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Abstract

This paper presents a numerical approach for solving Fredholm integral equations of the first kind using
the Bubnov—Galerkin method with Alpert wavelet bases. These equations are well-known for being ill-posed,
meaning that small changes in input data can lead to large deviations in the solution. Therefore, robust and
accurate numerical methods are essential. The proposed method utilizes orthonormal and compactly supported
Alpert wavelets, which offer excellent localization properties and yield well-conditioned, sparse system matrices
when projecting the integral operator. This enhances numerical stability and reduces computational complexity.
A series of computational experiments was carried out using various refinement levels and polynomial degrees.
The accuracy of the method was evaluated by comparing approximate solutions to the exact analytical solution.
The results demonstrate exceptionally small absolute errors, often approaching machine precision. Additionally, a
comparative analysis with power polynomial bases confirms the superiority of the Alpert wavelet approach in terms
of convergence and approximation quality. Overall, the method proves to be efficient, stable, and suitable for further
extension to more complex integral equations, including multidimensional and noisy-data problems. This confirms
the potential of Alpert wavelet-based Galerkin schemes as a reliable tool for the numerical treatment of inverse and
ill-posed problems in applied sciences.

Keywords: first kind Fredholm Integral equation, Bubnov—Galerkin method, Alpert wavelet, ill-posedness,
orthonormal basis.
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Introduction

Mathematics and computational methods play a key role in solving a wide range of applied
problems arising in engineering, physics, mechanics, atmospheric sciences, geophysics, geochemistry,
geological exploration, medical imaging, remote sensing, military, and other high-tech disciplines. In
many of these fields, a significant number of applied and theoretical problems can be reduced to the
solution of Fredholm integral equations of the first kind [1-3].

It is worth noting that initial and boundary value problems for differential equations can be
transformed into integral form, reducing the original problem to solving a single integral equation [4, 5].
In this case, computations are performed based on boundary data, which is especially important for
problems with high dimensionality or complex domain geometries. However, a crucial theoretical and
numerical aspect in dealing with Fredholm integral equations of the first kind is their ill-posedness:
the solution strongly depends on the smoothness of the kernel and the right-hand side, and even small
perturbations in the data may lead to large deviations in the solution. This makes it impossible to
obtain an exact analytical solution in most cases and necessitates the use of stable and highly accurate
numerical methods [6, 7].

The development of numerical methods for solving Fredholm integral equations of the first
kind is particularly relevant due to the need to ensure convergence, stability, and approximation
accuracy of the computed solution [8—10]. At the same time, an important aspect of theoretical
analysis is the study of the conditions of existence and uniqueness of the solution, since for ill-
posed problems, which include Fredholm integral equations of the first kind, such properties
are not guaranteed without introducing additional restrictions or using special regularization
methods [11-14]. In recent decades, various approaches have been proposed: direct numerical
integration, regularization methods [15, 16] including the modified Tikhonov method [17], projection
methods [18-20], smoothing techniques, GMRES-type algorithms, multilevel iterative schemes [21],
as well as modern wavelet and wavelet-Galerkin methods [22-24], among others [25-27].

Wavelet-based methods have attracted increasing interest in recent years as a versatile tool for
constructing adaptive bases with strong localization and high approximation order [28-29]. Since
the first application of wavelets to the numerical solution of integral equations in 1991, their use
has expanded considerably. Different types of wavelets—including Haar, Coifman, Legendre, and
others — have demonstrated good performance in solving problems with various characteristics,
confirming the high accuracy and stability of the approach [30-33]. Each wavelet type possesses
specific properties—such as compact support, orthogonality, vanishing moments, symmetry, and
smoothness — which determine its effectiveness in projection-based numerical methods.

Among the most promising directions in numerical modeling are wavelets constructed from
classical orthogonal polynomials [30]. These constructions are actively used in spectral analysis,
numerical solution of differential equations, signal and image processing, and high-accuracy
approximations with controlled localization. In the context of projection methods for solving
Fredholm integral equations of the first kind, the approximation properties of the basis functions are
of particular importance. Effective choices include wavelet systems based on classical orthogonal
polynomials such as Legendre, Chebyshev, Hermite, and Laguerre. These functions form orthonormal
bases that satisfy requirements of localization, smoothness, and stability.

