definition. Let 𝐿𝐿 be a language. An 𝐿𝐿- 
structure 𝑀𝑀 is pseudofinite if for all 𝐿𝐿-sentences 
𝜑𝜑, 𝑀𝑀 ⊨ 𝜑𝜑 implies that there is a finite 𝑀𝑀0 
such that 𝑀𝑀0 ⊨ 𝜑𝜑.  The elementary theory 𝑇𝑇 =
𝑇𝑇ℎ(𝑀𝑀) of a pseudofinite structure 𝑀𝑀 is called 
pseudofinite. 

Definition [11] Let 𝒯𝒯 be a family of 
theories and 𝑇𝑇 be a theory such that 𝑇𝑇 ∉ 𝑇𝑇. The 
theory 𝑇𝑇 is said to be 𝒯𝒯-approximated, or 
approximated by the family 𝒯𝒯, or a pseudo-𝒯𝒯- 
theory, if for any formula 𝜑𝜑 ∈ 𝑇𝑇 there exists 
𝑇𝑇′ ∈ 𝑇𝑇 for which 𝜑𝜑 ∈ 𝑇𝑇′. If a theory 𝑇𝑇 is 𝒯𝒯-
approximated, then 𝒯𝒯 is said to be an 
approximating family for 𝑇𝑇, and theories 𝑇𝑇′ ∈ 𝑇𝑇 
are said to be approximations for 𝑇𝑇.  

We put 𝑇𝑇𝜑𝜑 = {𝑇𝑇 ∈ 𝑇𝑇: 𝜑𝜑 ∈ 𝑇𝑇}. Such a set 
𝑇𝑇𝜑𝜑 is called the 𝜑𝜑-neighbourhood, or simply a 
neighbourhood for 𝑇𝑇. An approximating family 
𝒯𝒯 is called e-minimal if for any sentence 𝜑𝜑 ∈
𝛴𝛴(𝑇𝑇), 𝑇𝑇𝜑𝜑 is finite or 𝑇𝑇¬𝜑𝜑 is finite. It was shown 
in [7] that any e-minimal family 𝒯𝒯 has a unique 
accumulation point 𝑇𝑇 with respect to 
neighbourhoods 𝑇𝑇𝜑𝜑, and 𝑇𝑇 ∪ {𝑇𝑇} is also called 
e- minimal. 

Recall that the E-closure 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) [10] for 
the family 𝑇𝑇 of complete theories is 
characterized by the following proposition. 

Proposition 1. Let 𝑇𝑇 be a family of 
complete theories of the language Σ. Then 
𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) = 𝑇𝑇 for finite 𝑇𝑇 and for infinite 𝑇𝑇, the 
theory T belongs to 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) if and only if T is a 
complete theory of the language Σ and T ∈ 𝑇𝑇, 
or 𝑇𝑇 ∉ 𝑇𝑇 and for of any formula 𝜑𝜑 ∈ 𝑇𝑇 the set 
𝑇𝑇𝜑𝜑 is infinite. 

We denote by �́�𝑇 the class of all complete 
elementary theories, by �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓 the subclass of �́�𝑇 
consisting of all theories with finite models. 

Proposition 2. [11] For any theory 𝑇𝑇 the 
following conditions are equivalent: 

(1) 𝑇𝑇 is pseudofinite; 
(2) 𝑇𝑇 is �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓 - approximated; 
(3) 𝑇𝑇 ∈ 𝐶𝐶𝑙𝑙𝐸𝐸(�́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓) ∖ �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓. 
Main results 
The following proposition shows that an 

infinite cycle graph is approximated by finite 
cycle graphs. 

Proposition 3. Any theory 𝑇𝑇 of a cycle 
graph on an infinite set is pseudofinite.  

Proof.  Let 𝛤𝛤 be a model of the theory 𝑇𝑇 
and 𝑎𝑎 be a vertex. For 𝛤𝛤, the following is true:                         
𝛤𝛤 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑓𝑓→∞
𝐶𝐶𝑓𝑓, where 𝐶𝐶𝑓𝑓 = 𝐶𝐶𝑓𝑓−1 ∪ {𝑎𝑎} is finite, 𝑙𝑙 ≥

4.  That is, adding to 𝐶𝐶𝑓𝑓 new vertices 𝑎𝑎 of 
degree 2, in other words, increasing the 
distance between any pairs of vertices from 𝐶𝐶𝑓𝑓 
in the limit, we obtain an infinite linear graph 
(or double ray), which is  acyclic. The double 
ray 𝛤𝛤 has no hanging vertices. Since all vertices 
have degree 2, there is an automorphism 𝜙𝜙  that 
maps any vertex 𝑎𝑎𝑓𝑓 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑓𝑓) = 2  to a 
vertex 𝑎𝑎𝑗𝑗 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑗𝑗) = 2 and 𝑎𝑎𝑓𝑓 ≠ 𝑎𝑎𝑗𝑗. Thus, 
{𝑇𝑇ℎ(𝐶𝐶𝑓𝑓−1 ∪ {𝑎𝑎}): 𝑙𝑙 ∈ 𝜔𝜔} approximates the 
theory 𝑇𝑇 = 𝑇𝑇ℎ(𝛤𝛤). 

