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Abstract
This paper presents a numerical approach for solving Fredholm integral equations of the first kind using 

the Bubnov–Galerkin method with Alpert wavelet bases. These equations are well-known for being ill-posed, 
meaning that small changes in input data can lead to large deviations in the solution. Therefore, robust and 
accurate numerical methods are essential. The proposed method utilizes orthonormal and compactly supported 
Alpert wavelets, which offer excellent localization properties and yield well-conditioned, sparse system matrices 
when projecting the integral operator. This enhances numerical stability and reduces computational complexity. 
A series of computational experiments was carried out using various refinement levels and polynomial degrees. 
The accuracy of the method was evaluated by comparing approximate solutions to the exact analytical solution. 
The results demonstrate exceptionally small absolute errors, often approaching machine precision. Additionally, a 
comparative analysis with power polynomial bases confirms the superiority of the Alpert wavelet approach in terms 
of convergence and approximation quality. Overall, the method proves to be efficient, stable, and suitable for further 
extension to more complex integral equations, including multidimensional and noisy-data problems. This confirms 
the potential of Alpert wavelet-based Galerkin schemes as a reliable tool for the numerical treatment of inverse and 
ill-posed problems in applied sciences.

Keywords: first kind Fredholm Integral equation, Bubnov–Galerkin method, Alpert wavelet, ill-posedness, 
orthonormal basis.
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Introduction 

Mathematics and computational methods play a key role in solving a wide range of applied 
problems arising in engineering, physics, mechanics, atmospheric sciences, geophysics, geochemistry, 
geological exploration, medical imaging, remote sensing, military, and other high-tech disciplines. In 
many of these fields, a significant number of applied and theoretical problems can be reduced to the 
solution of Fredholm integral equations of the first kind [1–3].

It is worth noting that initial and boundary value problems for differential equations can be 
transformed into integral form, reducing the original problem to solving a single integral equation  [4, 5].  
In this case, computations are performed based on boundary data, which is especially important for 
problems with high dimensionality or complex domain geometries. However, a crucial theoretical and 
numerical aspect in dealing with Fredholm integral equations of the first kind is their ill-posedness: 
the solution strongly depends on the smoothness of the kernel and the right-hand side, and even small 
perturbations in the data may lead to large deviations in the solution. This makes it impossible to 
obtain an exact analytical solution in most cases and necessitates the use of stable and highly accurate 
numerical methods [6, 7].

The development of numerical methods for solving Fredholm integral equations of the first 
kind is particularly relevant due to the need to ensure convergence, stability, and approximation 
accuracy of the computed solution [8–10]. At the same time, an important aspect of theoretical 
analysis is the study of the conditions of existence and uniqueness of the solution, since for ill-
posed problems, which include Fredholm integral equations of the first kind, such properties 
are not guaranteed without introducing additional restrictions or using special regularization  
methods [11–14]. In recent decades, various approaches have been proposed: direct numerical 
integration, regularization methods [15, 16] including the modified Tikhonov method [17], projection 
methods [18–20], smoothing techniques, GMRES-type algorithms, multilevel iterative schemes [21], 
as well as modern wavelet and wavelet-Galerkin methods [22–24], among others [25–27].

Wavelet-based methods have attracted increasing interest in recent years as a versatile tool for 
constructing adaptive bases with strong localization and high approximation order [28–29]. Since 
the first application of wavelets to the numerical solution of integral equations in 1991, their use 
has expanded considerably. Different types of wavelets–including Haar, Coifman, Legendre, and 
others  – have demonstrated good performance in solving problems with various characteristics, 
confirming the high accuracy and stability of the approach [30–33]. Each wavelet type possesses 
specific properties–such as compact support, orthogonality, vanishing moments, symmetry, and 
smoothness – which determine its effectiveness in projection-based numerical methods.

Among the most promising directions in numerical modeling are wavelets constructed from 
classical orthogonal polynomials [30]. These constructions are actively used in spectral analysis, 
numerical solution of differential equations, signal and image processing, and high-accuracy 
approximations with controlled localization. In the context of projection methods for solving 
Fredholm integral equations of the first kind, the approximation properties of the basis functions are 
of particular importance. Effective choices include wavelet systems based on classical orthogonal 
polynomials such as Legendre, Chebyshev, Hermite, and Laguerre. These functions form orthonormal 
bases that satisfy requirements of localization, smoothness, and stability.

Legendre wavelets, orthogonal on the interval [−1,1], have compact support and are well suited 
for implementing spectral-Galerkin schemes. Hermite wavelets, defined on , exhibit strong space-
frequency localization and are applied in modeling solutions on the infinite domain. Chebyshev 
wavelets possess minimax properties and offer high approximation accuracy in the uniform norm, 
while Laguerre wavelets, defined on the half-line , effectively approximate exponentially 
decaying functions [31–33].

