UDC 510.67 IRSTI 27.03.66

https://doi.org/10.55452/1998-6688-2022-19-1-23-29

BINARY CONVEXITY RANK IN ALMOST OMEGA-CATEGORICAL WEAKLY O-MINIMAL THEORIES

AMIRBEK G.S., KULPESHOV B.SH.

Kazakh-British Technical University, 050000, Almaty, Kazakhstan

Abstract. The present paper concerns the notion of weak o-minimality that was initially deeply studied by D. Macpherson, D. Marker and C. Steinhorn. A subset A of a linearly ordered structure M is convex if for all $a, b \in A$ and $c \in M$ whenever a < c < b we have $c \in A$. A weakly o-minimal structure is a linearly ordered structure $M = \langle M, =, <, ... \rangle c$ such that any definable (with parameters) subset of M is a union of finitely many convex sets in M. A criterion for equality of the binary convexity ranks for non-weakly orthogonal non-algebraic 1-types in almost omega-categorical weakly o-minimal theories in case of existing an element of the set of realizations of one of these types the definable closure of which has a non-empty intersection with the set of realizations of another type is found.

Keywords: weak o-minimality, almost omega-categoricity, convexity rank, weak orthogonality, equivalence relation.

ОМЕГА-КАТЕГОРИЯЛЫҚ ДЕРЛІК ӘЛСІЗ О-МИНИМАЛДЫ ТЕОРИЯЛАРЫНДА БИНАРЛЫҚ ДӨҢЕСТІК РАНГІСІ

АМИРБЕК Г.С., КУЛПЕШОВ Б.Ш.

Қазақстан-Британ техникалық университеті, 050000, Алматы қ., Қазақстан

Аңдатпа. Мақала бастапқыда Д. Макферсон, Д. Маркер және Ч. Стайнхорн терең зерттеген әлсіз о-минималдылық түсінігіне қатысты. Сызықтық реттелген М құрылымының А ішкі жиыны дөңес болады, егер кез келген а, $b \in A$ және $c \in M$ кезінде a < c < b бізде $c \in b$ бізде $c \in A$ болса. Әлсіз о-минималды құрылым – бұл М құрылымының кез келген анықталатын (параметрлері бар) ішкі жиыны М-дегі дөңес жиындардың ақырлы санының бірігуі болатындай $M = \langle M, =, <, ... \rangle$ сызықты реттелген құрылым. Бинарлық дөңестік рангілері теңдігінің критерийі әлсіз ортогональды емес алгебралық емес 1-типтері үшін дерлік омега-категориялық әлсіз о-минималды теорияларда осы түрлердің біреуінің жүзеге асу жиынынан элемент болған жағдайда табылады, оның анықталатын жабылуы басқа түрдегі іске асыру жиынымен бос емес қиылысы бар.

Түйінді сөздер: әлсіз о-минималдық, дерлік омега-категориялық, дөңестік рангісі, әлсіз ортогоналдық, эквиваленттік қатынас.

БИНАРНЫЙ РАНГ ВЫПУКЛОСТИ В ПОЧТИ ОМЕГА-КАТЕГОРИЧНЫХ СЛАБО О-МИНИМАЛЬНЫХ ТЕОРИЯХ

АМИРБЕК Г.С., КУЛПЕШОВ Б.Ш.

Казахстанско-Британский технический университет, 050000, г. Алматы, Казахстан

Аннотация. Настоящая статья касается понятия слабой о-минимальности, первоначально глубоко исследованного Д. Макферсоном, Д. Маркером и Ч. Стайнхорном. Подмножество А линейно упорядоченной структуры М является выпуклым, если для любых а, $b \in A$ и $c \in M$ всякий раз, когда a < c < b, мы имеем с А. Слабо о-минимальной структурой называется линейно упорядоченная структура $M = \langle M, =, <, ... \rangle$ такая, что любое определимое (с параметрами) подмножество структуры М является объединением конечного числа выпуклых множеств в М. Найден критерий равенства бинарных рангов выпуклости для не слабо ортогональных неалгебраических 1-типов в почти омега-категоричных слабо о-минимальных теориях в случае существования элемента из множества реализаций одного из этих типов, определимое замыкание которого имеет непустое пересечение со множеством реализаций другого типа.