Theorem 1. Any theory 𝑇𝑇 of a regular 
graph with an infinite set is pseudofinite. 

Proof. We prove by induction on the 
degrees of vertices. definition Let 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ 
be a regular graph. Let 𝑙𝑙 fbe the degree of 
vertices.  

Let 𝑙𝑙 = 0 or 𝑙𝑙 = 1. Then, for the model 
regular 𝛤𝛤 of the theory 𝑇𝑇, it is true that 𝛤𝛤 =
∏ 𝛤𝛤𝑓𝑓𝑓𝑓→∞ , where 𝛤𝛤𝑓𝑓 is a finite acyclic graph with 
a finite number of connected components, 
where each of them is a vertex of degree 0 or an 
edge. This means that by increasing the number 
of connected components step by step, we can 
construct a pseudofinite graph Г. 

The case 𝑙𝑙 = 2 is considered in 
Proposition 2. Let 𝑙𝑙 = 𝑘𝑘, where 𝑘𝑘 ≥ 2, and 𝛤𝛤0′ 
be the 𝑘𝑘- regular graph with 2(𝑘𝑘 − 1) vertices. 
For a finite 𝑡𝑡, adding new 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡 vertices at 

fields are infinite models of the theory of finite 
fields. He defined pseudofiniteness as follows: 

Definition. A field 𝐹𝐹 is pseudofinite if 𝐹𝐹 
is perfect, quasifinite and regularly closed. 

 The concept of “anotherpseudofinite 
structure” was first used in 1991 in the report of 
E. Hrushovski in meeting on Finite and Infinite 
Combinatorics in Sets and Logic [8], as well as 
in the joint works by E. Hrushovski and G. 
Cherlin. The following definition first occurs in 
[3]:  

Definition. Let 𝐿𝐿 be a language. An 𝐿𝐿- 
structure 𝑀𝑀 is pseudofinite if for all 𝐿𝐿-sentences 
𝜑𝜑, 𝑀𝑀 ⊨ 𝜑𝜑 implies that there is a finite 𝑀𝑀0 
such that 𝑀𝑀0 ⊨ 𝜑𝜑.  The elementary theory 𝑇𝑇 =
𝑇𝑇ℎ(𝑀𝑀) of a pseudofinite structure 𝑀𝑀 is called 
pseudofinite. 

Definition [11] Let 𝒯𝒯 be a family of 
theories and 𝑇𝑇 be a theory such that 𝑇𝑇 ∉ 𝑇𝑇. The 
theory 𝑇𝑇 is said to be 𝒯𝒯-approximated, or 
approximated by the family 𝒯𝒯, or a pseudo-𝒯𝒯- 
theory, if for any formula 𝜑𝜑 ∈ 𝑇𝑇 there exists 
𝑇𝑇′ ∈ 𝑇𝑇 for which 𝜑𝜑 ∈ 𝑇𝑇′. If a theory 𝑇𝑇 is 𝒯𝒯-
approximated, then 𝒯𝒯 is said to be an 
approximating family for 𝑇𝑇, and theories 𝑇𝑇′ ∈ 𝑇𝑇 
are said to be approximations for 𝑇𝑇.  

We put 𝑇𝑇𝜑𝜑 = {𝑇𝑇 ∈ 𝑇𝑇: 𝜑𝜑 ∈ 𝑇𝑇}. Such a set 
𝑇𝑇𝜑𝜑 is called the 𝜑𝜑-neighbourhood, or simply a 
neighbourhood for 𝑇𝑇. An approximating family 
𝒯𝒯 is called e-minimal if for any sentence 𝜑𝜑 ∈
𝛴𝛴(𝑇𝑇), 𝑇𝑇𝜑𝜑 is finite or 𝑇𝑇¬𝜑𝜑 is finite. It was shown 
in [7] that any e-minimal family 𝒯𝒯 has a unique 
accumulation point 𝑇𝑇 with respect to 
neighbourhoods 𝑇𝑇𝜑𝜑, and 𝑇𝑇 ∪ {𝑇𝑇} is also called 
e- minimal. 

Recall that the E-closure 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) [10] for 
the family 𝑇𝑇 of complete theories is 
characterized by the following proposition. 

