BECTHUK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, Ne3 (50), 2019

YK 004.852
MPHTW 28.23.25

MAX-POOL AND DROPOUT REGULARIZATION DEEP LEARNING TECHNIQUES TO
DETECT TRAFFIC SIGNS

A. YEREZHEPBEKOV
International Information Technology University

Abstract: many car drivers are inattentive to traffic signs which resultin unfortunate or even dramatic accidents,
so in order toprevent such things this article proposes using machine learning technique convolutional neural
networks with max-pool and dropout reqularization algorithms. Recently, a dropout regularization technique
has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work
well infully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This
article illustrates in pythonic manner that max-pooling dropout is equivalent to randomly picking activation
based on a multinomial distribution at training time. Training set is implemented upon afamous German
traffic sign dataset and to see the difference between two regularization methods. Since, dropout regularizer
is very efficient in minimizing the overfitting o fthe training set by randomly discarding inbound and outbound
neurons. Plus, in mix with max-pooling a dropout regularization might require more epochs to converge more
accurately. Feeding the algorithm with traffic sign dataset makes it usefulfor adaptive cruise control systems
in cars to avoid nasty and awkward car accidents. Two methods can be used in tandem or separately but in
either case performance can be tuned by changing hyperparameters.

Keywords: Deep learning; Convolutional neural networks; Max-pooling dropout

MAKC-MNy/1 MEH “DROPOUT” TEPEL, OUbITY 3A4ICTEMECIH PETTEY
TOCINAEPIH LONJAHY APUbLINBI XXOT BENTINEPIH AHBLLTAY

AugaTna: KBNTEreH aBTOKBAIK >Kyprisywinepi >kon 6enrinepiHe Hazap aygapMaiifibl, COHbIL, H3TU>XKECTAe
onap 6alblTCbI3 HeEMece TINTi LaTepni anaTTapra >Ken coragbl, 6ynait 6onabipmayabiy, anablH any yuliH
mMallvHaga oublTy 3AicTeMeCiH HeApoHAbIL >Keninepai ‘“Mmax-pool” >k3He ‘Uropout™ pekopTwusauusnay
anropiTmAaepiMeH naiganady YycbiHbinagbl. >KaublHaa ‘dropout™ pernamMeHTTey 3aicTemeci Tepel
6iniMm anyga uonAaHydbil apThILWbINbITbIH KBPCETTIi. Tepel, KOHBEKTYpPaiblll, HEAPOHABIL >Keninep YLiH,
TonbluTai >KanravraH yabaTTapga TacTay THiMAI XXyMbIC icTeidi. Anaiiga, KOHBaAMTaUUANbILL, >K3HE
TonblpauThl LabaTTapra 3cepi 3ni KyHre AeiliH TonbIl 3epTTenMereH. byn mauana ‘python” T3cinmeH
cypeTTenedi, on Mmakcumangbl GipiKTipinin Weirybl XXaT ThITy yalwblTbiH4a MYAbTUHOMUaNbALI yNecTipyre
Heri3genreH KesgeicoLl >KuHawTayabl 6enceHgipyre Tel. Ouy >XUbIHTbITbI 3/riNi HeMIC >Kon 6enrici gepekTep
>KUbIHTbITbIMEH OpblHAANaAbl >X3He eKi pernameHTTey 34ici apacbiHfarbl aiblpMallbinbILThl KBPes.
OIiTKeHi, y3inic perncTpaTopbl >XaTThbINy >XXUbIHTbITbIH KipiC >K3He LWbIrbIC HelipoHAApAbl Kesaeiicoly
anbin TacTay aplibiibl a3ainTyra BTe biyrainsl. CoHbIMEH WaTap, Makcumangbl 6ipnik TepmeH apanacuaHza,
KeTyai perynapusauuanay A3nipek >kaublHAay YWiH KBN Ke3eudi La>keT eTefdi. AnropuTmai uosranbic
GenriciHil, JepeKTep >XWbIHTbITbIMEH a3blTaHAbIpy OHbl KBAIKTepAeri Gelimpenriwl Kpyusg»k bacuapy
>KyilenepiHe blyraicbi3 eTefi, 6yn >XKO0NCbI3 >K3He bllraiicbl3 KBAiK owyranapbiH 6ongpipmaiiabl. Eki 3gicTi
TaHaeMe Hemece 6enek LongaHyra 6onagpl, 6ipauy eki >karfjaiiga ga rrepnapaMme Tpaepai esrepTy apLbifbl
OpbIHAANYbl MYMKiH.