Ключевые слова: слабая о-минимальность, почти омега-категоричность, ранг выпуклости, слабая ортогональность, отношение эквивалентности.

Introduction

Let L be a countable first-order language. Throughout this paper we consider L-structures and suppose that L contains a binary relation symbol < which is interpreted as a linear order in these structures. The notion of weak o-minimality was originally studied in [1]. Real closed fields with a proper convex valuation ring provide an important example of weakly o-minimal structures [2, 3].

Let A and B be arbitrary subsets of a linearly ordered structure M. Then the expression A < B means that a < b whenever $a \in B$, and A < b means that $A < \{b\}$. For an arbitrary subset A of M we introduce the following notations: $A^+:=\{b \in M \mid A < b\}$ and $A^-:=\{b \in M \mid b < A\}$. For an arbitrary one-type p we denote by p(M) the set of realizations of p in M. If $B \subseteq M$ and E is an equivalence relation on M then we denote by B/E the set of equivalence classes (E-classes) which have representatives in B. If f is a function on M then we denote by Dom(f) the domain of f. A theory T is said to be binary if every formula of the theory T is equivalent in T to a boolean combination of formulas with at most two free variables.

Definition 1. Let T be a weakly o-minimal theory, $M \models T$, $A \subseteq M$, p, $q \in S_1(A)$ be non-algebraic. We say that p is not weakly orthogonal to q (denoting this byp $\mathscr{L}^w q$) if there exist an L_A -formula H(x, y), $\alpha \in p(M)$ and $\beta_1, \beta_2 \in q(M)$ such that $\beta_1 \in H(M, \alpha)$ and $\beta_2 \notin H(M, \alpha)$.

In other words, p is weakly orthogonal to q (denoting this by $p \perp^w q$) if $p(x) \cup q(y)$ has a unique extension to a complete 2-type over A.

Lemma 2. [4] Let T be a weakly o-minimal theory, $M \models T$, $A \subseteq M$. Then the relation of non-weak orthogonality \mathscr{L}^w is an equivalence relation on $S_1(A)$.

Definition 3 [5] Let T be a weakly o-minimal theory, M is a sufficiently saturated model of T, $A \subseteq M$. The rank of convexity of the set A (RC(A)) is defined as follows:

1) RC(A) = -1 if $A = \emptyset$

2) RC(A) = 0 if A is finite and non-empty.

3) $RC(A) \ge 1$ if A is infinite.

4) $RC(A) \ge \alpha + 1$ if there exist a parametrically definable equivalence relation E(x, y) and an infinite sequence of elements $b_i \in A$, $i \in \omega$ such that:

For every $i, j \in \omega$ whenever $i \neq j$ we have $M \models \neg E(b_i, b_i)$;

For every $i \in \omega$ $RC(E(M, b_i)) \ge \alpha$ and $E(M, b_i)$ is a convex subset of A.

5) $RC(A) \ge \delta$, if $RC(A) \ge \alpha$ for all $\alpha < \delta$, where δ is a limit ordinal.

If $RC(A) = \alpha$ for some α , we say that RC(A) is defined. Otherwise (i.e. if $RC(A) \ge \alpha$ for all α), we put $RC(A) = \infty$.

The rank of convexity of a formula $\phi(x, \bar{a})$, where $\bar{a} \in M$, is defined as the rank of convexity of the set $\phi(M, \bar{a})$, i.e. $\text{RC}(\phi(x, \bar{a})) := \text{RC}(\phi(M, \bar{a}))$. The rank of convexity of an 1-type p is defined as the rank of convexity of the set p(M), i.e. RC(p) := RC(p(M)).

In particular, a theory has convexity rank 1 if there are no definable (with parameters) equivalence relations with infinitely many infinite convex classes.

We say that the convexity rank of an arbitrary set

A is binary and denote it by $RC_{bin}(A)$ if in Definition 3 parametrically definable equivalence relations are replaced by \emptyset -definable (i.e. binary) equivalence relations.

