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Abstract: Huge amounts o fspatial-temporal data are generated dailyfrom all kinds o fcitywide infrastructures.
Understanding and predicting accurately such a large amount of data could benefit many real world
applications.

Thispaperprovides an analysis o fhuman mobility data in an urban area using the amount ofavailable bikes in
the stations ofthe bicycle sharingprogram. Based on data sampledfrom the operator's website, it is possible
to detect temporal and geographic mobility patterns within the city. These patterns are applied to predict the
number ofavailable bikesfor any station some hours ahead. Our methodologyfirst identifies and quantifies the
latent characteristics ofdifferent spatial environments and temporalfactors through tensorfactorization. Our
hypothesis is that the patterns o fspatial-temporal activities are highly dependent on or caused by these latent
spatial-temporalfeatures. We model this hidden dependent relationship as a Gaussian process, which can be
viewed as a distribution over the possible functions topredict human mobility.

Keywords: human mobility, spatio-temporal, hiddenfeatures, tensor, Tucker decomposition, Gaussian process,
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AJAMOAPOBLL WWAMWAHAOBINBITbIHbLW, )XACbIPbIH EPEKLWUENIKTEPIH
AHBLUTAY XXOHE BEJIOCUTIEA BONICY CTAHUNANAPBIHbBIH
BENOCUINEL AEbIHBbIH BOJTIXKAY

AygaTna: KeuicTik-yaublTThil, fepekTepail YnKeu KBnemi KyHAenikTi 6apnbly uLananbiy, WHMpa-
uypbinbiMaapgaH >kacanagbl. OcbiHAan YnkeH KBnemAi m3nimeTTepdi mY&Hy >K3He 060m>Kay KBMTEreH
HaUTbl 3NeMAiK LocbIMLIanapra naiga skenyi mymkAh.

Byn mauana Benocunef 6eny CTaHUMACHIHBIL [epeKTepiH naifanaHa oOTbIpbin, LUanasbil, >epnepge-
ri agamgapgbll, MoGMnbAINiri Typanbl AepekTephi Tangaigbl. OnepaTopapbll Beb-calTbiHAH a/blHraH
M3NiMeTTep HerisiHge uanaga KeuiCTiK-yaublTTbil YyTUbIP/AbIL aHbllTanybl mymkw. Ocbl cxemanap 6ip-
Helle caraT OypblH Ke3 KenreH cTaHums YWiH UoMKeTimMAi BenociineaTepail, caHblH 60mKay YLiH naiiga-
naHbinagpl. bisgiy 3gicTememis angbiMeH TeH30pAbl hakTopusaunsa apublibl TYPAi KeyicTik-yaubl TThil
(hakTopnapaslL, >KacbipbiH epeKLlenikTepiH aHblLTaiabl XK3He caHfblly Typae aiubiHaaigbl. An runoTe-
3a KeuicTiK-yaublTThIl 6enceHAinikTiy YArici >KacblpblH epekwenikTepre T3yengi. byn T3yenginikTi
aycc Ypgepici peTiHae Mogenbaeimis.

TYMHdi cB3gep: KeuicTik-yaublTThil, cunaTTamanapbl, >KacblpblH epekLllenikTepi, TeH30pbl, Takepdiy,
biablpaybl, Faycc Ygepici, 6omkay

BbIAB/NIEHVNE CKPbITbIX XAPAKTEPUCTUK MOBWU/IbHOCTW NIOAEN U
MPOMHO3NPOBAHWE NMPUTOKA/OTTOKA BETOCUTNEALOB HA CTAHUNAX
COBMECTHOI'O NCIMNOJIb3OBAHWA