Legendre wavelets, orthogonal on the interval [—1,1], have compact support and are well suited
for implementing spectral-Galerkin schemes. Hermite wavelets, defined on R, exhibit strong space-
frequency localization and are applied in modeling solutions on the infinite domain. Chebyshev
wavelets possess minimax properties and offer high approximation accuracy in the uniform norm,
while Laguerre wavelets, defined on the half-line [0, @), effectively approximate exponentially
decaying functions [31-33].

The choice of a specific wavelet system as a basis in projection methods should be guided
by both the geometry of the domain and the analytical properties of the solution and kernel of the
integral equation. The basis properties of wavelets — such as orthonormality, locality, smoothness,
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and exponential decay — directly influence approximation quality, convergence, and the conditioning
of the resulting algebraic systems.

Among all wavelets, Alpert wavelets occupy a special place — these are multilevel orthonormal
bases constructed from Legendre polynomials [34]. They combine compact support, localized
structure, and high smoothness, making them particularly effective within variational numerical
methods. Their use in the Galerkin method for solving Fredholm integral equations of the first
kind ensures high approximation accuracy and numerical stability, especially for smooth or locally
inhomogeneous kernels. Due to the orthonormality of the basis functions, the computation of matrix
elements is significantly simplified, reducing the conditioning of the linear system. Alpert wavelets
thus represent a powerful tool in the spectrum of modern projection methods for numerical analysis
of integral equations.

In this work, we present a numerical approach for solving Fredholm integral equations of the first
kind based on the Bubnov—Galerkin method using Alpert wavelets as basis functions. Computational
experiments are conducted with varying refinement levels and numbers of polynomial components,
with visualizations of the obtained solutions. A comparative study is also carried out using standard
basis functions in the form of power polynomials. The results demonstrate a high degree of
approximation convergence of the numerical solution to the exact one, confirming the effectiveness
of the chosen basis within the proposed numerical method.

Materials and methods

Fredholm integral equation of the first kind

Let ©(x) be the unknown function, f(x) the given function, and K (x, t) the kernel. Let 4 € R be
a parameter. The Fredholm integral equation of the first kind arises from the general equation when
A=0;

[P K(x o) dt = F(x), x € [a,b]. (1)

Here K(x,t), f(x) € L*([a, b]). The main feature of this equation is its ill-posedness. Specifi-
cally: solution may not be unique and can be extremely sensitive to small perturbations in the func-
tion f{x).

Therefore, to solve such equations, it is necessary to apply regularizing, projection, or approxi-
mate methods.

Bubnov—Galerkin method

The Bubnov—Galerkin method is a projection method in which the solution @(t) is approxi-
mated by a linear combination of specially chosen basis functions:

@(B) ® oy () = T, ;0;(8), )

where 1;(£) }le is a system of basis functions, and €; are the coefficients to be determined.
Substituting this approximation into equation (1):

SPE (0 (T, ¢0,(0)dt = £(x). 3)

Interchanging the integral and the sum in (3) yields:

Ty }f K (x,t)¢;(t) dt = f(x).
In the Bubnov—Galerkin method, the residual must be orthogonal to the basis functions. That is,
foreachi = 1,2, ..., N we require

Y 6 I I K, D¢;(90; () dt dx = [ f(x)¢, (x) dx. )
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We introduce notations:
Ay =[] [JK(x, D006, (x) dt dx, b; =[] F(x),(x) dx. (5)
This leads to the linear system:
YL A e =b, i=12,.,N. (6)

This is a linear algebraic system of the form Ac = b.

The effectiveness of the Bubnov—Galerkin method depends heavily on the choice of basis
functions. Traditional bases include polynomials or trigonometric functions (e.g., Legendre or
Chebyshev polynomials), which usually lead to dense matrices.

Alpert wavelets, however, are based on generalized Haar-like functions and form a multiscale
family. When such bases are used, the matrix often becomes sparse, which greatly simplifies
computations.

Alpert Wavelets

Alpert wavelets are defined using scaled, shifted, and rescaled versions of the first ¥ Legendre
polynomials on the interval [0,1] via scaling functions {5 I(t) }ff;[} . These functions have the follow-
ing properties:

1. They are defined on the interval [0,1];

2. They form an orthonormal basis

[ 575 ()dt = 5, (7)
3. They span the space of polynomials of degree less than k.