Definition 4. [6, 7] Let T be a complete theory, and $p_1(x_1)$, ..., $p_n(x_n) \in S_1(\emptyset)$. A type $q(x_1, ..., x_n) \in S_n(\emptyset)$ is said to be a $(p_1, ..., p_n)$ -type if

$$q(x_1, \ldots, x_n) \supseteq p_1(x_1) \cup p_2(x_2) \cup \ldots \cup p_n(x_n).$$

The set of all $(p_1, ..., p_n)$ -types of the theory T is denoted by $S_{p1,...,pn}(T)$. A countable theory T is said to be almost ω -categorical if for any types $p_1(x_1), ..., p_n(x_n) \in in S_1(\emptyset)$ there are only finitely many types $q(x_1, ..., x_n) \in S_{p1,...,pn}(T)$.

Almost ω -categoricity is closely connected with the notion of Ehrenfeuchtness of a theory. So in [6] it was proved that if T is an almost ω -categorical theory with I(T, ω) = 3 then a dense linear order is interpreted in \$T\$. Nonetheless there is an example (constructed by M.G. Peretyat'kin in [8]) of a theory with the condition I(T, ω) = 3 that is not almost ω -categorical.

In [9] the authors established almost ω -categoricity of Ehrenfeucht quite o-minimal theories and that the Exchange Principle for the algebraic closure holds in almost ω -categorical quite o-minimal theories. Recently in [10] orthogonality of any family of pairwise weakly orthogonal non-algebraic 1-types over \emptyset for such theories and binarity of almost ω -categorical quite o-minimal theories were proved. Also, in [11] binarity of almost omega-categorical weakly o-minimal theories of convexity rank 1 was established. At last, in the work [12] a criterion for binarity of almost omega-categorical weakly o-minimal theories in terms of convexity rank was found.

Theorem 5. [10] Let T be an almost omegacategorical weakly o-minimal theory, $p \in S_1(\emptyset)$ be non-algebraic. Then $RC_{bin}(p) < \omega$.

Recall some notions originally introduced in [1]. Let $Y \subset M^{n+1}$ be an \emptyset -definable subset, let π : $M^{n+1} \rightarrow M^n$ be the projection which drops the last coordinate, and let $Z := \pi(Y)$. For each $\overline{a} \in Z$ let $Y \overline{a} := \{y: (\overline{a}, y) \in Y\}$. Suppose that for every $\overline{a} \in Z$ the set $Y \overline{a}$ is convex and bounded above but does not have a supremum in M. We let ~ \emptyset -definable equivalence relation on M^n given by

 $\overline{a} \sim \overline{b}$ for all \overline{a} , $\overline{b} \in M^n \setminus Z$, and $\overline{a} \sim \overline{b} \Leftrightarrow$ sup Y $\overline{a} = \sup Y \overline{b}$ if \overline{a} , $\overline{b} \in Z$.

Let $\overline{Z} := Z / \sim$, and for each tuple $\overline{a} \in Z$ we denote by $[\overline{a}]$ the \sim -class of \overline{a} . There is a natural

 \emptyset -definable total order on $M \cup \overline{Z}$, defined as follows. Let $\overline{a} \in Z$ and $c \in M$. Then $[\overline{a}] < c$ if and only if w < c for all $w \in Y\overline{a}$. Also, we say $c < [\overline{a}]$ iff $\neg ([\overline{a}] < c)$, i.e. there exists $\in Y\overline{a}$ such that $c \le w$. If \overline{a} is not \sim -equivalent to \overline{b} then there is some $x \in M$ such that $[\overline{a}] < x < [\overline{b}]$ or $[\overline{b}] < x < [\overline{a}]$ and so <induces a total order on $M \cup \overline{Z}$ We call such a set \overline{Z} a sort (in this case, \emptyset -definable sort) in \overline{M} , where \overline{M} is the Dedekind completion of M, and view \overline{Z} as naturally embedded in \overline{M} . Similarly, we can obtain a sort in \overline{M} by considering infima instead of suprema.

Thus, we will consider definable functions from M to its Dedekind completion \overline{M} , more precisely in definable sorts of the structure \overline{M} , representing infima or suprema of definable sets.

Let A, D \subseteq M, D be infinite, Z $\subseteq \overline{M}$ be an A-definable sort and f: D \rightarrow Z be an A-definable function. We say f is locally increasing (locally decreasing, locally constant}) on D if for any a \in D there is an infinite interval J \subseteq D containing {a} so that f is strictly increasing (strictly decreasing, constant) on J; we also say f is locally monotonic on D if it is locally increasing or locally decreasing on D.

