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Abstract. The paper [11] raised the question of describing the cardinality and types of approximations for
natural families of theories. In the present paper, a partial answer to this question is given, and the study
of approximation and topological properties of natural classes of theories is also continued. We consider a
cycle graph consisting of one cycle or, in other words, a certain number of vertices (at least 3 if the graph
is simple) connected into a closed chain. It is shown that an infinite cycle graph is approximated by finite
cycle graphs. Approximations of regular graphs by finite regular graphs are considered. On the other hand,
approximations of acyclic regular graphs by finite regular graphs are considered. It is proved that any infinite
regular graph is pseudofinite. And also, for any k, any k-regular graph is homogeneous and pseudofinite.
Examples of pseudofinite 3-regular and 4-regular graphs are given.
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Anoamna. [11] )Kymeicma meopusinapoviy mabusu yuipiepi YuiH annpoKCUMayusiiapobly Kyamvl MeH
mypiepin cunammay maceneci komepineen. Byn ocymvicma Koubliean cYypakka huinapa sxcayan bepineen
JHcaHe 6i3 meopusnapobly Mabul KiaccmapblHbly annpoKCUMAYUAIAPbIH 3epmmey 0 scanzacmuipamul3. bip
YUKI0eH Hemece Dackauia aumKanoda, myuslx mizoekme KoCblI2aH wvlHOapovly Oencini 0ip canviHan (epagh
Kapanauvim 0oica, keminde 3) mypamvin epag yuki Kapacmuipviiaosl. lllexciz epagh yukn axeipavt epagh
YUKIOapMeH JHCYblKmanamolivl kopcemineen. Typakmol epaghmapovly akbipivl MYpaKmol 2papmap apKblivl
annpoxcumayusnapsl  Kapacmoipuliaosl. CoHviMeH Kamap, ayukiodik epagmapoviy axbipivl MYpaKmol
epagmap apKwiivl ANNPOKCUMAYUAIApbL Kapacmuipuliaosl. Lllexciz mypaxmoel epagmoeiy nceg0oaxKwipibl
ekeHi Oanenoendi. Conoaui-ax, kes Keneeu k yulin kes xeneen k-mypaxmol epagh 6ipmexmi dcane nceso0axblpiibl
ekeHi 0anendenoi. llcesdoakwipnvl 3-mypakmol dicone 4-mypaxmol epagmapobiy MblCai0apvl KeImipiieeH.

Tyitinoi cozoep: mypaxmul epagh, meopuanap annpoKCUMAYUACH, NCEEOOAKLIPIbL MEOPUS.
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Aunnomauus. B pabome [11] nocmasnen éonpoc 06 onucanuu MOWHOCMU U U008 ANNPOKCUMAYUL O
ecmecmeeHnbIX cemeticme meopuil. B nacmoswetl pabome oaemcs uacmuunvli Omeem Ha 3Mom 60npoc,
a makaice NPOOOINHCACMCsL U3YYeHUEe anNPOKCUMAYUU U MONOTOSUYECKUX CBOUCME eCMeCmEeHHbIX KIACCO8
meopuil. Paccmompen epag) yuxna, cocmoswuii uz 00HO20 YUKAA, WU, OpYeUMU CILOBAMU, HEKOMOPO2O
Konuyecmea eepuiut (He menee 3, eciu epagh npocmotl), cCOeOUHEeHHbIX 8 3aMKHymyto yens. Tlokazano, umo
becKkoneunblil 2pag YUK annpoKCUMupyemcs KOHeuHvlMu epagamu yukiamu. Paccmompenv annpokcumayuu
pecyApHbIX epagoe Koneunvimu peynsprvimu epapamu. C Opyeoil cmopoHbl, paccmMompenvl annpoKCUMAayuU
AYUKTUYECKUX Pe2YNAPHLIX 2papoe KOHeuHblMU pe2yIsipHblMu epapamu. JJokazano, umo moboti 6ecKoHeu bl
peayisipublil epagh ncegdoxkoneueH. A makaice 05 1100020 k 10001 k-peeynsipuwiil epagh sengemcsi 00OHOPOOHBIM

U ncegooKoneuHvIM. 1Ipusedenvl npumepbl nce60OKOHeUHbIX 3-peyiAPHbIX U 4-pe2yaphblx epagdos.

Knrwouesvie cnosa: pezynapuviii epagh, annpoxcumayus meopuu, nce800KOHEYHAs MeOPUs.