TYMHdi cB3gep: Tepew Mmeurepy, TypawTbl HEAPOHAbIL >Keninep, MakcbiManabl-0ipiKTipriw weirapy,
perynapusauus, bailec Teopuschl, >KaT ThITbIpy

46

PA3PABEOTKA NMPOMPAMMHOIO OBECMEYEHUSA N UHXXEHEPUA 3HAHWUW

METOAbl PETYNAPUSAUNUN TNMYBEOKOIO OBYYEHNA MAX-POOL 1 DROPOUT
ANA OBHAPYXXEHWA OOPOXHbIX 3HAKOB

AHHOTauusa: MHorve BogUTeNM aBTOMO6GMEN HEBHUMATENbHbI K JOPO>KHBLIM 3HaKaM, KOTOpble NPUBOAAT K
HecYaCTHbIM UM faXKe ApamaTuyeckuM ciaydasm. [1o3Tomy, 4To6bl NPefoTBPaTUTL Takue Bely, B 3TOi
CcTaTbe npeajaraeTCcs MCNOMb30BaTb TEXHWKY MALUVHHOTO OOY4YeHWs! CBEPTOYHBIMU HEWPOHHBIMU CETAMU C
anropyTMaMy MakCUMabHOTO Myna M NOBTOPHOr0 0TCceBa. B nocneHee BpeMs Me T OAMKa peryaspusaLmm orcesa
HaxXoAMT Bce 60/bllee NPUMEHEHME B FMy6OKOM 06yueHWN. M3BECTHO, YTO Ans rMy6oKo CBEPTOUHbIX HEAPOHHBIX
ceTeli 0TCemBaHe XOpOLLO paboTaeT B MOMHOCTLIO CBA3AHHBIX CosSIX. OfHAKO ero BAMSHME Ha CBEPTOYHBbIN
1 06BEAVHSAIOLLNIA CNOK BCe eLle HeACHO. B 3Tol cTaTbe HarfsAHO NOKa3aHo, YTO 0TCEB MakCMMabHOro nyna
3KBUBANIEHTEH CMyYaiiHOMy BbIOOPY aKTMBALMK HA OCHOBE MOMHOMUAILHOMO pacnpeseneHnst BO BPeMS 06yUeHus.
YuebHbIii KOMNIEKT peain30BaH Ha OCHOBE M3BECTHOrO HEMELKOro Habopa [aHHbIX AOPO>KHbIX 3HAKOB U
MO3BOMIET YBMAE T b PasHULY MEXKAY ABYMS METOAAMM PErynsapru3aLmm, NocKobKY perynspm3aTop 0TCeBa O4eHb
3(h(heKTUBEH AN MUHUMUM3ALMN NepeobyyeHns 06yyatoLLEro Habopa My TeMm Cly4aiiHOro 0T 6packiBaHMS BXOASALLIMX
N NCXOAALLMX HelipoHoB. Kpome TOro, B CoueTaHnM ¢ MakCMMasbHbIM NyMPOBaHWEM NS perynspusauum oTcesa
MO>KeT noTpeboBaTbCs OOMblUe 3MOX, YTOObI 6ONee TOYHO CXOAMTHLCA. 3anofHeHWe anropuTma Habopom
[aHHbIX [OPO>KHbIX 3HAKOB [eNaeT €ro nofesHbiM Ans afanTWBHbIX CUCTEM KpyW3-KOHTPONs B aBTOMOBUnsX,
4yTO0ObI M36eXKaTh HEMPUATHBIX U HEYKIKO>KUX aBTOMOGWILHBIX aBapuii. [lBa MeToAa MOryT WCNoib30BaThCA
B TaHAeMe UM No OTAENbHOCTH, HO B IO6OM CNyvae MPOM3BOAMTENBHOCTL MOXKET OblThb HACTPOEHA Ny TEM

N3MEHEHWs runeprnapameTpoB.

