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Abstract. The present paper concerns the notion of weak o-minimality that was initially deeply studied by 
D. Macpherson, D. Marker and C. Steinhorn. A subset A of a linearly ordered structure M is convex if for 
all a, b  A and c  M whenever a < c < b we have c  A. A weakly o-minimal structure is a linearly 
ordered structure M = M, =, <, … such that  any definable (with parameters) subset of  M is a union of 
finitely many convex sets in M. A criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in case of 
existing an element of the set of realizations of one of these types the definable closure of which has a non-
empty intersection with the set of realizations of another type is found. 
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Аңдатпа. Мақала бастапқыда Д. Макферсон, Д. Маркер және Ч. Стайнхорн терең зерттеген әлсіз 
o-минималдылық түсінігіне қатысты. Сызықтық реттелген M құрылымының А ішкі жиыны дөңес 
болады, егер кез келген a, b  A және c  M кезінде a < c < b бізде c  A болса.  Әлсіз o-минималды 
құрылым – бұл M құрылымының кез келген анықталатын (параметрлері бар) ішкі жиыны М-дегі 
дөңес жиындардың ақырлы санының бірігуі болатындай M = M, =, <,…  сызықты реттелген 
құрылым.  Бинарлық дөңестік рангілері теңдігінің критерийі әлсіз ортогональды емес алгебралық 
емес 1-типтері үшін дерлік омега-категориялық әлсіз o-минималды теорияларда осы түрлердің 
біреуінің жүзеге асу жиынынан элемент болған жағдайда табылады, оның анықталатын 
жабылуы басқа түрдегі іске асыру жиынымен бос емес қиылысы бар.   
 
Түйінді сөздер:  әлсіз о-минималдық, омега-категориялық дерлік, дөңестік рангісі, әлсіз 
ортогоналдық, эквиваленттік қатынас.  
 
 
Аннотация. Настоящая статья касается понятия слабой о-минимальности, первоначально 
глубоко исследованного Д. Макферсоном, Д. Маркером и Ч. Стайнхорном. Подмножество A 
линейно упорядоченной структуры M является выпуклым, если для любых a, b  A и c  M всякий 
раз, когда a < c < b, мы имеем c  A. Слабо о-минимальной структурой называется линейно 
упорядоченная структура M = M, =, <, … такая, что любое определимое (с параметрами) 
подмножество структуры M является объединением конечного числа выпуклых множеств в M. 
Найден критерий равенства бинарных рангов выпуклости для не слабо ортогональных 
неалгебраических 1-типов в почти омега-категоричных слабо о-минимальных теориях в случае 
существования элемента из множества реализаций одного из этих типов, определимое замыкание 
которого имеет непустое пересечение со множеством реализаций другого типа.   
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 с such that  any definable (with parameters) subset of  M is a union of finitely 
many convex sets in M. A criterion for equality of the binary convexity ranks for non-weakly orthogonal non-
algebraic 1-types in almost omega-categorical weakly o-minimal theories in case of existing an element of the 
set of realizations of one of these types the definable closure of which has a non-empty intersection with the set 
of realizations of another type is found.
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D. Macpherson, D. Marker and C. Steinhorn. A subset A of a linearly ordered structure M is convex if for 
all a, b  A and c  M whenever a < c < b we have c  A. A weakly o-minimal structure is a linearly 
ordered structure M = M, =, <, … such that  any definable (with parameters) subset of  M is a union of 
finitely many convex sets in M. A criterion for equality of the binary convexity ranks for non-weakly 
orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in case of 
existing an element of the set of realizations of one of these types the definable closure of which has a non-
empty intersection with the set of realizations of another type is found. 
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Throughout this paper we consider L-structures and 
suppose that L contains a binary relation symbol 
< which is interpreted as a linear order in these 
structures. The notion of weak o-minimality was 
originally studied in [1]. Real closed fields with a 
proper convex valuation ring provide an important 
example of weakly o-minimal structures [2, 3].