AHHOTaumsA: OrpoMHOe KONMYECTBO NPOCTPAHCTBEHHO-BPEMEHHbIX aHHbIX FEHEPUPYETCA M3 BCEX TUMOB
FOPOACKON MH(PACTPYKTYpPbl. TOYHOE MOHMMAaHUE M NMPOTrHO3MPOBAHME TaKoro 60/bLIOr0 06beMa AaHHbIX
MO>KEeT NPUHECTU NOAb3Y MHOTVM PeabHbIM MPUNOMKEHUSM.,
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B aToli cTaTbe NpeAcTaB/eH aHaIN3 faHHbIX 0 MOOUIbHOCT Y KON B rOPOLCKMUXPaioHax ¢ UCMNo/b30BaHNEM
JaHHbIX CO CTaHLMM COBMECTHOIO UCMO/b30BaHMS BENOCUME0B. Ha OCHOBE fJaHHbIX, B3SIThIX C BeO-caiTa
onepaTopa, MOXKHO OMNpeAeNNTb BPEMEHHYH 1 Teorpaduyueckyto Mo61ILHOC T B Npejenax ropoga. 3Ty CXeMbl
MCMONL3YTCA AN NPOrHO3MPOBaHUS KONMYECTBA JOCTYMHbIX BEOCUNEAO0B A1 0060/ CTaHLUM Ha HECKOJbKO
yacoB Breped. Hawa meTogonorusi cHavana MAeHTUOUUMPYET U KOMYECTBEHHO OMpefensieT CKPbIThble
XapaKTepUCTUKM PasNYHbIX NPOCTPAHCTBEHHbIX CPeJ U BPEMEHHbIX (DaKkTOpPOB NOCPeiCcTBOM TeH30pHOM
(hakTOpU3aLMu. F'MnoTesa aBTOPOB COCTOUT B TOM, YTO 3aKOHOMEPHOCT W MPOCT PaHC T BEHHO-BPEMEHHOM
aKTUBHOCTMN CWIbHO 3aBUCAT OT 3TWX CKPbITbIX MPOCTPAHCTBEHHO-BPEMEHHBLIX OCOGEHHOCTEN. Mbl
MOZENMPYEM 3T O Kak 3aBMUCKMble OTHOLLUEHUS!, KaK rayCCOBCKMIA MPOLECC, KOTOPbIA MO>KHO paccMaTpuBaThb

KaK pacrnpeseneHue.

KntoueBble cnoBa: MOGUILHOCTL OAEN,

MPOCTPaHC TBEHHO-BPEMEHHbIE  XapaKTepPUCT VKM,

CKpbITble

0COB6EHHOCTW, TEH30p, pasnoXKeHne Takepa, rayCCOBCKMIA MPOLLECC, MPOrHO3MPoBaHMe

Introduction

Public bike sharing systems are becoming
more and more popular in the past few years. A
still growing list of cities which provides such
service systems can be found at the Bike sharing
world map [1]. The three big cities of Kazakhstan
have such systems. They are: AlmatyBike,
AstanaBike and ShymkentBike [2]. There are 200
stations in Almaty, 180 stations in Astana and 40
bike sharing stations in Shymkent. For optimal
performance of such systems there must be (a)
the possibility to find a bike when a user wants
to start his/her journey and (b) the possibility to
leave the bike in the user’s destination. Without
oversizing the system, there are basically two
ways to solve these problems: Inform the user in
advance about the best places to pick up or leave
the bikes and improve the redistribution of bikes
from full to empty stations.

In this study we aim to contribute to the
solution of these problems via the analysis of
cyclic mobility patterns which lead to short term
predictions of the number of available bikes in
the stations by prediction inflow and outflow
Such predictions
allow us to improve the current web-service of
AlmatyBike, AstanaBike and ShymkentBike
and in turn increase users’ satisfaction with

between stations. would

the system. Once this type of information is
available, users may use mobile devices to
access it. Knowledge ofthose patterns could lead
to an optimization of the bike sharing system
itself, allowing the operator to predict shortage
or overflow of bicycles in certain stations well
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in advance and adapt its redistribution schedule
accordingly on the fly.

Furthermore, we intend to show that this
type of data also allows us to infer the activity
of city population as well as the spatial-temporal
their displacements. Such
knowledge may be interesting for city planners
and may also represent a cheap way to compare
the activity cycles between different cities.