KntoueBble cnoBa: rnybokoe 06yuyeHue,
perynspusaums, Teopus balieca, TpeHMpPOBKa

1 Introduction

CNN (Convolutional Neural Networks) - is
an useful part of deep neural networks which has
made a huge success in 1997 when it was first
introduced by Yann LeCunn. Due to its require-
ment for a large amount of computational power
which was unavailable at that time the method
was forgotten for several years until recently
with the advent of GPU (Graphical Processing

Unit) and a Dropout regularization approach.
Model mix almost usually improves the
performance of machine learning methods. With
large neural networks, however, an apparent solu-
tion of averaging the outputs of many separately
trained networks is computationally expensive.
Combining several models is helpful when the
individual models are different from each other
they should either have different architectures or
be trained on different data. Training many dif-
ferent architectures is hard because finding op-
timal hyperparameters for each architecture is
almost impossible feat to perform and training
each large network is computationally exhaus-
tive. Plus, large networks normally require large
amounts of training data and there may not be
enough data available to train different networks
on different subsets of the data. Even if one was

CBEPTO4YHbIE HeVIpOHHbIe ceTwn,

Makc-nyn oTbpacbiBaHue,

able to train many different large networks, using
them all at test time is infeasible in applications
where it is important to respond quickly.

Dropout (Hinton et al., 2012) is a recently
proposed regularizer to fight against over-fitting.
It is a regularization method that stochastically
sets to zero the activations of hidden units for
each training case at training time. This breaks
up co-adaptions of feature detectors since the
dropped-out units cannot influence other retained
units. Another way to interpret dropout is that it
yields a very efficient form of model averaging
where the number of trained models is exponen-
tial in that of units, and these models share the
same parameters. Dropout has also inspired oth-
er stochastic model averaging methods such as
stochastic pooling (Zeiler & Fergus, 2013) and
DropConnect (Wan et al., 2013).

Dropout is a method that prevents over-
fitting and provides a way of approximately
combining exponentially many different neural
network models efficiently. The term “dropout”
refers to dropping out units (hidden and visible)
in a neural network. By removing a unit, we
mean temporarily dropping it out from the net-
work, along with all its inbound and outbound

47

BECTHUK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, Ne3 (50), 2019

a) Standard neural net

b) After dropout

Figure 1.1 - Dropout Neural NetModel. Left: A standard neural net with 2 hidden layers. Right: An example ofa thinned net
produced by applying dropout to the network on the left. Crossed units have been dropped.

connections, as shown in Figure 1. The choice
of which units to drop is random. In the simplest
case, each unit is retained with a fixed probabil-
ity p independent of other units, where p can be
chosen using avalidation set or can simply be set
at 0.5, which seems to be close to optimal for a
wide range of networks and tasks. For the input
units, however, the optimal probability of reten-
tion is usually closer to 1than to 0.5.

2 Dropout regularization against

traditional CNN in other researches

CNNs have far been known to produce
remarkable performance on MNIST (LeCun et
al., 1998), but they, together with other neural
network models, fell out of favor in practical
machine learning as simpler models such as
SVMs became the popular choices in the 1990s
and 2000s. With deep learning renaissance
(Hinton & Salakhutdinov, 2006; Ciresan, Meier,
& Schmidhuber, 2012; Bengio, Courville, &
Vincent, 2013), CNNs regained attentions
from machine learning and computer vision
community. Like other deep models, many issues
can arise with deep CNNs if they are naively
trained. Two main issues are computation time
and over-fitting. Regarding the former problem,
GPUs help a lot by speeding up computation
significantly.