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B means 
that a < b whenever a 
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means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 

1) RC(A) = –1 if A = . 
2) RC(A) = 0 if A is finite and non-empty. 
3) RC(A) ≥ 1 if A is infinite. 
4) RC(A) ≥  + 1 if there exist a 

parametrically definable equivalence relation 
E(x, y) and an infinite sequence of elements bi  
A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

 B, and A < b means that A < 
{b}. For an arbitrary subset A of M we introduce the 
following notations: A+:={b
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A, i  , such that: 

For every  i, j  whenever i  j we have  M ⊨
¬E(bi, bj); 

For every i ∈ ω    RC(E(M, bi)) ≥ α  and 
E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
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there are no definable (with parameters) 
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infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
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So in [6] it was proved that if T is an almost -
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linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
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established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 
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p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
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We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
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relations are replaced by -definable (i.e. binary) 
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So in [6] it was proved that if T is an almost -
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linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
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orthogonality of any family of pairwise weakly 
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theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
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o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 
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E(M, bi) is a convex subset of A. 

5) RC(A) ≥ δ, if RC(A) ≥ α for all α < δ, 
where δ is a limit ordinal. 

If RC(A) =  for some , we say that RC(A) 
is defined. Otherwise (i.e. if RC(A)) ≥ α for all 
), we put RC(A) = . 

The rank of convexity of a formula ϕ(x, a̅), 
where a̅ ∈ M, is defined as the rank of convexity 
of the set ϕ(M, a̅), i.e. RC(ϕ(x, a̅)): =
RC(ϕ(M, a̅)). The rank of convexity of an 1-type 
p is defined as the rank of convexity of the set 
p(M), i.e. RC(p) := RC(p(M)). 

In particular, a theory has convexity rank 1 if 
there are no definable (with parameters) 
equivalence relations with infinitely many 
infinite convex classes. 

We say that the convexity rank of an arbitrary 
set A is binary and denote it by RCbin(A) if in 
Definition 3 parametrically definable equivalence 
relations are replaced by -definable (i.e. binary) 
equivalence relations. 

Definition 4. [6, 7] Let T be a complete theory, 
and p1(x1), …, pn(xn)  S1(). A type q(x1, …, xn) 
 Sn() is said to be a (p1, …, pn)-type if  

 
q(x1, …, xn)  p1(x1)  p2(x2)  …  pn(xn). 
 
The set of all (p1, …, pn)-types of the theory  T 

is denoted by Sp1, …, pn(T). A countable theory T is 
said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
many types q(x1, …, xn)  Sp1, …, pn(T). 

Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
orthogonal non-algebraic 1-types over  for such 
theories and binarity of almost -categorical 
quite o-minimal theories were proved. Also, in 
[11] binarity of almost omega-categorical weakly 
o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
for binarity of almost omega-categorical weakly 
o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

.
Recall some notions originally introduced in 

[1]. Let Y 
Recall some notions originally introduced in 

[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 
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M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 
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any a  D); 
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for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
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(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
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We say that the convexity rank of an arbitrary 
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said to be almost -categorical if for any types 
p1(x1), …, pn(xn) \in S1() there are only finitely 
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Almost -categoricity is closely connected 
with the notion of Ehrenfeuchtness of a theory. 
So in [6] it was proved that if T is an almost -
categorical theory with I(T, ) = 3 then a dense 
linear order is interpreted in $T$. Nonetheless 
there is an example (constructed by M.G. 
Peretyat'kin in [8]) of a theory with the condition 
I(T, ) = 3 that is not almost -categorical. 

In [9] the authors established almost -
categoricity of Ehrenfeucht quite o-minimal 
theories and that the Exchange Principle for the 
algebraic closure holds in almost -categorical 
quite o-minimal theories.  Recently in [10] 
orthogonality of any family of pairwise weakly 
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o-minimal theories of convexity rank 1 was 
established. At last, in the work [12] a criterion 
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o-minimal theories in terms of convexity rank 
was found. 

Theorem 5. [10] Let T be an almost omega-
categorical weakly o-minimal theory, p  S1() 
be non-algebraic. Then RCbin(p) < . 