Proposition 1. Let 𝑇𝑇 be a family of 
complete theories of the language Σ. Then 
𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) = 𝑇𝑇 for finite 𝑇𝑇 and for infinite 𝑇𝑇, the 
theory T belongs to 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) if and only if T is a 
complete theory of the language Σ and T ∈ 𝑇𝑇, 
or 𝑇𝑇 ∉ 𝑇𝑇 and for of any formula 𝜑𝜑 ∈ 𝑇𝑇 the set 
𝑇𝑇𝜑𝜑 is infinite. 

We denote by �́�𝑇 the class of all complete 
elementary theories, by �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓 the subclass of �́�𝑇 
consisting of all theories with finite models. 

Proposition 2. [11] For any theory 𝑇𝑇 the 
following conditions are equivalent: 

(1) 𝑇𝑇 is pseudofinite; 
(2) 𝑇𝑇 is �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓 - approximated; 
(3) 𝑇𝑇 ∈ 𝐶𝐶𝑙𝑙𝐸𝐸(�́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓) ∖ �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓. 
Main results 
The following proposition shows that an 

infinite cycle graph is approximated by finite 
cycle graphs. 

Proposition 3. Any theory 𝑇𝑇 of a cycle 
graph on an infinite set is pseudofinite.  

Proof.  Let 𝛤𝛤 be a model of the theory 𝑇𝑇 
and 𝑎𝑎 be a vertex. For 𝛤𝛤, the following is true:                         
𝛤𝛤 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑓𝑓→∞
𝐶𝐶𝑓𝑓, where 𝐶𝐶𝑓𝑓 = 𝐶𝐶𝑓𝑓−1 ∪ {𝑎𝑎} is finite, 𝑙𝑙 ≥

4.  That is, adding to 𝐶𝐶𝑓𝑓 new vertices 𝑎𝑎 of 
degree 2, in other words, increasing the 
distance between any pairs of vertices from 𝐶𝐶𝑓𝑓 
in the limit, we obtain an infinite linear graph 
(or double ray), which is  acyclic. The double 
ray 𝛤𝛤 has no hanging vertices. Since all vertices 
have degree 2, there is an automorphism 𝜙𝜙  that 
maps any vertex 𝑎𝑎𝑓𝑓 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑓𝑓) = 2  to a 
vertex 𝑎𝑎𝑗𝑗 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑗𝑗) = 2 and 𝑎𝑎𝑓𝑓 ≠ 𝑎𝑎𝑗𝑗. Thus, 
{𝑇𝑇ℎ(𝐶𝐶𝑓𝑓−1 ∪ {𝑎𝑎}): 𝑙𝑙 ∈ 𝜔𝜔} approximates the 
theory 𝑇𝑇 = 𝑇𝑇ℎ(𝛤𝛤). 

Theorem 1. Any theory 𝑇𝑇 of a regular 
graph with an infinite set is pseudofinite. 

Proof. We prove by induction on the 
degrees of vertices. definition Let 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ 
be a regular graph. Let 𝑙𝑙 fbe the degree of 
vertices.  

Let 𝑙𝑙 = 0 or 𝑙𝑙 = 1. Then, for the model 
regular 𝛤𝛤 of the theory 𝑇𝑇, it is true that 𝛤𝛤 =
∏ 𝛤𝛤𝑓𝑓𝑓𝑓→∞ , where 𝛤𝛤𝑓𝑓 is a finite acyclic graph with 
a finite number of connected components, 
where each of them is a vertex of degree 0 or an 
edge. This means that by increasing the number 
of connected components step by step, we can 
construct a pseudofinite graph Г. 

The case 𝑙𝑙 = 2 is considered in 
Proposition 2. Let 𝑙𝑙 = 𝑘𝑘, where 𝑘𝑘 ≥ 2, and 𝛤𝛤0′ 
be the 𝑘𝑘- regular graph with 2(𝑘𝑘 − 1) vertices. 
For a finite 𝑡𝑡, adding new 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡 vertices at 

fields are infinite models of the theory of finite 
fields. He defined pseudofiniteness as follows: 

Definition. A field 𝐹𝐹 is pseudofinite if 𝐹𝐹 
is perfect, quasifinite and regularly closed. 

 The concept of “anotherpseudofinite 
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𝒯𝒯 is called e-minimal if for any sentence 𝜑𝜑 ∈
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in [7] that any e-minimal family 𝒯𝒯 has a unique 
accumulation point 𝑇𝑇 with respect to 
neighbourhoods 𝑇𝑇𝜑𝜑, and 𝑇𝑇 ∪ {𝑇𝑇} is also called 
e- minimal. 

Recall that the E-closure 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) [10] for 
the family 𝑇𝑇 of complete theories is 
characterized by the following proposition. 