Let f be an A-definable function on $D \subseteq M$, E be an A-definable equivalence relation on D. We say f is strictly increasing (decreasing) on D/E if for any a, $b \in D$ with a < b and $\neg E(a, b)$ we have f(a) < f(b) (f(a) > f(b)).

Proposition 6. [13] Let M be a weakly o-minimal structure, $A \subseteq M$, $p \in S_1(A)$ be a nonalgebraic type. Then any A-definable function of which the domain contains the set p(M) is locally monotonic or locally constant on p(M).

Results

Definition 7 (Verbovskiy V.V., [14, 15]) Let M be a weakly o-minimal structure, B, $D \subseteq M$, $A \subseteq \overline{M}$ be a B-definable sort and f: $D \rightarrow A$ be a B-definable function that is locally increasing (decreasing) on D. We say that the function f has depth n on the set D if there exist equivalence

relations $E_1(x, y), ..., E_n(x, y)$ partitioning D into infinitely many infinite convex classes so that for every $2 \le i \le n$ each E_i -class is partitioned

into infinitely many infinite convex E_{i-1} -subclasses and the following holds:

• f is strictly increasing (decreasing) on each E_1 -class;

• f is strictly decreasing (increasing) on D/E_k for every odd k \leq n (or the same, f is strictly decreasing (increasing) on each $E_{k+1}(a, M)/E_k$ for any $a \in D$);

• f is locally increasing (decreasing) on D/E_k for every even $k \le n$;

• f is strictly monotonic on D/E_{n} .

In this case, we say that the function f is locally increasing (decreasing) of depth n.

Obviously, a strictly increasing (decreasing) function is locally increasing (decreasing) of depth 0.

Theorem 8 (Verbovskiy V.V., [15]) Let T be a weakly o-minimal theory. Then any definable function into a definable sort has a finite depth.

Proposition 9 [4] Let T be a weakly o-minimal theory, $M \models T$, $A \subseteq M$, p, $q \in S_1(A)$, be non-algebraic, $p \measuredangle^w q$. Then the following holds:

(1) p is irrational \Leftrightarrow q is irrational;

(2) p is quasirational \Leftrightarrow q is quasirational.

Theorem 10. Let T be an almost ω -categorical weakly o-minimal theory, $M \models T$, $p, q \in S_1(\emptyset)$ be non-algebraic, $p \not\perp^w q$, $dcl(\{a\}) \cap q(M) \neq \emptyset$ for some $a \in p(M)$. Then the following conditions are equivalent:

(1) $RC_{bin}(p) > RC_{bin}(q);$

(2) there is no an \varnothing -definable function f: p(M) \rightarrow q(M) being a bijection of p(M) on q(M);

(3) dcl({b}) \cap p(M) = \emptyset for any b \in q(M);

(4) there exist an \varnothing -definable function f: p(M)

 \rightarrow q(M) being locally constant on p(M).

Proof of Theorem 10. By Proposition 9 the types p and q are either isolated or quasirational or irrational simultaneously. Without loss of generality, suppose that p and q are isolated. The remaining cases are considered similarly.

(1) \Rightarrow (2). Assume the contrary: there exists an $\square \emptyset$ -definable function f: p(M) \rightarrow (M) being a bijection of p(M) on q(M).

Let $RC_{bin}(p) = n$. Then there exist \emptyset -definable equivalence relations $E_1(x, y)$, $E_2(x, y)$, ..., $E_{n-1}(x, y)$ which partition p(M) into infinitely many infinite convex classes so that

$$E'_{1}(x, y) := \exists t_{1} \exists t_{2} [E_{1}(t_{1}, t_{2}) \land f(t_{1}) = x \land f(t_{2}) = y],$$

for some (any) $a \in p(M)$. Consider the following formulas:

$$\begin{split} E'_1(x,\,y) &:= \exists \ t_1 \ \exists \ t_2 \ [E_1(t_1,\,t_2) \land \ f(t_1) = x \land \ f(t_2) \\ = y], \end{split}$$