-definable subset, let 
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[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
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Mn given by  
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sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 
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M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 
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(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
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Let RCbin(p) = n. Then there exist -definable 
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Introduction 
Let L be a countable first-order language. 

Throughout this paper we consider L-structures 
and suppose that L contains a binary relation 
symbol < which is interpreted as a linear order in 
these structures. The notion of weak o-minimality 
was originally studied in [1]. Real closed fields 
with a proper convex valuation ring provide an 
important example of weakly o-minimal 
structures [2, 3]. 

Let A and B be arbitrary subsets of a linearly 
ordered structure M. Then the expression A < B 
means that a < b whenever a  A and b  B, and 
A < b means that A < {b}. For an arbitrary subset 
A of M we introduce the following notations: 
A+:={b  M | A < b} and A-:={b  M | b < A}. 
For an arbitrary one-type p we denote by p(M) the 
set of realizations of p in M. If B  M and E is an 
equivalence relation on M then we denote by B/E 
the set of equivalence classes (E-classes) which 
have representatives in B. If f is a function on M 
then we denote by Dom(f) the domain of f. A 
theory T is said to be binary if every formula of 
the theory T is equivalent in T to a boolean 
combination of formulas with at most two free 
variables. 

Definition 1. Let T be a weakly o-minimal 
theory, M ⊨ T, A  M, p, q  S1(A) be non-
algebraic. We say that p is not weakly orthogonal 
to q  (denoting this by p ⊥w q) if there exist an 
LA-formula  H(x, y), α ∈ p(M) and β1, β2 ∈
q(M) such that β1 ∈ H(M, α) and β2 ∈ H(M, α). 

In other words, p is weakly orthogonal to q 
(denoting this by p ⊥w q) if p(x) ∪ q(y)  has a 
unique extension to a complete 2-type over A. 

Lemma 2. [4]  Let T be a weakly o-minimal 
theory, M ⊨ T, A  M. Then the relation of non-
weak orthogonality ⊥w  is an equivalence relation 
on S1(A). 

Definition 3 [5] Let T be a weakly o-minimal 
theory, M is a sufficiently saturated model of T, 
A  M. The rank of convexity of the set A 
(RC(A)) is defined as follows: 
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equivalence relation on Mn given by

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
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minimal structure, A  M, p  S1(A) be a non-
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which the domain contains the set p(M) is locally 
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→ q(M) being locally constant on p(M). 
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above but does not have a supremum in M. We 
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Mn given by  
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sup Y a = sup Y b  if  a , b   Z. 
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denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
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such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
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for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
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: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
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naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
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function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
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an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 
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-definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) which partition p(M) into infinitely many infinite 
convex classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

for some (any) a 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 p(M). Consider the following 
formulas:

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

By Theorem 8 the function f is strictly monotonic 
on each E1-class and f is strictly monotonic on each 
Ek+1(a, M)/Ek for any a 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 p(M), where 1 ≤ k ≤ n-2. 
Therefore we have that E'1(x, y), …, E'n-1(x, y) are 
equivalence relations partitioning q(M) into infinitely 
many infinite convex classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

whence RCbin(q) > n, that contradicts the 
hypothesis.

(2)

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
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order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
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naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
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Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 
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M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 q(M) 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 there 
exist b 
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[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
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decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
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for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 
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Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 
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for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 
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for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 q(M) and an L-formula 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 such that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

Assume the contrary: dcl({b}) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 p(M) 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 
Note that a 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 
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Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
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naturally embedded in M . Similarly, we can 
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Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 
p(M) such that a1 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 a and a1

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 dcl({b}). Since b  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 
dcl({a}), we have that  a1 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 dcl({a}), and this implies 
an infinity of dcl({a}), contradicting the almost 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
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partitioning p(M) into infinitely many infinite 
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E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
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Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  
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which contradicts that the relation Ei+1 is an 
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p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
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t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

-categoricity of T. Thus, a

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 dcl({b}). Then there 
exists an L-formula 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

Define the function f as follows: f(a) = b 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

. It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our assumption.