Alpert wavelets are given by:

R () = 2™2W (2Mx —n), n €N, ®)
where m is the level of scaling and M is the shift parameter. These functions form a basis consisting
of k wavelet functions localized on subintervals of length 27™ in [0,1].

For a fixed positive integer ¥ and m = 0,1,2, ..., the piecewise polynomial space S, is defined

as:
Sk = {F: Fliz-mpa-mins1)) € Pe—1, n =01, ...,2™ — 1, f = Oelsewhere},

where Py_; is the space of polynomials of degree less than k. The dimension of this space is
dim (5%) = 2™k, and the following nested structure holds:
Skcskc..cskc.. 9)

™

For each m, define the orthogonal complement:
SE@RE =5k, RELSE dim(RE)=2"k. (10)

By induction, we obtain:
SkE=SK@®REDRID - DBRE_,. (11)
Let hy, ., iz B = R be an orthonormal basis of R¥. Since R L S, the first & moments of h;
vanish:

[y h(0)x dx =0, i=01..,k—1 (12)
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To define Ry, ...y, we first construct functions fi, ..., fi,: B = R on [0,1] with the following
properties:
s Eachfiisa polynomial of degree at most k& — 1 on [0,1];
¢ [t extends to (—1,0) as an even or odd function depending on the parity of i + k — 1;
¢ They satisfy orthonormality and normalization:
1 o .

IZ, i@ f)dx =6, 4,j=1,..,k (13)
¢ Each f; satisfies moment vanishing conditions:

[ f)xtdx =0, i=01,..,j+k—2 (14)
¢ These functions f; meet all four properties. Then,

h(x) =+2f(2x—1), i=1,..,k (15)

Thus,
R =span{h:i=1,..,k} (16)

In general,

RY =span{h?,: k% (x) = 2™ h(2™x — n),j = 1,..,k,n =0, ..., 2™ — 1},

Alpert wavelets when k = 2:

(—3(4t —1), if 0=t <1,
n(e) = 1 ‘ (17)
| 0, ifc<t=1,
r . 1
0,if 0=t<=,
ha®) =1 1 (18)
(V3(4t —3), if —=t=1,
r i 1
. 6t—1, if 0=t =2,
R = :
[ 0, if T<t=1, (19)
r , 1
. 0,if 0=t=1,
- (6t —5, if —<t=1 20)

when k = 3:
7 LA L
i — 2424t — 40t if 0=t =, @D
hi(t) = 1
0, if —<t=1,
1
0,if 0=t=2, (22)
hg(t}= 55 )

= 56t +40t%, if <t=1,
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. (V3(1— 14t +30¢2), if 0=t < %
R©) =
[ 0,if s<t=1 (23)
( 0,if 0=t<-—=,
hi(E) =+ %
(V3(17 — 46t +30t%), if S<t=1, (24)
—5(i+6t—16t2), if 0=t =1,
s [Cre o) 0z
0 if T<t=1, (25)
0, if 0=t=-=,
n3(t) = 3 X 1
*.-"E(?—Eﬁt+15t2), if s<t=1 (26)

Results and discussion

Test problem 1

Consider the following linear integral equation as a representative applied example of Fredholm
integral equations of the first kind:

4 B/2_ B
3 xT 2 y(t) dt = w x €[0,1].

It is known that the exact analytical solution to this equation is given by:
y(t) =t

The following Table 1 presents the absolute error values between the exact analytical solution
and the approximate solution obtained using the Alpert wavelet-based method at selected nodal
points in the interval t € [0,1]:

Table 1 — Absolute errors between the exact and approximate solutions at selected nodes

Approximate solution
k=2, M=2

Absolute error k=2,
M=2

Approximate
solution k=2, M=3

Absolute error k=2,
M=3

611715 x 1071°

611715 x 1071°

2.94681 x 107°

2.94681 x 10°°

1.00000 x 1071

2.88965 x 1071°

1.00003 x 1071

3.08759 x 10°°

2.00000 x 10~

3.37850 % 10711

1.99989 x 10~?