To combat over-fitting, a wide range of
regularization techniques have been developed.
A simple but effective method is adding 12

48

penalty to the network weights. Other common
forms of regularization include early stopping,
Bayesian fitting (Mackay, 1995), weight
elimination (Ledoux & Talagrand, 1991) and
data augmentation. In practice, employing these
techniques when training big neural networks
provides better test performances than smaller
networks trained without any regularization.

Dropout is a new regularization technique
that has been more recently employed in deep
learning. It is similar to bagging (Breiman,
1996), in which a set of models are trained on
different subsets of the same training data. At
test time, different models’ predictions are aver-
aged together. In traditional bagging, each mod-
el has independent parameters, and all members
would be trained explicitly. In the case of drop-
out training, there are exponentially many possi-
bly trained models, and these models share the
same parameters, but not all of them are explic-
itly trained. Actually, the number of explicitly
trained models is not larger than me, where m
is the number of training example, and e is the
training epochs. This is much smaller than the
number of possibly trained models, (n is num-
ber of hidden units in a feed-forward neural net-
works). Therefore, a vast majority of models are
not explicitly trained at training time.

At test time, bagging makes a prediction by
averaging together all the sub-models’ predic-
tions with the arithmetic mean, but it is not ob-
vious how to do so with the exponentially many

PA3PABOTKA NMPOIMPAMMHOIO OBECIMEYEHWA N MHXEHEPNA 3HAHUI

models trained by dropout. Fortunately, the aver-
age prediction of exponentially many sub-models
can be approximately computed simply by run-
ning the whole network with the weights scaled
by retaining probability. The approximation has
been mathematically characterized for linear and
sigmoidal networks (Baldi & Sadowski, 2014;
Wager el al., 2013); for piecewise linear net-
works such as rectified linear networks, Warde et
al. (2014) empirically showed that weight-scal-
ing approximation is a remarkable and accurate
surrogate for the true geometric mean, by com-
paring against the true average in small enough
networks that the exact computation is tractable.

Since dropout was thought to be far less
advantageous in convolutional layers, pioneering
work by Hinton et al. (2012) only applied it to
fully-connected layers. It was the reason they
provided that the convolutional shared-filter
architecture was a drastic reduction in the number
of parameters and thus reduced its possibility to
overfit in convolutional layers. Wonderful work
by Krizhevsky et al. (2012) trained a very big
convolutional neural net, which had 60 million
parameters, to classify 1.2 million high-resolution
images of ImageNet into the 1000 different
categories. Two primary methods were used to
reduce over-fitting in their experiments. The first
one was data augmentation, an easiest and most
commonly used approach to reduce over-fitting
for image data. Dropout was exactly the second
one. Also, it was only used in fully-connected
layers. In the ILSVRC-2012 competition, their
deep convolutional neural net yielded top-5 test
error rate of 15.3%, far better than the second-
best entry, 26.2%, achieved by shallow learning
with hand-craft feature engineering. This was
considered as a breakthrough in computer vision.
From then on, the community believes that deep
convolutional nets not only perform best on
simple hand-written digits, but also really work
on complex natural images.

Compared to original work on dropout,
(Srivastavaetal., 2014) provided more exhaustive
experimental results. In their experiments on
CIFAR-10, using dropout in fully-connected
layers reduced the test error from 15.60% to
14.32%. Adding dropout to convolutional layers

further reduced the error to 12.61%, revealing
that applying dropout to convolutional layers
aided generalization. Similar performance gains
can be observed on CIFAR-100 and SVHN. Still,
they did not explore max-pooling dropout.