 $E'_{n-1}(x, y) := \exists t_1 \exists t_2 [E_{n-1}(t_1, t_2) \land f(t_1) = x \land f(t_2) = y].$

By Theorem 8 the function f is strictly monotonic on each E_1 -class and f is strictly monotonic on each $E_{k+1}(a, M)/E_k$ for any $a \in p(M)$, where $1 \le k \le n-2$. Therefore we have that $E'_1(x, y), \ldots, E'_{n-1}(x, y)$ are equivalence relations partitioning q(M) into infinitely many infinite convex classes so that

 $E'_1(b, M) \subset E'_2(b, M) \subset \ldots \subset E'_{n-1}(b, M),$

whence $RC_{bin}(q) \ge n$, that contradicts the hypothesis.

(2) \Rightarrow (3). Since dcl({a}) \cap q(M) $\neq \emptyset$ there exist b \in q(M) and an L-formula $\varphi(x, y)$ such that

$$M \vDash \exists ! y \varphi(a, y) \land \varphi(a, b).$$

Assume the contrary: $dcl(\{b\}) \cap p(M) \neq \emptyset$ Note that $a \in dcl(\{b\})$. Otherwise there exists $a_1 \in p(M)$ such that $a_1 \neq a$ and $a_1 \in dcl(\{b\})$. Since $b \in dcl(\{a\})$, we have that $a_1 \neq dcl(\{a\})$, and this implies an infinity of dcl($\{a\}$), contradicting the almost ω -categoricity of T. Thus, $a \in dcl(\{b\})$. Then there exists an L-formula $\varphi'(x, y)$

$$M \models \exists ! y \varphi'(a, y) \land \exists ! x \varphi'(x, b) \land \varphi'(a, b).$$

Define the function f as follows: $f(a) = b \Leftrightarrow \phi'(a, b)$. It is not difficult to see that f bijectively maps p(M) onto q(M), contradicting our assumption.

(3) ⇒ (4). Assume the contrary: f: p(M) → q(M) is an \emptyset -definable function and f is not locally constant on p(M). Then f must be locally monotonic on p(M), i.e. either locally increasing or locally decreasing by Proposition 6. But then f bijectively maps p(M) onto q(M). Then dcl({b}) \cap p(M) ≠ \emptyset for some (any) b ∈ q(M) which contradicts (3).

(4) \Rightarrow (1). Let f: p(M) \rightarrow q(M) be an $\square \emptyset$ -definable function being locally constant on p(M). Consider the following formula:

$$\begin{split} E(x, y) &:= [x < y \rightarrow \forall \ t \ (x < t < y \rightarrow f(x) = f(t)) \\ = f(y))] \land \end{split}$$

$$\wedge [x > y \rightarrow \forall t (x > t > y \rightarrow f(x) = f(t) = f(y))].$$

Clearly, E(x, y) is an equivalence relation partitioning p(M) into infinitely many infinite convex classes.

Let $RC_{hin}(p) = n$. Then there exist $\square \emptyset$ definable equivalence relations $E_1(x, y), E_2(x, y), ..., E_{n-1}(x, y)$ partitioning p(M) into infinitely many infinite convex classes so that

$$E_1(a, M) \subset E_2(a, M) \subset \ldots \subset E_{n-1}(a, M)$$

for some (any) $a \in p(M)$.

Obviously, for some $1 \le i \le n-1$ we have that $E(x, x) \le n-1$ y) $\equiv E_i(x, y)$. Then we assert that $RC_{bin}(q) = n - i$. Indeed, f is a constant on each E_i-class. Further, we consider the behaviour of the function f on each $E_{i+1}(a, b)$ M)/E, where $a \in p(M)$. It must be strictly monotonic on each $E_{i+1}(a, M)/E_i$, since otherwise there exists an \mathcal{O} -definable equivalence relation $\overline{E}(x, y)$ such that

$$E_i(a, M) \subset E(a, M) \subset E_{i+1}(a, M)$$

which contradicts that the relation \boldsymbol{E}_{i+1} is an immediate successor of the relation $E_i(x, y)$ among all \emptyset -definable equivalence relations on p(M). Similarly, we can prove that f is strictly monotonic on each $E_{k+1}(a, M)/E_k$, where $i \le k \le n-2$ and f is strictly monotonic on $p(M)/E_{n-1}$.