1.13691 x 10°°

2.99999 x 10~ 1t

3.56535 x 1071

2.99986 x 1071

1.39021 x 10°®

3.99999 x 101

6.79285 x 10710

3.99995 x 10~?

4,51122 x 107°

499999 x 1071

812233 x 1071°

4.99998 % 10~

2.10066 x 10°°

6.00000 x 1071

6.00417 x 10710

6.00003 x 1071

2.78820 x 10°°

7.00000 x 10~

3.88602 % 10710

7.00005 x 10~

4.66764 % 107°

8.00000 x 1071

1.76788 x 10710

8.00004 x 1071

3.53763 x 10°°

9.00000 x 1071

3.50280 x 10~

9.00000 x 10~1

6.01806 x 1077

t Exact
solution

0.0 | 0.0
01 |10x10"?
02 |20x107?
03 |3.0x107?
04 |4.0x10"1
05 |50x1071
06 |60x1071
07 |7.0x1071t
08 |80x1071
09 [9.0x1071
1.0 | 1.0 x 10°

1.00000 % 10°

2.46844 x 10710

9,99992 x 1071

7.75068 x 10°¢
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Exact vs Approximate Solution

1.0 4 —— Exact Solution
=== Approximate Solution

0.8 4

0.6 4

Walue

0.4 4

0.2 4

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1 — Graph of exact solution and approximate solution
of problem 1 in the case when k = 2, M = 2

Exact vs Approximate Solution (Log Scale)

107 1 — Exact Solution
=== Approximate Solution

6x 1071

WU R Dangp

4 x10-1

0.0 02 0.4 0.6 0.8 1.0
t

Figure 2 — Graph of exact solution and approximate solition
of problem 1 in log scale in the case when & = 2, M =3

Test problem 2
Consider the following linear integral equation as a representative applied example of Fredholm
integral equations of the first kind:
glatll—1

1 xt _
-[u e y(t) dt = s

It is known that the exact analytical solution to this equation is given by:

y(t) = et

.x €[0,1].
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The following table presents the absolute error values between the exact analytical solution
¥(t) = t and the approximate solution obtained using the Alpert wavelet-based method at selected

nodal points in the interval £ € [0,1]:

Table 2 — Absolute errors between the exact and approximate solutions at selected nodes

+ | Exact solution | Approximate so-| Absolute error | Approximate so- [Absolute error k=2,
lution k=2, M=2 k=2, M=2 lution k=2, M=3 M=3

0 |1.00000 x 10° 9.74063 x 1071 2.59365 x 107 | 1.00032 x 10° | 3.19253 x 10™*
1.0 |[1.10517 x 10°% 1.10487 x 10° | 2.99323 x 10™* | 1.10496 x 10° | 2.07005 x 10™*
2.0 |[1.22140 x 10°% 1.23568 x 10° | 1.42770 x 107% | 1.22163 x 10° | 2.29455 x 10™*
3.0 |1.34986 x 10° 1.36649 x 10° | 1.66290 x 107 | 1.35032 x 10° | 4.65347 x 10™*
4.0 [1.49182 x 10°% 1.49730 x 10° | 5.47124 x 107% | 1.49104 x 10° | 7.84960 x 10~*
5.0 |1.64872 x 10° 1.58505 x 10% | 6.36731 x 1072 | 1.65490 x 10? | 6.17632 x 1073
6.0 |1.82212 x 10° 1.80522 x 10° | 1.68980 x 107* | 1.82271 x 10° | 5.88389 x 10™*
7.0 |2.01375 x 10% 2.02539 x 10° | 1.16408 x 107 | 2.01285 x 10° | 9.01444 x 10™*
8.0 |2.22554 x 10% 2.24557 x 10° | 2.00252 x 107% | 2.22533 x 10° | 2.11119 x 10™*
9.0 |2.45960 x 10° 2.46574 x 10° | 6.13561 x 107? | 2.46014 x 10° | 5.39715x 10™*
1.0 |2.71828 x 10° 2.68591 x 10° | 3.23705 x 107% | 2.71729 x 10° | 9.91514 x 10™*

Exact vs Approximate Solution

2737 — Exact Solution
=== Approximate Solution
2.50 -
2.5 -
2.00 -
ar
=
]
= 1.75 -
1.50
1.25
1.00 4
0.0 0.2 0.4 0.6 08 T