The choice of a specific wavelet system as a basis in projection methods should be guided 
by both the geometry of the domain and the analytical properties of the solution and kernel of the 
integral equation. The basis properties of wavelets – such as orthonormality, locality, smoothness, 
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and exponential decay – directly influence approximation quality, convergence, and the conditioning 
of the resulting algebraic systems.

Among all wavelets, Alpert wavelets occupy a special place – these are multilevel orthonormal 
bases constructed from Legendre polynomials [34]. They combine compact support, localized 
structure, and high smoothness, making them particularly effective within variational numerical 
methods. Their use in the Galerkin method for solving Fredholm integral equations of the first 
kind ensures high approximation accuracy and numerical stability, especially for smooth or locally 
inhomogeneous kernels. Due to the orthonormality of the basis functions, the computation of matrix 
elements is significantly simplified, reducing the conditioning of the linear system. Alpert wavelets 
thus represent a powerful tool in the spectrum of modern projection methods for numerical analysis 
of integral equations.

In this work, we present a numerical approach for solving Fredholm integral equations of the first 
kind based on the Bubnov–Galerkin method using Alpert wavelets as basis functions. Computational 
experiments are conducted with varying refinement levels and numbers of polynomial components, 
with visualizations of the obtained solutions. A comparative study is also carried out using standard 
basis functions in the form of power polynomials. The results demonstrate a high degree of 
approximation convergence of the numerical solution to the exact one, confirming the effectiveness 
of the chosen basis within the proposed numerical method.

Materials and methods

Fredholm integral equation of the first kind
Let  be the unknown function,  the given function, and  the kernel. Let  be 

a parameter. The Fredholm integral equation of the first kind arises from the general equation when 
:

	                                                                                   (1)

Here . The main feature of this equation is its ill-posedness. Specifi-
cally: solution may not be unique and can be extremely sensitive to small perturbations in the func-
tion . 

Therefore, to solve such equations, it is necessary to apply regularizing, projection, or approxi-
mate methods.

Bubnov–Galerkin method
The Bubnov–Galerkin method is a projection method in which the solution  is approxi-

mated by a linear combination of specially chosen basis functions: 

	                                                                                               (2)

where  is a system of basis functions, and  are the coefficients to be determined.
Substituting this approximation into equation (1): 

	                                                                                      (3)

Interchanging the integral and the sum in (3) yields: 

	
In the Bubnov–Galerkin method, the residual must be orthogonal to the basis functions. That is, 

for each , we require: 
     	                                             (4)
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We introduce notations: 

		                              (5)

This leads to the linear system: 

	                                                                                          (6)

This is a linear algebraic system of the form .
The effectiveness of the Bubnov–Galerkin method depends heavily on the choice of basis 

functions. Traditional bases include polynomials or trigonometric functions (e.g., Legendre or 
Chebyshev polynomials), which usually lead to dense matrices.

Alpert wavelets, however, are based on generalized Haar-like functions and form a multiscale 
family. When such bases are used, the matrix often becomes sparse, which greatly simplifies 
computations.

Alpert Wavelets
Alpert wavelets are defined using scaled, shifted, and rescaled versions of the first  Legendre 

polynomials on the interval  via scaling functions . These functions have the follow-
ing properties:  

1.	 They are defined on the interval ; 
2.	 They form an orthonormal basis 
	                                                                                                             (7)

3.	 They span the space of polynomials of degree less than . 

Alpert wavelets are given by: 
	                                                                                 (8)

where  is the level of scaling and  is the shift parameter. These functions form a basis consisting 
of  wavelet functions localized on subintervals of length  in .

For a fixed positive integer  and , the piecewise polynomial space  is defined 
as: 

	

where  is the space of polynomials of degree less than . The dimension of this space is 
, and the following nested structure holds: 

	                                                                                                      (9)

For each , define the orthogonal complement: 

                   	                                             (10)

By induction, we obtain: 
	                                                                                    (11)

Let  be an orthonormal basis of . Since , the first  moments of  
vanish: 

				    			     (12)
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To define , we first construct functions  on  with the following 
properties:  
�	 Each  is a polynomial of degree at most  on ;
�	 It extends to  as an even or odd function depending on the parity of ; 
�	 They satisfy orthonormality and normalization: 

					    			   (13)

�	 Each  satisfies moment vanishing conditions: 

				     			   (14)

�	 These functions  meet all four properties. Then, 

				     				    (15)

Thus, 
				     					     (16)

In general, 

	

Alpert wavelets when :

	
			              (17)

					    (18)

					     (19)

					     (20)

when :
  

			   				      (21)

										          (22)
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				    (23)

				   (24)

				    (25)

				    (26)

Results and discussion

Test problem 1
Consider the following linear integral equation as a representative applied example of Fredholm 

integral equations of the first kind: 
                                	

It is known that the exact analytical solution to this equation is given by: 