       (3) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
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→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
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 (1)  (2). Assume the contrary: there exists 
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a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 
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Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable function and f is not locally 
constant on p(M). Then f must be locally monotonic 
on p(M), i.e. either locally increasing or locally 
decreasing by Proposition 6. But then f bijectively 
maps p(M) onto q(M). Then dcl({b}) 

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
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partitioning p(M) into infinitely many infinite 
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Ei(a, M)  E (a, M)  Ei+1(a, M) 
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or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 q(M) which contradicts (3).
(4)  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 (1). Let f: p(M) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

 q(M) be an  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable function being locally constant on p(M). 
Consider the following formula:

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

Clearly, E(x, y) is an equivalence relation 
partitioning p(M) into infinitely many infinite 
convex classes.
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Let RCbin(p) = n. Then there exist  

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
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partitioning p(M) into infinitely many infinite convex 
classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
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then f bijectively maps p(M) onto q(M). Then 
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which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
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Indeed, f is a constant on each Ei-class. Further, we 
consider the behaviour of the function f on each Ei+1(a, 
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Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
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monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

(x, y) such that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

which contradicts that the relation Ei+1 is an 
immediate successor of the relation Ei(x, y) among 
all 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 

-definable equivalence relations on  p(M). 
Similarly, we can prove that f is strictly monotonic on 
each Ek+1(a, M)/Ek, where i ≤ k ≤ n – 2 and f is strictly 
monotonic on p(M)/En-1.

Consider the following formulas:

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

We can establish that E'i+1(x, y), …, E'n-1(x, y) are 
equivalence relations partitioning q(M) into infinitely 
many infinite convex classes so that

y) which partition p(M) into infinitely many 
infinite convex classes so that  

 
E1(a, M)  E2(a, M) …  En-1(a, M) 
 
for some (any) a  p(M). Consider the 

following formulas: 
 
E'1(x, y) :=  t1  t2 [E1(t1, t2)  f(t1) = x  f(t2) 

= y], 
… … … … … 
E'n-1(x, y) :=  t1  t2 [En-1(t1, t2)  f(t1) = x  

f(t2) = y]. 
 
By Theorem 8 the function f is strictly 

monotonic on each E1-class and f is strictly 
monotonic on each Ek+1(a, M)/Ek for any a  
p(M), where 1 ≤ k ≤ n-2. Therefore we have that 
E'1(x, y), …, E'n-1(x, y) are equivalence relations 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
E'1(b, M)  E'2(b, M)   …  E'n-1(b, M), 
 
whence RCbin(q)  n, that contradicts the 

hypothesis. 
(2)  (3). Since dcl({a})  q(M)  , there 

exist b  q(M) and an L-formula (x, y) such that 
 
M ⊨ ∃! yϕ(a, y) ϕ(a, b). 
 
Assume the contrary: dcl({b})  p(M)  . 

Note that a  dcl({b}). Otherwise there exists a1 
 p(M) such that a1  a and a1  dcl({b}). Since 
b  dcl({a}), we have that  a1  dcl({a}), and this 
implies an infinity of dcl({a}), contradicting the 
almost -categoricity of T. Thus, a  dcl({b}). 
Then there exists an L-formula '(x, y) such that  

 
M ⊨ ∃! yϕ′(a, y)∃! xϕ′(x, b)ϕ′(a, b). 
  
Define the function f as follows: f(a) = b  

’(a, b). It is not difficult to see that f bijectively 
maps p(M) onto q(M), contradicting our 
assumption. 

(3)  (4). Assume the contrary: f: p(M) → 
q(M) is an -definable function and f is not 
locally constant on p(M). Then f must be locally 
monotonic on p(M), i.e. either locally increasing 

or locally decreasing by Proposition 6. But 
then f bijectively maps p(M) onto q(M). Then 
dcl({b})  p(M)   for some (any) b  q(M) 
which contradicts (3). 