Stochastic pooling (Zeiler & Fergus, 2013)
is a dropout-inspired regularization method. The
authors replaced the conventional deterministic
pooling operations with a stochastic procedure.
Instead of always capturing the strongest activ-
ity within each pooling region as max-pooling
does, stochastic pooling randomly picks the acti-
vations according to a multinomial distribution.
At test time, probability weighting is used as an
estimate to the average over all possible models.
Interestingly, stochastic pooling resembles the
case of using dropout in max-pooling layers, so
it is worth comparing them.

3 Using max pooling in combination

with dropout

A traffic sign classifier is a combination of
two popular regularization techniques which are
convolutional max-pooling and convolutional
dropout. The former is used to pick the maxi-
mum value from a kernel from the previous lay-
er, which means it chooses a channel with high-
er intensity. Like in the figure 2 the straight line
is not classified because 0 i.e. black color can’t
be picked up by a max pooling. Therefore, it has
such disadvantage oflosing some valuable infor-
mation along the way. But if we apply it to a dif-
ferent picture with a switched background color
in figure 3. In that case max pooling performs the
best possible prediction almost identical to the
original picture.

Now there is a possibility of taking an ad-
vantage of this feature of max-pooling and patch
it up with dropout. A standard CNN consists of
convolutional and pooling layers, with fully-con-
nected layers on the top and on each presentation
of a training example, if layer | is followed by a
pooling layer, the forward propagation without
dropout can be described as follows:

F(pool) (AO G o STk i e R

(3.1)

a. a+i)

49

BECTHUK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, Ne3 (50), 2019

alter niav IMiiHIil”

inputfeatureinif

*fu?r average p......

- 1S
M
1S
IB
1ZB
17?
"H eiiii tipnNe «f the inmliM™ nnHi~.

Figure 2. Illustration o fa maxpooling disadvantage

Figure 3.1 - lllustration ofan average pooling disadvantage

n ;= -
Ff>00i) - pool function
Ll - pooling regionj at layer /

an activation unit

Here is Rj pooling region j at layer / and

@ 4+1) is the activation of each neuron within

it. n = Rj is the number of units in Rj. (p°oi)
denotes the pooling function. Pooling operation
provides a form of spatial transformation invari-
ance as well as reduces the computational com-
plexity for upper layers. An ideal pooling method
is expected to preserve task-related information
while discarding irrelevant image details. Two
popular choices are average-and max-pooling.
Average-pooling takes all activations in a pool-
ing region into consideration with equal contri-
butions. This may downplay high activations as
many low activations are averagely included.
Max-pooling only captures the strongest activa-
tion, and disregards all other units in the pooling
region. We now show that employing dropout in
max-pooling layers avoids both disadvantages
by introducing stochasticity.

50

Figure 3.2 - An illustrating example ofthe procedure ofmax-
pooling dropout. The activation in the pooling region is 2, 5, 14
and 8 respectively. Without dropout, the strongest activation6is

always selected as the output. With dropout, each unitin the

pooling region could be possibly eliminated. In this example,
only 1 and 8 remained, then 8 will be the pooled output.

4 Implementation of the max-pooling and

dropout in python

There is an amazing machine learning
package called Tensorflow available in python
[1]. So, first of all we used a famous German
traffic signs dataset to retrieve images for
feeding to our algorithm. Second of all, there is
LeNet convolutional algorithm, initially created

PA3PABOTKA NMPOIMPAMMHOIO OBECIMEYEHWA N MHXEHEPNA 3HAHUI

by Yann Lecun [5]. He used MNIST dataset to
recognize numbers from zero to ten and that
input data was millions of handwritten numbers
which were even illegible for human eyes. We
took a part of that algorithm and transformed it
to recognize traffic signs.

The full dataset consisted of 51,839 imag-
es RGB images with dimensions 32x32. 34,799
images were used as the training dataset, 12,630
images were used as the testing dataset, and
4,410 images were used as the validation dataset.

A validation set was used to assess how well
the model is performing. A low accuracy on the

training and validation sets implies underfitting.
A high accuracy on the training set but low ac-
curacy on the validation set implies overfitting.
The validation set was purely used to calibrate
the network’s hyperparameters.