Consider the following formulas:

 $E'_{i+1}(x, y) := \exists t_1 \exists t_2 [U_p(t_1) \land U_p(t_2) \land E_{i+1}(t_1, y_1)]$ $t_2) \wedge f(t_1) = x \wedge f(t_2) = y],$

...

$$\begin{split} E'_{n\text{-}1}(x, y) &:= \exists \ t_1 \ \exists \ t_2 \ [U_p(t_1) \land U_p(t_2) \land E_{n\text{-}1}(t_1, \\ t_2) \land \ f(t_1) &= x \land \ f(t_2) = y]. \end{split}$$

We can establish that $E'_{i+1}(x, y), \dots, E'_{n-1}(x, y)$ are equivalence relations partitioning q(M) into infinitely many infinite convex classes so that

$$E'_{i+1}(b, M) \subset E'_{i+2}(b, M) \subset \ldots \subset E'_{n-1}(b, M),$$

whence $RC_{bin}(q) \cup \emptyset$ -definable equivalence

Conclusion

We have found necessary and sufficient conditions in order to the binary convexity ranks of non-weakly orthogonal non-algebraic 1-types in almost omegacategorical weakly o-minimal theories were equal in the case of existing some definable function between the sets of realizations of these 1-types.

relation $E^{q}(x, y)$ partitioning q(M) into infinitely many infinite convex classes so that

$$E^{q}(b, M) \subset E'_{i+1}(b, M),$$

consider the following formula:

$$\hat{E}(\mathbf{x},\mathbf{y}) := \exists t_1 \exists t_2 [E^q(t_1,t_2) \land f(\mathbf{x}) = t_1 \land f(\mathbf{y})$$

= t_2].

Obviously,

$$E_i(a, M) \subset \hat{E}(a, M) \subset E_{i+1}(a, M)$$

contradicting also that the relation E_{i+1} is an immediate successor of the relation $E_i(x, y)$ among \varnothing -definable equivalence relations on p(M). all Similarly, we can prove that there is no an $\square \emptyset$ -definable equivalence relation $E^{q}(x, y)$ partitioning q(M) into infinitely many infinite convex classes so that

$$\begin{split} & E'_{k}(b, M) \subset Eq~(b, M) \subset E'_{k+1}(b, M) \\ & \text{for every } i+1 \leq k \leq n-2 \text{ or} \\ & E'_{n-1}(b, M) \subset E^{q}(b, M). \\ & \text{Thus, } RC_{bin}(q) = n-i, i.e. \ RC_{bin}(p) > RC_{bin}(q). \end{split}$$

Corollary 11. Let T be an almost $^{(0)}$ -categorical weakly o-minimal theory, p, $q \in S_1(\emptyset)$ be nonalgebraic, \mathscr{L}^{w} , dcl({a}) \cap q(M) $\neq \emptyset$ for some a \in p(M). Then the following conditions are equivalent:

- (1)} RC_{bin}(p) = RC_{bin}(q);
 (2)} there exists an Ø-definable function f: p(M) \rightarrow q(M) being a bijection of p(M) on q(M);
 - (3)} dcl({b}) \cap p(M) $\neq \emptyset$ for any b \in q(M); (4)} there exists an \emptyset -definable function f: p(M)
- \rightarrow q(M) being locally monotonic on p(M).

This research has been funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08855544).

REFERENCES

1 Macpherson H.D., Marker D. and Steinhorn C. Weakly o-minimal structures and real closed fields // Transactions of The American Mathematical Society, vol. 352, issue 12, 2000, pp. 5435–5483.

2 Dickmann M. Elimination of quantifiers for ordered valuation rings // The Journal of Symbolic Logic, vol. 52, 1987, pp. 116–128.

3 Van Den Dries L., Lewenberg A.H. T-convexity and tame extensions // The Journal of Symbolic Logic, vol. 60, issue 1, 1995, pp. 74-102.

4 Baizhanov B.S. Expansion of a model of a weakly o-minimal theory by a family of unary predicates // The Journal of Symbolic Logic, vol. 66, isuue 3, 2001, pp. 1382–1414.

5 Kulpeshov B.Sh. Weakly o-minimal structures and some of their properties // The Journal of Symbolic Logic, vol. 63, issue 4, 1998, pp. 1511–1528.