Figure 3 — Graph of exact solution and approximate solution
of problem 2 inthe case when k = 2, M = 2
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Exact vs Approximate Solution (Log Scale)

10 4 — Exact Solution
=== Approsimate Solution

61071

VAILE LRy SaaiE]

4= 1071

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4 — Graph of exact solution and approximate solution
of problem 2 in log scale in the case when k = 2, M =3

When applying the Galerkin method to solve Fredholm integral equations of the first kind, the
use of Alpert wavelets as basis functions presents both significant advantages and certain limitations,
particularly in problems involving non-smooth kernels or solutions.

One of the main advantages of Alpert wavelets lies in their compact support, orthonormality,
and piecewise-polynomial structure, which allow for efficient numerical implementation and sparse
matrix representation. Their localized nature ensures that local features of the solution — such as
peaks or sharp transitions — can be captured more accurately than with global basis functions like
polynomials or trigonometric series. Additionally, the multi-resolution properties of wavelets provide
a natural framework for adaptivity, enabling high accuracy with fewer basis functions when the
solution is sufficiently smooth. These characteristics make Alpert wavelets particularly well-suited
for ill-posed problems where stability and local refinement are essential [34].

However, the effectiveness of Alpert wavelets strongly depends on the smoothness of both the
kernel K{(x,t) and the exact solution u(t). If either contains discontinuities, singularities, or non-
differentiable features, the approximation using a fixed number of wavelets becomes less accurate.
In such cases, the method may require an excessive number of basis functions, which leads to the
formation of an ill-conditioned linear system. This, in turn, increases the sensitivity of the solution to
round-off and discretization errors, especially in the presence of small perturbations in the right-hand
side function f(x). Consequently, even minor numerical noise can result in significant deviations in
the computed solution.

Furthermore, numerical integration used to compute the matrix coefficients in the Galerkin
system may lose accuracy when the kernel is not smooth. The interaction between the wavelet basis
and a non-smooth kernel can generate integrals with sharp variations that are difficult to evaluate
precisely using standard quadrature techniques. Without adaptive integration or mesh refinement,
these errors propagate into the system matrix and degrade the overall accuracy of the solution.

To mitigate these challenges, it is often necessary to introduce regularization techniques such as
Tikhonov regularization, or to enhance the wavelet basis by including adaptive refinement or non-
uniform scaling. These approaches help stabilize the numerical solution and improve approximation
in the presence of singularities or discontinuities.
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Conclusion

The numerical results obtained provide strong evidence for the accuracy and robustness of
the Bubnov—Galerkin method when implemented with Alpert wavelet bases for solving first-kind
Fredholm integral equations. A detailed analysis of the absolute errors between the exact analytical
solution and the computed approximate solutions at uniformly distributed nodal points in the interval
t € [0,1] demonstrates that the discrepancies are minimal — often approaching machine precision —
thereby confirming the method’s high numerical fidelity.

A key aspect contributing to the method’s efficiency is the use of orthonormal and compactly
supported Alpert wavelets. These basis functions ensure localized approximation and allow for
the construction of sparse and well-conditioned system matrices upon projection of the integral
operator. This, in turn, leads to enhanced numerical stability and reduced computational complexity,
particularly beneficial when dealing with ill-posed problem:s.

Moreover, the structure of the resulting matrices facilitates scalable and efficient implementation
in higher-dimensional problems. The localized wavelet approach not only improves accuracy but
also enables selective resolution refinement, which is especially valuable in practical applications
involving singularities, discontinuities, or noisy data.

The versatility of the proposed method is noteworthy. It exhibits strong potential for extension to
more complex and realistic scenarios, including integral equations with discontinuous kernels, noisy
right-hand sides, and multidimensional domains commonly encountered in physical, engineering,
and geophysical modeling. The method remains stable and accurate under increased problem
complexity and dimensionality, making it a promising computational tool for modern inverse and
direct problems.
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The research is funded by Science Committee of the Ministry of Science and Higher Education
of the Republic of Kazakhstan (Grant No. BR27100483 "Development of predictive exploration
technologies for identifying ore-prospective areas based on data analysis from the unified subsurface
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AJIBIIEPT BEMBJIET BA3SUCTEPIH KOJIJTAHA OTBIPBIII
®OPEAT'OJIBMHIH BIPIHIII TYPAEI'T UHTEI' PAJIABIK
TEHAEYIH BYBHOB-TAJIEPKHUH 9IICIMEH CAHJAbBIK LHEITY