Big Data trend brings great opportunities
for tackling many real-world challenges. In this
paper, we propose a novel methodology for
prediction of spatial-temporal activities using
latent spatial and temporal factors extracted
from existing mobility datasets at a city level.
Of spatial-temporal activities, we are interested
in human mobility, especially the inflow and
outflow of people in neighborhoods/areas during
certain time periods. Understanding the inflow/
outflow of people in urban environments spatially
and temporally and predicting them correctly are
essential to solve many real-world problems.
Such as optimization bike sharing systems. To

distribution of

achieve these goals, we use spatial-temporal data,
which has been obtained from New York Cities
bike sharing systems open data. Website provides
all historical and real time data about the number
of bicycles available for the users in a certain
momentintime in every one ofthe approximately
700 different stations, and information about all
rent done by users from 2013 year.

The rest ofthe paper is organized as follows.
We first review related work on the subject in
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2 and give a more detailed description of the
mobility spatio-temporal data in 2.1. Section 3
describes the tensor model of human mobility
and the extraction of latent spatial and temporal
features. 4 presents the prediction
methodology through modeling the relationship
between latent features and human mobility as
a Gaussian process.
performance of our methodology through a series
of experiments with the bike trips in New York.

Section

Section 5 demonstrates the

Finally, we present the conclusions in Section 6.

1. Related work

Given the importance of gaining a deeper
understanding of many spatial-temporal
activities, like human mobility, and predicting
accurately, this
has been published in various fields, such as
computer science, urban planning, sociology, and

them related work in area

other areas. In this section, some of the works
relevant to different aspects of mobility patterns
are overviewed.

Some studies have visualized bike sharing
systems activity, identifying trends, usually
based on the performance analysis of connecting
stations, observing the number of trips starting
and ending at the station level [3] [4] [5]
The number of studies analyzes bike sharing
systems imbalances caused by various levels
of attractiveness and generation
level trips [6], often they provide efficient bike
redistribution strategies [7] [8].

of station-

With a similar goal of introducing a more
balanced systems, other studies modeled demand
[9] or developed modelsthatoptimize the location
of stations [10]. Signficant number of studies
have recently focused on the GPS analysis of
casual cyclists’ routes [11]. A couple of studies
have focused on the exploration of real bike
routes. First, the route choice analysis performed
by Khatri [12], based on approximately 12,000
trips collected through the Phoenix BSS bikes
equipped with built-in GPS trackers, second , the
research published by Wergin and Buehler [13],
analysing 3596 trips obtained by introducing
GPS trackers into 94 bikes in the Washington
DC BSS in 2015, and the study to visualise the
cycling flow derived from Madrid bike sharing

system activity, obtained by processing over
250,000 GPS routes, and provide an analysis
of how this flow is distributed across the urban
street network at different moments [14].

2.1 CitiBike NYC bike sharing

system

The methodology described in this paper is
tested on open data available on web site https://
www.citibikenyc.com/system-data. There
be found data about all trips done by user of
system CitiBike New York and annual reports
per month from May 2013. CitiBike system start

can

his operation in May 2013. On average, there
are 43,604 rides per day, with each bike used 3.5
times per day. It has 8,629 annual members and
61,715 casual members signed up or renewed
during the month. There are 757 active stations
at the end of the month. The average bike fleet is
12,744 with 12,793 bikes in the fleet. Citi Bike
staff rebalances on average 22,280 bicycles per
month. The Service Delivery Department utilizes
box trucks, vans,
(‘bike trains’), valets,
incentives (‘Bike Angels’) to redistribute bikes
system-wide.

CitiBike system publish downloadable files
of CitiBike trip data. The data includes: Trip
Duration (seconds), Start Time and Date, Stop
Time and Date, Start Station Name, End Station
Name, Station ID, Station Lat/Long, Bike ID,
User Type (Customer = 24-hour pass or 3-day
pass user; Subscriber = Annual Member), Gender

contracted trikes, articulated

trikes and member

(Zero=unknown; 1=male; 2=female), Year of
Birth. This data has been processed to remove
trips that are taken by staff as they service and
inspect the system, trips that are taken to/from
any of “test” stations, and any trips that were
below 60 seconds in length (potentially false
starts or users trying to re-dock a bike to ensure

its secure).