6 Ikeda K., Pillay A., Tsuboi A. On theories having three countable models // Mathematical Logic Quarterly, vol. 44, issue 2, 1998, pp. 161–166.

7 Sudoplatov S.V. Classification of countable models of complete theories, part 1. Novosibirsk: Novosibirsk State Technical University Publishing House, 2018, ISBN 978-5-7782-3527-4, 326 p.

8 Peretyat'kin M.G. A theory with three countable models // Algebra and Logic, vol. 19, issue 2, 1980, pp. 139–147.

9 Kulpeshov B.Sh., Sudoplatov S.V. Linearly ordered theories which are nearly countably categorical // Mathematical Notes, vol. 101, issue 3, 2017, pp. 475–483.

10 Altayeva A.B., Kulpeshov B.Sh. Binarity of almost w -categorical quite o-minimal theories // Siberian Mathematical Journal, vol. 61, issue 3, 2020, pp. 379–390.

11 Kulpeshov B.Sh., Mustafin T.S. Almost w -categorical weakly o-minimal theories of convexity rank 1 // Siberian Mathematical Journal, 2021, vol. 62, no. 1, pp. 52–65.

12 Kulpeshov B.Sh. A criterion for binarity of almost w categorical weakly o-minimal theories // Siberian Mathematical Journal, 2021, vol. 62, no. 6, pp. 1063–1075.

13 Kulpeshov B.Sh. Countably categorical quite o-minimal theories // Journal of Mathematical Sciences, vol. 188, issue 4 (2013), pp. 387–397.

14 Verbovskiy V.V. On depth of functions of weakly o-minimal structures and an example of a weakly o-minimal structure without a weakly o-minimal theory // Proceedings of Informatics and Control Problems Institute, 1996, pp. 207–216.

15 Verbovskiy V.V. On formula depth of weakly o-minimal structures // Algebra and Model Theory (A.G. Pinus and K.N. Ponomaryov, editors), Novosibirsk, 1997, pp. 209–223.

Information on authors

1. Amirbek Gaukhar Samatkyzy

Master Student, School of Mathematics and Cybernetics, Kazakh-British Technical University, 59, Tole bi street, 050000, Almaty, Kazakhstan; ORCID ID: 0000-0003-1442-4691; E-mail: ga amirbek@kbtu.kz.

2. Kulpeshov Beibut Shaiykovich (corresponding author)

Doctor of Physical and Mathematical Sciences, Professor, School of Mathematics and Cybernetics, Kazakh-British Technical University, 59, Tole bi street, 050000, Almaty, Kazakhstan;

ORCID ID: 0000-0002-4242-0463;

E-mail: b.kulpeshov@kbtu.kz.

Авторлар туралы мәліметтер

1. Амирбек Гаухар Саматқызы

Магистрант, Математика және кибернетика факультеті, Қазақстан-Британ техникалық университеті, Төле би көшесі, 59, 050000, Алматы қ., Қазақстан;

ORCID ID: 0000-0003-1442-4691; E-mail: ga_amirbek@kbtu.kz.

2. Кулпешов Бейбіт Шайыкович (корреспонденция авторы)

Физика математика ғылымдарының докторы, профессор, Математика және кибернетика факультеті, Қазақстан-Британ техникалық университеті, Төле би көшесі, 59, 050000, Алматы қ, Қазақстан;

ORCID ÎD: 0000-0002-4242-0463; E-mail: b.kulpeshov@kbtu.kz.

Сведения об авторах

1. Амирбек Гаухар Саматкызы

Магистрант, факультет математики и кибернетики, Казахстанско-Британский технический университет, ул. Толе би, 59, 050000, г. Алматы, Казахстан;

ORCID ID: 0000-0003-1442-4691;

E-mail: ga_amirbek@kbtu.kz.

2. Кулпешов Бейбут Шайыкович (автор для корреспонденции)

Доктор физико-математических наук, профессор, факультет математики и кибернетики, Казахстанско-Британский технический университет, ул. Толе би, 59, 050000, г. Алматы, Казахстан; ORCID ID: 0000-0002-4242-0463;

E-mail: b.kulpeshov@kbtu.kz.