Proposition 1. Let 𝑇𝑇 be a family of 
complete theories of the language Σ. Then 
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theory T belongs to 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) if and only if T is a 
complete theory of the language Σ and T ∈ 𝑇𝑇, 
or 𝑇𝑇 ∉ 𝑇𝑇 and for of any formula 𝜑𝜑 ∈ 𝑇𝑇 the set 
𝑇𝑇𝜑𝜑 is infinite. 

We denote by �́�𝑇 the class of all complete 
elementary theories, by �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓 the subclass of �́�𝑇 
consisting of all theories with finite models. 

Proposition 2. [11] For any theory 𝑇𝑇 the 
following conditions are equivalent: 

(1) 𝑇𝑇 is pseudofinite; 
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degree 2, in other words, increasing the 
distance between any pairs of vertices from 𝐶𝐶𝑓𝑓 
in the limit, we obtain an infinite linear graph 
(or double ray), which is  acyclic. The double 
ray 𝛤𝛤 has no hanging vertices. Since all vertices 
have degree 2, there is an automorphism 𝜙𝜙  that 
maps any vertex 𝑎𝑎𝑓𝑓 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑓𝑓) = 2  to a 
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theory 𝑇𝑇 = 𝑇𝑇ℎ(𝛤𝛤). 

Theorem 1. Any theory 𝑇𝑇 of a regular 
graph with an infinite set is pseudofinite. 

Proof. We prove by induction on the 
degrees of vertices. definition Let 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ 
be a regular graph. Let 𝑙𝑙 fbe the degree of 
vertices.  

Let 𝑙𝑙 = 0 or 𝑙𝑙 = 1. Then, for the model 
regular 𝛤𝛤 of the theory 𝑇𝑇, it is true that 𝛤𝛤 =
∏ 𝛤𝛤𝑓𝑓𝑓𝑓→∞ , where 𝛤𝛤𝑓𝑓 is a finite acyclic graph with 
a finite number of connected components, 
where each of them is a vertex of degree 0 or an 
edge. This means that by increasing the number 
of connected components step by step, we can 
construct a pseudofinite graph Г. 

The case 𝑙𝑙 = 2 is considered in 
Proposition 2. Let 𝑙𝑙 = 𝑘𝑘, where 𝑘𝑘 ≥ 2, and 𝛤𝛤0′ 
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fields are infinite models of the theory of finite 
fields. He defined pseudofiniteness as follows: 

Definition. A field 𝐹𝐹 is pseudofinite if 𝐹𝐹 
is perfect, quasifinite and regularly closed. 

 The concept of “anotherpseudofinite 
structure” was first used in 1991 in the report of 
E. Hrushovski in meeting on Finite and Infinite 
Combinatorics in Sets and Logic [8], as well as 
in the joint works by E. Hrushovski and G. 
Cherlin. The following definition first occurs in 
[3]:  

Definition. Let 𝐿𝐿 be a language. An 𝐿𝐿- 
structure 𝑀𝑀 is pseudofinite if for all 𝐿𝐿-sentences 
𝜑𝜑, 𝑀𝑀 ⊨ 𝜑𝜑 implies that there is a finite 𝑀𝑀0 
such that 𝑀𝑀0 ⊨ 𝜑𝜑.  The elementary theory 𝑇𝑇 =
𝑇𝑇ℎ(𝑀𝑀) of a pseudofinite structure 𝑀𝑀 is called 
pseudofinite. 

Definition [11] Let 𝒯𝒯 be a family of 
theories and 𝑇𝑇 be a theory such that 𝑇𝑇 ∉ 𝑇𝑇. The 
theory 𝑇𝑇 is said to be 𝒯𝒯-approximated, or 
approximated by the family 𝒯𝒯, or a pseudo-𝒯𝒯- 
theory, if for any formula 𝜑𝜑 ∈ 𝑇𝑇 there exists 
𝑇𝑇′ ∈ 𝑇𝑇 for which 𝜑𝜑 ∈ 𝑇𝑇′. If a theory 𝑇𝑇 is 𝒯𝒯-
approximated, then 𝒯𝒯 is said to be an 
approximating family for 𝑇𝑇, and theories 𝑇𝑇′ ∈ 𝑇𝑇 
are said to be approximations for 𝑇𝑇.  