AnjraTtna

Byn makamama ®pearonbpMHIH OipiHINI TYpAETi MHTETpalObIK TeHACydepiH byOHoB—IamepkuH omiciMeH
IETTy/TiH CAHIBIK TOCIJTI YCHIHBIIAIBL, MYHIA 0a3UCTiK QYyHKIUSIIAp peTiHae AJBIIEPT BEHBIETTEP1 Maii1aJaHbUIaab.
ArtanFaH TeHJieyJep KOWbLIBIMBIHBIH IYPBIC €MECTIrIMEH (MJUTIO-TIOCT) epeKIIeNeHe ], SIFHU Kipic AepeKTepiHeri
IIaFbIH ©3repicTep LIelIiMIe aTapiblkTail acep eryi MyMKiH. COHIBIKTaH MyH/ail TeHICYJIepAl ey YIIiH op-
HBIKTBI JKOHE JI9JT CAHBIK 9/1iCTeP KaKET. ¥ CHIHBUIBII OTBIPFaH 9JicTe OPTO-HOPMaJIaHFaH YKOHE KOMITAKTHI Tiperi
0ap AJbIiepT BEeHBIETTEpl KOJJAHBLIA b, OJlap JIOKAJIH3ALMUs KAaCHETTepIMEH epeKIIeNIeHel KIHEe HHTErPaJIbIK
oTrepaTopIsl MPOCKIHMsIaFaH/Ia JKaKChl JKaFJaiilaHFaH, CHpETUIreH (pa3pekeHHbIe) MaTpuuanap oepeni. byr o3
Ke3€TiH/Ie CAHJBIK OPHBIKTBIIBIKTEI apTTBHIPHII, €CENTey KYPACTUIIriH a3alTampl. OPTYPIl TOP THIFBI3IBIKTAPEI
MEH MOJMHOM/IBIK JI9PEKeNep YIIH CaHAbIK AKCIIEPUMEHTTEP JKYPri3iiai. OMICTIH JOAIrT HAKThI aHAIUTHKAIBIK
HICHIIMMEH CaJIBICTBIPY apKbUIbl Oarananzpl. HoTmkesnep aOCOMIOTTIK KaTeNIKTEpAiH oTe Killli eKeHiH, KeHoip
JKaF/iaiiap/ia MallnHAIBIK JOJIIKKE JKaKbIHAAUTBIHBIH KepceTTi. COHbIMEH Karap, MOJMHOMJBIK Oa3zucTepMeH
CaJIBICTBIPMAJIBI TanAay AJIBIIEPT BEHBICTTEpiHE HETI3ENTeH TOCUINIH KYBIKTay carachl MEH )KWHAKTBUIBIK KbLI-
JAMJIBIFBI JKaFbIHAH OACHIMIBIFBIH pacTaibl. JKanmel anFaHaa, ofic THIMAUIITIMEH, OPHBIKTBUIBIFEIMEH KOHE KO-
TeJIIIeMII HeMece ITyAbl AepeKTep KardaiaapeiHa KeHEUTY MYMKIHIITIMEH epekineneneni. byn Aiprnept Beiis-
JeTTepl Heri3iHje KypacThlpbuiraH [anepkuH cysi0asapbiHbIH KOJIAaHOAbI FRUIBIMIAPIAFbl JYPhIC KOMbUIMaraH
JKOHE Kepi ecenTep/i CaHIbIK IIeNTyre apHalFfaH CeHIM/II KypaJl eKeHiH KopceTeTi.