Introduction

A graph is an anlgebraic system [ =
(G,R), where R is a binary predicate symbol.
The elements of the universe G are called the
vertices of the graph I', and the elements of the
binary relation R € G? are arcs. If (a,b) and
(b,a) are arcs then the set [a,b]=
{(a,b),(b,a)} is called an edge. It is identified
with the arcs (a,b) and (b,a). This edge u
connects the vertices a and b, which are called
the endpoints of u. If a vertex a € G is an
endpoint of an edge u € R, then a and u are
incident. The degree of a vertex a in a graph I',
written degr(a) or simply deg(a) is the
number of edges incident to a, except that each
loop at a counts twice. A vertex of degree 0 is
called isolated, a vertex of degree 1 is called a
hanging vertex. A graph that contains no cycles
is called an acyclic graph. A connected acyclic
graph is called a free. Any graph without cycles
is also called a forest so that the connected
components of a forest are trees. Subsystems
of the graph I' = (G, R) are called subgraphs.

A path is a simple graph whose vertices
can be ordered so that two vertices are adjacent
if and only if they are consecutive in the list. If
for two vertices a,b € G there is a path
connecting them, then there is sure to be a
minimal path connecting these vertices. We

denote the length of this path by p(a,b). If I’
has no such path, then p(a, b) = 0. A tree is a
path if and only if deg(a) < 2 for each vertex
a of the tree.

Definition [12]. example For a tree
fixed form vertex a, well the graph value
e(a) 2 max{p(a,b):b € G} is called the
eccentricity of a. The eccentricity of a vertex is
equal to the distance from this vertex to the
most distant from it. The maximum among all
the eccentricities of the vertices is called the
diameter of the graph I' and is denoted by
d(l): d(I') 2 max{e(a):a € G}. A vertex a
is called peripheral if e(a) =d(I'). The
minimal eccentricity of the graph I' is called its
radius and is denoted by r(I'): r(I') =
min{e(a):a € G}. The vertex a is called
central if e(a) = r(I'). The set of all central
vertices of a graph is called its center.

Definition [4]. An infinite graph [ =
(G,R) of the form R =
{(ao, al); (al; az); (a2' a3)r }a G =
{ay, aq, ...} is called a ray, and a double ray is
an infinite graph I' = (G, R) of the form

G={.,a_3a_4,a9,04,05 ..},

R ={..,(a_3a_1),(a_q,a),
(aO: al)' (alf aZ)' };
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in both cases the a,,’s are assumed to be
distinct.

Definition [7]. A regular graph is a graph
where each vertex has the same number of
neighbors. A regular graph with vertices of
degree k is called a k-regular graph or regular
graph of degree k.

Definition [6, 9]. A graph I' = (G,R) is
said to be homogeneous if, for U,V € G, the
statement  that (U,R M U%)=(V,R [ V?)
implies the existence of an automorphism of I
mapping U to V.

In this paper, we consider a cycle graph
consisting of one cycle or, in other words, a
certain number of vertices (at least 3 if the
graph is simple) connected into a closed chain.
The cycle graph with n vertices is denoted by
C,Cxn. Every vertex of C,, has degree 2. We
will consider approximations of regular graphs.

In 1965 James Ax [1] investigated fields
F having the property that every absolutely
irreducible variety over F has a F-rational
point. It was shown that the non-principal
ultraproduct of finite fields has such property.
Yuri Leonidovich Ershov in [5] called such
fields regularly closed. In 1968, James Ax, in
his work [2], first introduced the concept of
pseudofiniteness to show the decidability of the
theory of all finite fields, i.e. there is an
algorithm to decide whether a given statement
is true for all finite fields. It was proved that
pseudofinite fields are exactly those infinite
fields that have every elementary property
common to all finite fields, that is, pseudofinite
fields are infinite models of the theory of finite
fields. He defined pseudofiniteness as follows:

Definition. A field F is pseudofinite if F
is perfect, quasifinite and regularly closed.

The concept of “anotherpseudofinite
structure” was first used in 1991 in the report of
E. Hrushovski in meeting on Finite and Infinite
Combinatorics in Sets and Logic [8], as well as
in the joint works by E. Hrushovski and G.
Cherlin. The following definition first occurs in
[3]:

Definition. Let L be a language. An L-
structure M is pseudofinite if for all L-sentences
@, M = ¢ implies that there is a finite M, Mo
such that My E ¢. The elementary theory T =
Th(M) of a pseudofinite structure M is called
pseudofinite.
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Definition [11] Let T be a family of
theories and T be a theory such that T & T. The
theory T is said to be T -approximated, or
approximated by the family T, or a pseudo-T'-
theory, if for any formula ¢ € T there exists
T' € T for which ¢ € T'. If a theory T is T-
approximated, then T is said to be an
approximating family for T, and theories T' € T
are said to be approximations for T.

We put T, ={T € T:¢ € T}. Such a set
T, is called the @-neighbourhood, or simply a
neighbourhood for T. An approximating family
T is called e-minimal if for any sentence ¢ €
2(T), T, is finite or T_, is finite. It was shown
in [7] that any e-minimal family 7" has a unique
accumulation point T with respect to
neighbourhoods T,,, and T U {T} is also called
e- minimal.

Recall that the E-closure Clg(T) [10] for
the family T of complete theories is
characterized by the following proposition.