We put 𝑇𝑇𝜑𝜑 = {𝑇𝑇 ∈ 𝑇𝑇: 𝜑𝜑 ∈ 𝑇𝑇}. Such a set 
𝑇𝑇𝜑𝜑 is called the 𝜑𝜑-neighbourhood, or simply a 
neighbourhood for 𝑇𝑇. An approximating family 
𝒯𝒯 is called e-minimal if for any sentence 𝜑𝜑 ∈
𝛴𝛴(𝑇𝑇), 𝑇𝑇𝜑𝜑 is finite or 𝑇𝑇¬𝜑𝜑 is finite. It was shown 
in [7] that any e-minimal family 𝒯𝒯 has a unique 
accumulation point 𝑇𝑇 with respect to 
neighbourhoods 𝑇𝑇𝜑𝜑, and 𝑇𝑇 ∪ {𝑇𝑇} is also called 
e- minimal. 

Recall that the E-closure 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) [10] for 
the family 𝑇𝑇 of complete theories is 
characterized by the following proposition. 

Proposition 1. Let 𝑇𝑇 be a family of 
complete theories of the language Σ. Then 
𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) = 𝑇𝑇 for finite 𝑇𝑇 and for infinite 𝑇𝑇, the 
theory T belongs to 𝐶𝐶𝑙𝑙𝐸𝐸(𝑇𝑇) if and only if T is a 
complete theory of the language Σ and T ∈ 𝑇𝑇, 
or 𝑇𝑇 ∉ 𝑇𝑇 and for of any formula 𝜑𝜑 ∈ 𝑇𝑇 the set 
𝑇𝑇𝜑𝜑 is infinite. 

We denote by �́�𝑇 the class of all complete 
elementary theories, by �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓 the subclass of �́�𝑇 
consisting of all theories with finite models. 

Proposition 2. [11] For any theory 𝑇𝑇 the 
following conditions are equivalent: 

(1) 𝑇𝑇 is pseudofinite; 
(2) 𝑇𝑇 is �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓 - approximated; 
(3) 𝑇𝑇 ∈ 𝐶𝐶𝑙𝑙𝐸𝐸(�́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓) ∖ �́�𝑇𝑓𝑓𝑓𝑓𝑓𝑓. 
Main results 
The following proposition shows that an 

infinite cycle graph is approximated by finite 
cycle graphs. 

Proposition 3. Any theory 𝑇𝑇 of a cycle 
graph on an infinite set is pseudofinite.  

Proof.  Let 𝛤𝛤 be a model of the theory 𝑇𝑇 
and 𝑎𝑎 be a vertex. For 𝛤𝛤, the following is true:                         
𝛤𝛤 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑓𝑓→∞
𝐶𝐶𝑓𝑓, where 𝐶𝐶𝑓𝑓 = 𝐶𝐶𝑓𝑓−1 ∪ {𝑎𝑎} is finite, 𝑙𝑙 ≥

4.  That is, adding to 𝐶𝐶𝑓𝑓 new vertices 𝑎𝑎 of 
degree 2, in other words, increasing the 
distance between any pairs of vertices from 𝐶𝐶𝑓𝑓 
in the limit, we obtain an infinite linear graph 
(or double ray), which is  acyclic. The double 
ray 𝛤𝛤 has no hanging vertices. Since all vertices 
have degree 2, there is an automorphism 𝜙𝜙  that 
maps any vertex 𝑎𝑎𝑓𝑓 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑓𝑓) = 2  to a 
vertex 𝑎𝑎𝑗𝑗 with 𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑗𝑗) = 2 and 𝑎𝑎𝑓𝑓 ≠ 𝑎𝑎𝑗𝑗. Thus, 
{𝑇𝑇ℎ(𝐶𝐶𝑓𝑓−1 ∪ {𝑎𝑎}): 𝑙𝑙 ∈ 𝜔𝜔} approximates the 
theory 𝑇𝑇 = 𝑇𝑇ℎ(𝛤𝛤). 

Theorem 1. Any theory 𝑇𝑇 of a regular 
graph with an infinite set is pseudofinite. 

Proof. We prove by induction on the 
degrees of vertices. definition Let 𝛤𝛤 = ⟨𝐺𝐺, 𝑅𝑅⟩ 
be a regular graph. Let 𝑙𝑙 fbe the degree of 
vertices.  

Let 𝑙𝑙 = 0 or 𝑙𝑙 = 1. Then, for the model 
regular 𝛤𝛤 of the theory 𝑇𝑇, it is true that 𝛤𝛤 =
∏ 𝛤𝛤𝑓𝑓𝑓𝑓→∞ , where 𝛤𝛤𝑓𝑓 is a finite acyclic graph with 
a finite number of connected components, 
where each of them is a vertex of degree 0 or an 
edge. This means that by increasing the number 
of connected components step by step, we can 
construct a pseudofinite graph Г. 