(4)  (1). Let f: p(M) → q(M) be an -
definable function being locally constant on 
p(M). Consider the following formula: 

 
E(x, y) := [x < y →  t (x < t < y → f(x) = f(t) 

= f(y))]  
 
 [x > y →  t (x > t > y → f(x) = f(t) = f(y))]. 
 
Clearly, E(x, y) is an equivalence relation 

partitioning p(M) into infinitely many infinite 
convex classes. 

Let RCbin(p) = n. Then there exist -definable 
equivalence relations E1(x, y), E2(x, y), …, En-1(x, 
y) partitioning p(M) into infinitely many infinite 
convex classes so that 

 
E1(a, M)  E2(a, M)  …  En-1(a, M) 
 
for some (any) a  p(M). 
Obviously, for some 1 ≤ i ≤ n-1 we have that 

E(x, y) ≡ Ei(x, y). Then we assert that RCbin(q) = 
n – i. Indeed, f is a constant on each Ei-class. 
Further, we consider the behaviour of the 
function f on each Ei+1(a, M)/Ei, where a  p(M). 
It must be strictly monotonic on each Ei+1(a, 
M)/Ei, since otherwise there exists an -
definable equivalence relation E (x, y) such that  

 
Ei(a, M)  E (a, M)  Ei+1(a, M) 
 
which contradicts that the relation Ei+1 is an 

immediate successor of the relation Ei(x, y) 
among all -definable equivalence relations on  
p(M). Similarly, we can prove that f is strictly 
monotonic on each Ek+1(a, M)/Ek, where i ≤ k ≤ n 
– 2 and f is strictly monotonic on p(M)/En-1. 

Consider the following formulas: 
 
E'i+1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  Ei+1(t1, 

t2)  f(t1) = x  f(t2) = y], 
 
… … … … … 
 
E'n-1(x, y) :=  t1  t2 [Up(t1)  Up(t2)  En-1(t1, 

t2)  f(t1) = x  f(t2) = y]. 
 
We can establish that E'i+1(x, y), …, E'n-1(x, y) 

are equivalence relations partitioning q(M) into 
infinitely many infinite convex classes so that 

 
E'i+1(b, M)  E'i+2(b, M)  … E'n-1(b, M), 
 
whence RCbin(q)  n – i. Further, if there exists 

an -definable equivalence relation Eq(x, y) 
partitioning q(M) into infinitely many infinite 
convex classes so that  

 
Eq(b, M)  E'i+1(b, M), 

whence RCbin(q) 

Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
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Recall some notions originally introduced in 
[1]. Let Y  Mn +1 be an -definable subset, let 
: Mn+1 → Mn be the projection which drops the 
last coordinate, and let Z := (Y). For each a  
Z let Y a := {y: ( a , y)  Y}. Suppose that for 
every a  Z the set Y a  is convex and bounded 
above but does not have a supremum in M. We 
let  be the -definable equivalence relation on 
Mn given by  

 
a b  for all  a , b   Mn \ Z, and a b   

sup Y a = sup Y b  if  a , b   Z. 
 
Let /: ZZ = , and for each tuple a   Z we 

denote by [ a ] the -class of a . There is a natural 
-definable total order on M Z , defined as 
follows. Let a   Z and c  M. Then [ a ] < c if 
and only if w < c for all w  Y a . Also, we say c 
< [ a ] iff  ([ a ] < c), i.e. there exists w  Y a  
such that c ≤ w. If a  is not -equivalent to b  
then there is some x  M such that  [ a ] < x < [
b ] or [ b ] < x < [ a ], and so < induces a total 
order on M Z . We call such a set Z  a sort (in 
this case, -definable sort) in M , where M  is 
the Dedekind completion of M, and view Z  as 
naturally embedded in M . Similarly, we can 
obtain a sort in M  by considering infima instead 
of suprema. 

Thus, we will consider definable functions 
from M to its Dedekind completion M , more 
precisely in definable sorts of the structure M , 
representing infima or suprema of definable sets. 