In total, the dataset consisted of images be-
longing to 43 classes. Each class corresponds to
a specific sign, for example, the class with label
4 represents 70km/h speed limit signs, and the
class with label 25 represents a roadwork sign.

A sample from each class is shown in the
image below:

Figure 4.1 - Traffic sign dataset

The pixel data of each image was normal-
ized, and then fed into the Drop_Max neural net-
work which consisted of the following layers. At
the first stage the data is normalized. Each image
is 3 channel 32x32x3 RGB which are fed to the
input of Convolution 5x5 (1x1 stride, valid pad-
ding and 28x28x26 output neurons). After that a
new reshaped matrix of pixels go through ReLu
which then move to Max pooling (2x2 stride,

16x16x6 outputs) and again fed into Convolution
activation (1x1 stride, valid padding, 10x10x16).
In each step a number of parameters has been
decreasing which denotes that the network drops
out repetitive weights that clutter the implemen-
tation. For example at this current stage there are
1600 parameters and that number will decrease.
After the second Convolution the output neurons
inbound to ReLu activation function after it they

51

BECTHUK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, Ne3 (50), 2019

are pooled and finally all the output 3 dimension-
al matrix is flattened.

But now we added dropout activation func-
tionwhich isincluded in TensorFlow library. Here
droput takes what is outbound from max-pooling
as inputs and produce its own neurons for further

mttit.py
ip,l trjffic,,i:gn.c lassifieT.ipynb
W Externak Libraries
O knt(h« and Console!

it CCN.dafitfw

EPOCH 13 ...
Validation Accuracy m Q.910

=5 EPOCH 19 ...
.~ Validation Accuracy = 0.924

$ EPOCH 20 ...
Validation Accuracy * 0,929

>Vel saved

v/ith tf.Sassicm:) as sess

units. In droput function we should indicate a
percentage of units being removed from the layer
and we picked 0.75 as an optimum parameter.

Below there are two implementations which
better show the result:

test_accuracy m evaluate [X_cest2, y_ceat2]
print (Test Accuracy - {;.3I}".T'omk <teat_aceuraeyM

for i, inng in «<numerate(innages)

KAK1INO!tensor Il cw: From C:\Conda\snvs\tensorflowM ib\site -packages\tensor Il cW,python\traimng\saver.py:12Hii

Instructions for updating:

Use standard tile APIs to cheek for tiles ultti tMs prelix-

Test Accuracy - 0,923
Test Accuracy * 0.000

Figure 4.2 - max-pooling implemented in python with an accuracy 0.929 and epoch 20

CSjiLVf — 1-* ,vanusiyuiih \SISHIVA. u mnj

w signnames.csv

> test.py fto

mbl tiaffiC 3ign_c laiiifitr.ipynb
Il External Libraries

O Scratches and Ccn[?ies LeNrQ

v CChI_OliS!ifi«r

EPOCH 16 ...
Validation Accuracy » 01£9L

jp EPOCH 19
A Validation Accuracy * 0.6B1

a> EPOCH 20
— validation Ateuraey - 0.BB7

Ke*lel saved

t flatted.

t Layer Jt Fblly Cenneditd-

Ir"jut m 5x5x16. Output » <00.

- flatten{s&nv2>

input - <o0. Output - 120.

MAESIHGttense rf 1ew: Frpit C:\CsndaAenvs\tensorfl«n\lIb\s t«-packages’«nserflosAcychcn\training\s

Instructions fur updating:

Use standard file APIs to cheek for files with this prefix.

Test Accuracy - C.333
Test Accuracy m 0.000

Figure 4.3 - max-pooling combined with dropout with the accuracy 0.888 and epoch 20

So according to the result from the code
above, when max-pooling is used alone there
is a higher accuracy than if it is combined with
dropout activation. However, even the accuracy

52

of dropout is lower there is a possibility to play
with a hyperparameters and get as high accuracy
as possible.