The case 𝑙𝑙 = 2 is considered in 
Proposition 2. Let 𝑙𝑙 = 𝑘𝑘, where 𝑘𝑘 ≥ 2, and 𝛤𝛤0′ 
be the 𝑘𝑘- regular graph with 2(𝑘𝑘 − 1) vertices. 
For a finite 𝑡𝑡, adding new 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡 vertices at 
each step 𝑡𝑡, as a result we obtain a graph with  
2(𝑘𝑘 − 1) + ∑ 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡𝑡𝑡

𝑖𝑖=1  vertices of degree 
𝑘𝑘. Continuing the process, in the limit, the 
graph is divided into acyclic connected 
components (trees). Since any infinite regular 
tree is vertex transitive, any route of length 𝑠𝑠 
can be mapped to another 𝑠𝑠-route. And this 
mapping can be extended to an automorphism 
of the acyclic regular graph 𝛤𝛤, which implies 
pseudofiniteness.  

Then for 𝑚𝑚 = 𝑘𝑘 + 1 the graph 𝛤𝛤′ is also 
pseudofinite. Similarly, taking a (𝑘𝑘 + 1)- 
regular graph with vertices and adding 𝑘𝑘𝑡𝑡(𝑘𝑘 +
1) new vertices at each step 𝑡𝑡, in the limit we 
obtain an acyclic regular graph. Similarly, take 
an 𝑠𝑠-route and a vertex 𝑎𝑎1 from this route that 
has (𝑘𝑘 + 1) neighbors, we map 𝑎𝑎1 to another 
vertex 𝑎𝑎2 of another 𝑠𝑠-route. The set of 
neighbors of the vertex 𝑎𝑎1 can also be 
bijectively transferred to the set of neighbors of 
the vertex 𝑎𝑎2.  

Example 1. For clarity, as an example, we 
show the validity of the assertion for 2-regular 
and 3- regular, as well as 4-regular graphs. The 
pseudofiniteness of  2-regular graphs is proved 
in Proposition 2, and for 𝑚𝑚 = 3 it is shown in 
Fig. 1. The tetrahedron 𝛤𝛤0  is taken. At each 
step 𝑖𝑖 > 0, adding vertices, in the limit we 
obtain an acyclic graph 𝛤𝛤 = 𝑖𝑖𝛤𝛤𝑖𝑖, where 𝛤𝛤𝑖𝑖 is a 
finite regular graph. 

 

Figure 1 – Approximation of a 3-regular 
graph. 

 
For any finite 𝑡𝑡, any 3-regular graph 𝛤𝛤 

consists of 4 + ∑ 3 ⋅ 2𝑖𝑖𝑡𝑡
𝑖𝑖=1  vertices. The infinite 

3-regular graph 𝛤𝛤 is split into acyclic 
components. 

Example 2. In case 𝑚𝑚 = 4, we take the 
octahedron 𝛤𝛤. Every i-th stage adding new 
vertices in the limit we get an acyclic graph 
(see Fig. 2). For a finite step 𝑟𝑟, the graph has  
6+∑ 4 ⋅ 3𝑖𝑖𝑟𝑟

𝑖𝑖=1  vertices of degree 4. Take any 
two routes of same length 𝑠𝑠 as the induced 
subgraph and map one to another 𝑠𝑠-route, we 
can see that the mapping extends to an 
automorphism of the pseudofinite graph 𝛤𝛤. 

From the above statement and examples it 
immediately follows: 

Theorem 2. For any infinite regular graph 
𝛤𝛤, the following conditions are true: 

1. 𝛤𝛤 is pseudofinite; 
2. 𝛤𝛤 is homogeneous. 
 

components (trees). Since any infinite regular 

each step 𝑡𝑡, as a result we obtain a graph with  
2(𝑘𝑘 − 1) + ∑ 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡𝑡𝑡

𝑖𝑖=1  vertices of degree 
𝑘𝑘. Continuing the process, in the limit, the 
graph is divided into acyclic connected 
components (trees). Since any infinite regular 
tree is vertex transitive, any route of length 𝑠𝑠 
can be mapped to another 𝑠𝑠-route. And this 
mapping can be extended to an automorphism 
of the acyclic regular graph 𝛤𝛤, which implies 
pseudofiniteness.  

Then for 𝑚𝑚 = 𝑘𝑘 + 1 the graph 𝛤𝛤′ is also 
pseudofinite. Similarly, taking a (𝑘𝑘 + 1)- 
regular graph with vertices and adding 𝑘𝑘𝑡𝑡(𝑘𝑘 +
1) new vertices at each step 𝑡𝑡, in the limit we 
obtain an acyclic regular graph. Similarly, take 
an 𝑠𝑠-route and a vertex 𝑎𝑎1 from this route that 
has (𝑘𝑘 + 1) neighbors, we map 𝑎𝑎1 to another 
vertex 𝑎𝑎2 of another 𝑠𝑠-route. The set of 
neighbors of the vertex 𝑎𝑎1 can also be 
bijectively transferred to the set of neighbors of 
the vertex 𝑎𝑎2.  