3. Tensor model and extracting latent

features

Tensor is a array with 3 or more dimensions.
Decompositions of a higher-order tensor can be
used to extract and explain the properties among
the tensor. Tensor decomposition is widely
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Figure 1. Tensor decomposition

used in computer vision, numerical analysis,
data mining, neuroscience, graph analysis etc.
[15]. In this paper, we propose to model human
flow between different neighborhoods with a
3-dimensional tensor H e RNMK, as shown in
Figure 1. The first dimension of the tensor H
denotes N origin neighborhoods, the second
dimension denotes N destination neighborhoods,
and the third dimension denotes L time slots,
respectively. Each entry of the tensor H(t, j, 1)
stores the average number of trips starting from
neighborhood i to neighborhood j during time
period I

With this tensor model, we extract the latent
spatial features of each origin neighborhood,
destination neighborhood, and the latent temporal
feature of each time slot through a Tucker
decomposition. The Tucker decomposition can be
thought of as the form of higher-order Principal
Component Analysis (PCA). It decomposes a
tensor into a core tensor multiplied by a matrix
along each dimension [15]. In our case, we
decompose the tensor H into three matrices

So N, Sd NMQ T DR and a core tensor
GpXQR as shown in Figure 1. Mathematically, this

relationship can be expressed as in Equation 1:

K ~ G X1SDX2Sd X3T (1)
4. Predicting using latent features

After the extraction of latent spatial-
temporal features, we mathematically model

174

the relationship between

activities

spatial-temporal
such as human mobility and the
extracted latent features for prediction. For this,
we assume that people’s mobility is generated
from a smooth and continuous process. This
process has typical amplitude and variations
in the function which takes place over spatial,
temporal, and other characteristics. For
example, to predict the volume of outflow X0
i, in the neighborhood i during time period |
(or the volume of inflow xi i, 1), we can model

the relationship as below:

d(8otr~  XOUL, - ) (2)

3(sd. TIFAI-V ...) (3)

Note that instead of relating this relationship
to some specific models such as linear, quadratic,
cubic, or even non-polynomial models, which
may have numerous possibilities, we modeled
this relationship as a free-form Gaussian process.
One reason for using the Gaussian process is
that for any spatial-temporal activity y (e.g., X0
i,I) to be predicted, it will likely be generated
by the same process and have similar values as
the historical processes that share similar latent
spatial-temporal features. We can take advantage
of this relationship and use it for prediction. The
Gaussian process is described properly in the
work of Rasmussen [16].
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Figure 2. Results ofprediction

5. Results

The mathematical model and all calculations
are done in programming language python with
help of libraries. Three-dimensional tensor was
created with numpy library. Generated tensor is
decomposed by Tucker decomposition algorithm
using tensorly library, thatis highly recommended
for tensor learning in python. Gaussian regression
was done by library GPy. In order to verify our
assumptions, the data set was divided into two
part: train data and test data. Taking a look at the
training data, we can see a number of features
that occur in the data. There is a clear periodic
trend that is daily or weekly. We can use this
prior information in our choice of kernel to give
some meaning to the Gaussian process fit. In the
Figure 2 you can see the prediction of outflow of
one station for one month. In figure vertical axis
is the number of bikes taken from that station,
horizontal axis is the number of hours in month.
For example, 0 is first hour (00:00-00:59) of first
day of month, 39 is time period 14:00-14:59 of
second day of month (39-24=15).

For prediction accuracy measurements, we
used the mean squared error (MSE) and mean
absolute scaled error. MSE in average is 1919
and M ASE is 0.38.

Conclusion

In this work, we proposed
methodology for the prediction of spatial-
temporal human mobility, especially the
inflow and outflow of bikes from one station
to another during certain time periods. Our
methodology comprised two steps: (1) use
of a 3D tensor to model human mobility

a new

and extract latent spatial and
different
periods through tensor factorization;

(2) modeled relationship between mobility

temporal

features of stations and time

and

patterns and the extracted latent spatial and
temporal a Gaussian process
for prediction of human mobility.

features as
For
validation of the proposed methodology, we
experimented with New York City’s bike
trips. The results showed that our extracted
latent successfully distinguish
between bike sharing stations with diverse
unique characteristics.

This work has done under the project Ne
APO05134776 «Location Analytics Techniques for
Prediction of Mobility Patterns» of the Ministry
of Education and Sciences of the Republic of
Kazakhstan.

features
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