PA3PABOTKA NMPOIMPAMMHOIO OBECIMEYEHWA N MHXEHEPNA 3HAHUI

Conclusion

The article mainly addresses the problem
of using max-pool with dropout regularization
in order to better understand the difference be-
tween the two. Due to the low variance of input
distribution of traffic sign dataset images and
good weight sharing techniques of convolution-
al neural networks processing time took us only
several minutes. With higher epochs accuracy
gets better but for the sake of experiment there
is only 20 epochs which is enough to show the

satisfied result. We also have done many exper-
iments, unfortunately the scope of which is be-
yond the content of the article, but we have seen
that both methods perform well with perfectly
tuned hyperparameters. There is also no data
augmentation method used which is also good
for computational speed and such as algorithm
with dropout regularization can be applied in
collision avoidance systems for cars.

10.

11.

12.

13.
14.

15.

16.

REFERENCES

Baldi, P., & Sadowski, P. (2014). The dropout learning algorithm. Artificial Intelligence, 210, 78-
122.

Bengio, Y, Courville, A., & Vincent, P. (2013). Representation learning: a review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798-1828.
Boureau, Y L., Ponce J., & LeCun, Y (2010). A theoretical analysis of feature pooling in visual
recognition. In Proceedings 27th ofInternational Conference on Machine Learning (ICML 2010).
Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.

Ciresan. D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image
classification. In Proceedings 0f2014 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR 2012).

Goodfellow, 1. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout
networks. In Proceedings of30th International Conference on Machine Learning (ICML 2013).
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313, 504-507.

Hinton, G. E., Srivastave, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. (2012).
Improving neural networks by preventing co-adaption of feature detectors. arXiv 1207.0580.
Springenberg J. T., & Riedmiller M. (2014). Improving deep neural networks with probabilistic
maxout units. In Proceedings of3rdInternational Conference on Learning Representations (ICLR
2014).

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. M.S. diss., Depart-
ment of Computer Science, University of Toronto.

Krizhevsky, A., Sutskever, I, & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS
2012).

LeCun, Y., Bottou, L., Bengio, Y & Haffner, P. (1998). Gradient-based learning applied to
document recognition. In Proceedings ofthe IEEE.

Ledoux, M., & Talagrand, M. (1991). Probability in banach spaces. Springer.

Lin, M., Chen, Q., & Yan S. (2014). Network in network. In Proceedings of 3rd International
Conference on Learning Representations (ICLR 2014).

Mackay, D. C. (1995). Probable networks and plausible predictions: Areview of practical Bayesian
methods for supervised neural networks. In Bayesian Methodsfor Backpropagation Networks.
Scherer, D., Muller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional
architectures for object recognition. In Proceedings of20th International Conference on Artificial
Neural Networks (ICANN 2010).

53

BECTHUK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, Ne3 (50), 2019

17.

18.

19.

20.

21.

22.

54

Srivastava, N., Hinton. G. E., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. Journal ofMachine Learning Research,
15, 1929-1958.

Vinod, N., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines.
In Proceedings 27th ofinternational Conference on Machine Learning (ICML 2010).

Wan, L., Zeiler, M. D., Zhang, S., LeCun, Y., & Fergus, R. (2013). Regularization of neural
networks using DropConnect. In Proceedings of 30th International Conference on Machine
Learning (ICML 2013).

Warde, F. D., Goodfellow, 1.J., Courville, A., &Bengio, Y (2014). An empirical analysis of dropout
in piecewise linear networks. In Proceedings of 3rd International Conference on Learning Rep-
resentations (ICLR 2014).

Wager, S., Wang, S., &Liang, P. (2013). Dropout training as adaptive regularization. In Advances
in Neural Information Processing Systems (NIPS 2013).

Zeiler, M. D., & Fergus R. (2013). Stochastic pooling for regularization of deep convolutional
neural networks. In Proceedings of 2nd International Conference on Learning Representations
(ICLR 2013).