Tipex ce3aep: @penronsMHiH OipiHII TYpHeri MHTETpainslK TeHneyi, byonos—Ianepkun omici, Ampmept
BEHBIETTEPI, AYPhIC KOHBUIMAFaH ecell, OpTO-HOpMallaHFaH Oa3uc.
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YNUCJIEHHOE PEHIEHUE HHTEI'PAJTBHOT'O YPABHEHUA ®PEATOJIBMA
INEPBOI'O POJA METOAOM BYBHOBA-TAJIEPKUHA
C UCIIOJIb30BAHUEM BA3UCOB BEHUBJIETOB AJIBIIEPTA

AHHOTAUMS

B nanHO# crarhe mpeicTaBie€H YMCICHHBIM MOAXOA K PELIEHUI0 MHTErpalibHbIX ypaBHeHUN dpenronbma
MIEPBOTO pojia ¢ MpUMEHeHHeM MeToaa byoHoBa—I anépkuHa U Oa3uCHBIX (PYHKIMIA B BHUJC BEHBICTOB AJbIICpTa.
OTH ypaBHCHHUS W3BECTHBI CBOCH HEKOPPEKTHOCTBHIO: MAJCUIINE M3MCHCHHS BO BXOMHBIX IAHHBIX MOTYT BBI3HI-
BaTh CYIICCTBCHHBIC OTKJIOHCHHS B PEIICHUH. B CBSA3M ¢ 3TUM HEOOXOIMMBI YCTOHYMBEIC W TOYHBIC YHCIICHHBIC
metonsl. [Ipenamaraemsiii METO HCIIOIB3YET OPTOHOPMHUPOBAHHBIE M KOMITAKTHO TIO/CPKaHHBIC BEHBICTH AJTb-
nepTa, 00Iaarore OTIMYHBIMA JJOKATH3alMOHHBIMU cBoMicTBaMH. OHH 00€CIIeUunBaAIOT XOPOIIO 00yCIOBICHHBIC
N Pa3pCIKECHHBIC MAaTPUIIbl CUCTEMBI IIPHU MPOCHUPOBAHNU UHTCTPAJIBHOTO OIl€paropa, YTO IMOBBLIIIACT YHUCICHHYIO
YCTOMYUBOCTh M CHUIKACT BBIYHCIMTEIBHYIO CIOKHOCTh. Ceprsl YHCICHHBIX 3KCIICPUMEHTOB ObLiIa MPOBECHA C
PAa3IMYHBIMU YPOBHSIMHU YTOUHCHHS M CTCIICHSIMH MOJIHMHOMOB. TOYHOCTH METOJa OIICHUBANIACH ITYTEM CPABHCHUS
MPHOIMKEHHBIX PEIICHUI C TOYHBIM aHAJUTUYCCKIM PEIICHHEM. Pe3ynbraThl MmoKa3aid UCKITFOYHTEIBHO Mable
a0COITIOTHBIE OMIMOKH, 3a9aCTyI0 OJHM3KNE K MAITMHHOW TOYHOCTH. Kpome Toro, CpaBHUTEIEHBIN aHaN3 ¢ Oa3uca-
MU W3 CTETICHHBIX MOJMHOMOB IOATBEPANI MPEBOCXOACTBO MOAXO/A, OCHOBAHHOTO Ha BelBieTax AJbepra, Kak
[0 CKOPOCTH CXOIMMOCTH, TaK U 10 KaueCTBY alpOKCUMAIMK. B 1ieoM MeToa npoaeMoHCTpUpoBail 3G GeKTHB-
HOCTb, YCTOHYMBOCTh U MPUTOJHOCTH K JAJbHEHIIEMY PAacIIMPCHHUIO HA 00Jiee CIOKHBIC KIACChl MHTCTPATBHBIX
YpaBHCHHUIA, BKJIFOYasi MHOTOMEPHBIC 3a]1a4H U 331294 C 3alTyMJICHHBIMU JaHHBIMH. DTO IMOITBEPKIACT MOTCHIHAT
BeHBIIETHBIX cxeM [anépkuna ¢ 6a3ucamMu AJbliepra Kak HaJIeKHOTO HHCTPYMEHTA JJIS YACICHHOTO PEIICHHUS He-
KOPPEKTHBIX W OOPATHBIX 33129 B TIPUKJIaTHBIX HayKax.

KaroueBble cioBa: unrerpaibHoe ypaBHeHue Dpearonbma nepBoro pona, meron byoHoBa—I'anépkuHa,
BeiBIeT AJbIIepTa, HEKOPPEKTHOCTH 3a/J1a4H, OPTOHOPMHPOBAHHBIN Oa3uc.
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