Example 1. For clarity, as an example, we 
show the validity of the assertion for 2-regular 
and 3- regular, as well as 4-regular graphs. The 
pseudofiniteness of  2-regular graphs is proved 
in Proposition 2, and for 𝑚𝑚 = 3 it is shown in 
Fig. 1. The tetrahedron 𝛤𝛤0  is taken. At each 
step 𝑖𝑖 > 0, adding vertices, in the limit we 
obtain an acyclic graph 𝛤𝛤 = 𝑖𝑖𝛤𝛤𝑖𝑖, where 𝛤𝛤𝑖𝑖 is a 
finite regular graph. 

 

Figure 1 – Approximation of a 3-regular 
graph. 

 
For any finite 𝑡𝑡, any 3-regular graph 𝛤𝛤 

consists of 4 + ∑ 3 ⋅ 2𝑖𝑖𝑡𝑡
𝑖𝑖=1  vertices. The infinite 

3-regular graph 𝛤𝛤 is split into acyclic 
components. 

Example 2. In case 𝑚𝑚 = 4, we take the 
octahedron 𝛤𝛤. Every i-th stage adding new 
vertices in the limit we get an acyclic graph 
(see Fig. 2). For a finite step 𝑟𝑟, the graph has  
6+∑ 4 ⋅ 3𝑖𝑖𝑟𝑟

𝑖𝑖=1  vertices of degree 4. Take any 
two routes of same length 𝑠𝑠 as the induced 
subgraph and map one to another 𝑠𝑠-route, we 
can see that the mapping extends to an 
automorphism of the pseudofinite graph 𝛤𝛤. 

From the above statement and examples it 
immediately follows: 

Theorem 2. For any infinite regular graph 
𝛤𝛤, the following conditions are true: 

1. 𝛤𝛤 is pseudofinite; 
2. 𝛤𝛤 is homogeneous. 
 

each step 𝑡𝑡, as a result we obtain a graph with  
2(𝑘𝑘 − 1) + ∑ 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡𝑡𝑡

𝑖𝑖=1  vertices of degree 
𝑘𝑘. Continuing the process, in the limit, the 
graph is divided into acyclic connected 
components (trees). Since any infinite regular 
tree is vertex transitive, any route of length 𝑠𝑠 
can be mapped to another 𝑠𝑠-route. And this 
mapping can be extended to an automorphism 
of the acyclic regular graph 𝛤𝛤, which implies 
pseudofiniteness.  

Then for 𝑚𝑚 = 𝑘𝑘 + 1 the graph 𝛤𝛤′ is also 
pseudofinite. Similarly, taking a (𝑘𝑘 + 1)- 
regular graph with vertices and adding 𝑘𝑘𝑡𝑡(𝑘𝑘 +
1) new vertices at each step 𝑡𝑡, in the limit we 
obtain an acyclic regular graph. Similarly, take 
an 𝑠𝑠-route and a vertex 𝑎𝑎1 from this route that 
has (𝑘𝑘 + 1) neighbors, we map 𝑎𝑎1 to another 
vertex 𝑎𝑎2 of another 𝑠𝑠-route. The set of 
neighbors of the vertex 𝑎𝑎1 can also be 
bijectively transferred to the set of neighbors of 
the vertex 𝑎𝑎2.  

Example 1. For clarity, as an example, we 
show the validity of the assertion for 2-regular 
and 3- regular, as well as 4-regular graphs. The 
pseudofiniteness of  2-regular graphs is proved 
in Proposition 2, and for 𝑚𝑚 = 3 it is shown in 
Fig. 1. The tetrahedron 𝛤𝛤0  is taken. At each 
step 𝑖𝑖 > 0, adding vertices, in the limit we 
obtain an acyclic graph 𝛤𝛤 = 𝑖𝑖𝛤𝛤𝑖𝑖, where 𝛤𝛤𝑖𝑖 is a 
finite regular graph. 

 

Figure 1 – Approximation of a 3-regular 
graph. 

 
For any finite 𝑡𝑡, any 3-regular graph 𝛤𝛤 

consists of 4 + ∑ 3 ⋅ 2𝑖𝑖𝑡𝑡
𝑖𝑖=1  vertices. The infinite 

3-regular graph 𝛤𝛤 is split into acyclic 
components. 