Proposition 1. Let T be a family of
complete theories of the language X. Then
Clg(T) =T for finite T and for infinite T, the
theory T belongs to Clg(T) if and only if T is a
complete theory of the language £ and T € T,
or T ¢ T and for of any formula ¢ € T the set
T, is infinite.

We denote by T the class of all complete
elementary theories, by Tfin the subclass of T
consisting of all theories with finite models.

Proposition 2. [11] For any theory T the
following conditions are equivalent:

(1) T is pseudofinite,

)T is Tﬁan in - gpproximated,

(3) T € Clg(Trin) \ Trin.

Main results

The following proposition shows that an
infinite cycle graph is approximated by finite
cycle graphs.

Proposition 3. Any theory T of a cycle
graph on an infinite set is pseudofinite.

Proof. Let I' be a model of the theory T
and a be a vertex. For I', the following is true:
I' = lim C;, where C; = C;_; U {a} is finite, i >

>0
4. That is, adding to C; new vertices a of
degree 2, in other words, increasing the
distance between any pairs of vertices from C;
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in the limit, we obtain an infinite linear graph
(or double ray), which is acyclic. The double
ray I" has no hanging vertices. Since all vertices
have degree 2, there is an automorphism ¢ that
maps any vertex a; with deg(a;) =2 to a
vertex a; with deg(aj) = 2 and a; # q;. Thus,
{Th(C;_y U{a}):i € w} approximates the
theory T = Th(I').

Theorem 1. Any theory T of a regular
graph with an infinite set is pseudofinite.

Proof. We prove by induction on the

degrees of vertices. definition Let I' = (G, R)

be a regular graph. Let m fbe the degree of
vertices.
Let m = 0 or m = 1. Then, for the model

regular I' of the theory T, it is true that I’ =
[linw [;, where I} is a finite acyclic graph with
a finite number of connected components,
where each of them is a vertex of degree 0 or an
edge. This means that by increasing the number
of connected components step by step, we can
construct a pseudofinite graph I.

The case m=2 1is considered in
Proposition 2. Let m = k, where k > 2, and I}
be the k- regular graph with 2(k — 1) vertices.
For a finite t, adding new k(k — 1)* vertices at
each step ¢, as a result we obtain a graph with
2(k — 1) + Xf_ k(k — 1)t vertices of degree
k. Continuing the process, in the limit, the
graph is divided into acyclic connected
components (trees). Since any infinite regular
tree is vertex transitive, any route of length 5 s

can be mapped to another ¥ s-route. And this
mapping can be extended to an automorphism
of the acyclic regular graph I, which implies
pseudofiniteness.

Then for m = k + 1 the graph I'’ is also
pseudofinite. Similarly, taking a (k+ 1)-
regular graph with vertices and adding k(k +
1) new vertices at each step t, in the limit we
obtain an acyclic regular graph. Similarly, take
an s-route and a vertex a; from this route that
has (k + 1) neighbors, we map a; to another
vertex a, of another s-route. The set of
neighbors of the vertex a; can also be
bijectively transferred to the set of neighbors of
the vertex a,.

Example 1. For clarity, as an example, we
show the validity of the assertion for 2-regular

and 3- regular, as well as 4-regular graphs. The
pseudofiniteness of 2-regular graphs is proved
in Proposition 2, and for m = 3 it is shown in
Fig. 1. The tetrahedron I, is taken. At each
step [ > 0, adding vertices, in the limit we
obtain an acyclic graph I' = il;, where [ is a
finite regular graph.

Figure 1 — Approximation of a 3-regular graph.

For any finite t, any 3-regular graph I’
consists of 4 + Yf_; 3 - 2¢ vertices. The infinite
3-regular graph I’ is split into acyclic
components.

Example 2. In case m = 4, we take the
octahedron I'. Every i-th stage adding new
vertices in the limit we get an acyclic graph
(see Fig. 2). For a finite step r, the graph has
6+ Y1_, 4 -3 vertices of degree 4. Take any
two routes of same length s as the induced
subgraph and map one to another s-route, we
can see that the mapping extends to an
automorphism of the pseudofinite graph I'.

From the above statement and examples it
immediately follows:

Theorem 2. For any infinite regular graph
I', the following conditions are true:

1. I' is pseudofinite;

2. T is homogeneous.

Figure 2 — Approximation of a 4-regular graph.
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Conclusion

In samethis paper, we study approximations of
regular graphs with finite ones. It is shown that the
approximation in the limit gives an acyclic regular
graph. It is proved that any theory 7 of regular
graphs on an infinite set is pseudofinite. When
approximating some graphs, there is a case when, in
the limit, a graph with cycles is obtained. To get an
acyclic graph, one can use Proposition 2 and break
the cycles into two rays. For further study of various
graph approximations, the following question can be
posed:

Question: Which graphs defined by their

automorphisms are pseudofinite?
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