Let A, D  M, D be infinite, Z  M  be an A-
definable sort and f: D → Z be an A-definable 
function. We say f is locally increasing (locally 
decreasing, locally constant}) on D if for any a  
D there is an infinite interval J  D containing {a} 
so that f is strictly increasing (strictly decreasing, 
constant) on J; we also say f is locally monotonic 
on D if it is locally increasing or locally 
decreasing on D. 

Let f be an A-definable function on D  M, E 
be an A-definable equivalence relation on D. We 
say f is strictly increasing (decreasing) on D/E if 
for any a, b  D with a < b and  E(a, b) we have 
f(a) < f(b) (f(a) > f(b)). 

Proposition 6. [13] Let M be a weakly o-
minimal structure, A  M, p  S1(A) be a non-
algebraic type. Then any A-definable function of 
which the domain contains the set p(M) is locally 
monotonic or locally constant on p(M). 

 

Results 
Definition 7 (Verbovskiy V.V., [14, 15]) Let 

M be a weakly o-minimal structure, B, D  M, A 
 M  be a B-definable sort and f: D → A be a B-
definable function that is locally increasing 
(decreasing) on D. We say that the function f has 
depth n on the set D if there exist equivalence 

relations E1(x, y), …, En(x, y) partitioning D 
into infinitely many infinite convex classes so 
that for every 2 ≤ i ≤ n each Ei-class is partitioned 
into infinitely many infinite convex Ei-1-
subclasses and the following holds: 

• f is strictly increasing (decreasing) on each 
E1-class; 

• f is strictly decreasing (increasing) on D/Ek 
for every odd k ≤ n (or the same, f is strictly 
decreasing (increasing) on each Ek+1(a, M)/Ek for 
any a  D); 

• f is locally increasing (decreasing) on D/Ek 
for every even k ≤ n; 

• f is strictly monotonic on D/En. 
In this case, we say that the function f is 

locally increasing (decreasing) of depth n. 
Obviously, a strictly increasing (decreasing) 

function is locally increasing (decreasing) of 
depth 0. 

Theorem 8 (Verbovskiy V.V., [15]) Let T be 
a weakly o-minimal theory. Then any definable 
function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 

 (1) p is irrational  q is irrational; 
(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
non-algebraic, p ⊥w q, dcl({a})  q(M)  for 
some a  p(M). Then the following conditions are 
equivalent: 

(1) RCbin(p ) >RCbin(q); 
(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 

→ q(M) being locally constant on p(M). 
Proof of Theorem 10. By Proposition 9 the 

types p and q are either isolated or quasirational 
or irrational simultaneously. Without loss of 
generality, suppose that p and q are isolated. The 
remaining cases are considered similarly. 

 (1)  (2). Assume the contrary: there exists 
an -definable function f: p(M) → q(M) being a 
bijection of p(M) on q(M). 
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Ê (x, y) :=  t1  t2 [Eq (t1, t2)  f(x) = t1  f(y) 

= t2]. 
 
Obviously,  
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Theorem 8 (Verbovskiy V.V., [15]) Let T be 
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function into a definable sort has a finite depth. 

Proposition 9 [4] Let T be a weakly o-minimal 
theory, , M ⊨ T, A  M, p, q  S1(A) be non-
algebraic, p ⊥w q. Then the following holds: 
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(2) p is quasirational  q is quasirational. 
Theorem 10. Let T be an almost -categorical 

weakly o-minimal theory, M ⊨ T, p, q  S1() be 
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some a  p(M). Then the following conditions are 
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(2) there is no an -definable function f: p(M) 

→ q(M) being a bijection of p(M) on q(M); 
(3) dcl({b})  p(M) =  for any b  q(M); 
(4) there exist an -definable function f: p(M) 
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Proof of Theorem 10. By Proposition 9 the 
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Mn given by  
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 q(M) being locally monotonic on p(M).

Conclusion
We have found necessary and sufficient conditions 

in order to the binary convexity ranks of non-weakly 
orthogonal non-algebraic 1-types in almost omega-
categorical weakly o-minimal theories were equal in 
the case of existing some definable function between 
the sets of realizations of these 1-types.    
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