Example 2. In case 𝑚𝑚 = 4, we take the 
octahedron 𝛤𝛤. Every i-th stage adding new 
vertices in the limit we get an acyclic graph 
(see Fig. 2). For a finite step 𝑟𝑟, the graph has  
6+∑ 4 ⋅ 3𝑖𝑖𝑟𝑟

𝑖𝑖=1  vertices of degree 4. Take any 
two routes of same length 𝑠𝑠 as the induced 
subgraph and map one to another 𝑠𝑠-route, we 
can see that the mapping extends to an 
automorphism of the pseudofinite graph 𝛤𝛤. 

From the above statement and examples it 
immediately follows: 

Theorem 2. For any infinite regular graph 
𝛤𝛤, the following conditions are true: 

1. 𝛤𝛤 is pseudofinite; 
2. 𝛤𝛤 is homogeneous. 
 

each step 𝑡𝑡, as a result we obtain a graph with  
2(𝑘𝑘 − 1) + ∑ 𝑘𝑘(𝑘𝑘 − 1)𝑡𝑡𝑡𝑡

𝑖𝑖=1  vertices of degree 
𝑘𝑘. Continuing the process, in the limit, the 
graph is divided into acyclic connected 
components (trees). Since any infinite regular 
tree is vertex transitive, any route of length 𝑠𝑠 
can be mapped to another 𝑠𝑠-route. And this 
mapping can be extended to an automorphism 
of the acyclic regular graph 𝛤𝛤, which implies 
pseudofiniteness.  

Then for 𝑚𝑚 = 𝑘𝑘 + 1 the graph 𝛤𝛤′ is also 
pseudofinite. Similarly, taking a (𝑘𝑘 + 1)- 
regular graph with vertices and adding 𝑘𝑘𝑡𝑡(𝑘𝑘 +
1) new vertices at each step 𝑡𝑡, in the limit we 
obtain an acyclic regular graph. Similarly, take 
an 𝑠𝑠-route and a vertex 𝑎𝑎1 from this route that 
has (𝑘𝑘 + 1) neighbors, we map 𝑎𝑎1 to another 
vertex 𝑎𝑎2 of another 𝑠𝑠-route. The set of 
neighbors of the vertex 𝑎𝑎1 can also be 
bijectively transferred to the set of neighbors of 
the vertex 𝑎𝑎2.  

Example 1. For clarity, as an example, we 
show the validity of the assertion for 2-regular 
and 3- regular, as well as 4-regular graphs. The 
pseudofiniteness of  2-regular graphs is proved 
in Proposition 2, and for 𝑚𝑚 = 3 it is shown in 
Fig. 1. The tetrahedron 𝛤𝛤0  is taken. At each 
step 𝑖𝑖 > 0, adding vertices, in the limit we 
obtain an acyclic graph 𝛤𝛤 = 𝑖𝑖𝛤𝛤𝑖𝑖, where 𝛤𝛤𝑖𝑖 is a 
finite regular graph. 

 

Figure 1 – Approximation of a 3-regular 
graph. 

 
For any finite 𝑡𝑡, any 3-regular graph 𝛤𝛤 

consists of 4 + ∑ 3 ⋅ 2𝑖𝑖𝑡𝑡
𝑖𝑖=1  vertices. The infinite 

3-regular graph 𝛤𝛤 is split into acyclic 
components. 

Example 2. In case 𝑚𝑚 = 4, we take the 
octahedron 𝛤𝛤. Every i-th stage adding new 
vertices in the limit we get an acyclic graph 
(see Fig. 2). For a finite step 𝑟𝑟, the graph has  
6+∑ 4 ⋅ 3𝑖𝑖𝑟𝑟

𝑖𝑖=1  vertices of degree 4. Take any 
two routes of same length 𝑠𝑠 as the induced 
subgraph and map one to another 𝑠𝑠-route, we 
can see that the mapping extends to an 
automorphism of the pseudofinite graph 𝛤𝛤. 

From the above statement and examples it 
immediately follows: 

Theorem 2. For any infinite regular graph 
𝛤𝛤, the following conditions are true: 

1. 𝛤𝛤 is pseudofinite; 
2. 𝛤𝛤 is homogeneous. 
 

Figure 1 – Approximation of a 3-regular graph.

 
 

Figure 2 – Approximation of a 4-regular 
graph. 

F igure 2 – Approximation of a 4-regular graph.
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Conclusion
In samethis paper, we study approximations of 

regular graphs with finite ones. It is shown that the 
approximation in the limit gives an acyclic regular 
graph. It is proved that any theory Т of regular 
graphs on an infinite set is pseudofinite. When 
approximating some graphs, there is a case when, in 
the limit, a graph with cycles is obtained. To get an 
acyclic graph, one can use Proposition 2 and break 
the cycles into two rays. For further study of various 
graph approximations, the following question can be 
posed:

Question: Which graphs defined by their 
automorphisms are pseudofinite?
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