					   
The following Table 1 presents the absolute error values between the exact analytical solution 

and the approximate solution obtained using the Alpert wavelet-based method at selected nodal 
points in the interval :

 
Table 1 – Absolute errors between the exact and approximate solutions at selected nodes

   
Exact 

solution
Approximate solution 

k=2, M=2
Absolute error k=2, 

M=2
Approximate 

solution k=2, M=3
Absolute error k=2, 

M=3
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Figure 1 – Graph of exact solution and approximate solution 
of problem 1 in the case when 

Figure 2 – Graph of exact solution and approximate solution 
of problem 1 in log scale in the case when 

Test problem 2
Consider the following linear integral equation as a representative applied example of Fredholm 

integral equations of the first kind: 

                                        	
It is known that the exact analytical solution to this equation is given by: 
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The following table presents the absolute error values between the exact analytical solution 
 and the approximate solution obtained using the Alpert wavelet-based method at selected 

nodal points in the interval :

Table 2 – Absolute errors between the exact and approximate solutions at selected nodes

   Exact solution Approximate so-
lution k=2, M=2

Absolute error 
k=2, M=2

Approximate so-
lution k=2, M=3

Absolute error k=2, 
M=3

            

           

           

           

           

           

           

           

           

           

           

Figure 3 – Graph of exact solution and approximate solution 
of problem 2 in the case when 
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Figure 4 – Graph of exact solution and approximate solution 
of problem 2 in log scale in the case when 

When applying the Galerkin method to solve Fredholm integral equations of the first kind, the 
use of Alpert wavelets as basis functions presents both significant advantages and certain limitations, 
particularly in problems involving non-smooth kernels or solutions.

One of the main advantages of Alpert wavelets lies in their compact support, orthonormality, 
and piecewise-polynomial structure, which allow for efficient numerical implementation and sparse 
matrix representation. Their localized nature ensures that local features of the solution – such as 
peaks or sharp transitions – can be captured more accurately than with global basis functions like 
polynomials or trigonometric series. Additionally, the multi-resolution properties of wavelets provide 
a natural framework for adaptivity, enabling high accuracy with fewer basis functions when the 
solution is sufficiently smooth. These characteristics make Alpert wavelets particularly well-suited 
for ill-posed problems where stability and local refinement are essential [34].

However, the effectiveness of Alpert wavelets strongly depends on the smoothness of both the 
kernel  and the exact solution . If either contains discontinuities, singularities, or non-
differentiable features, the approximation using a fixed number of wavelets becomes less accurate. 
In such cases, the method may require an excessive number of basis functions, which leads to the 
formation of an ill-conditioned linear system. This, in turn, increases the sensitivity of the solution to 
round-off and discretization errors, especially in the presence of small perturbations in the right-hand 
side function . Consequently, even minor numerical noise can result in significant deviations in 
the computed solution.

Furthermore, numerical integration used to compute the matrix coefficients in the Galerkin 
system may lose accuracy when the kernel is not smooth. The interaction between the wavelet basis 
and a non-smooth kernel can generate integrals with sharp variations that are difficult to evaluate 
precisely using standard quadrature techniques. Without adaptive integration or mesh refinement, 
these errors propagate into the system matrix and degrade the overall accuracy of the solution.

To mitigate these challenges, it is often necessary to introduce regularization techniques such as 
Tikhonov regularization, or to enhance the wavelet basis by including adaptive refinement or non-
uniform scaling. These approaches help stabilize the numerical solution and improve approximation 
in the presence of singularities or discontinuities.
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Conclusion 

The numerical results obtained provide strong evidence for the accuracy and robustness of 
the Bubnov–Galerkin method when implemented with Alpert wavelet bases for solving first-kind 
Fredholm integral equations. A detailed analysis of the absolute errors between the exact analytical 
solution and the computed approximate solutions at uniformly distributed nodal points in the interval 

 demonstrates that the discrepancies are minimal – often approaching machine precision – 
thereby confirming the method’s high numerical fidelity.

A key aspect contributing to the method’s efficiency is the use of orthonormal and compactly 
supported Alpert wavelets. These basis functions ensure localized approximation and allow for 
the construction of sparse and well-conditioned system matrices upon projection of the integral 
operator. This, in turn, leads to enhanced numerical stability and reduced computational complexity, 
particularly beneficial when dealing with ill-posed problems.

Moreover, the structure of the resulting matrices facilitates scalable and efficient implementation 
in higher-dimensional problems. The localized wavelet approach not only improves accuracy but 
also enables selective resolution refinement, which is especially valuable in practical applications 
involving singularities, discontinuities, or noisy data.

The versatility of the proposed method is noteworthy. It exhibits strong potential for extension to 
more complex and realistic scenarios, including integral equations with discontinuous kernels, noisy 
right-hand sides, and multidimensional domains commonly encountered in physical, engineering, 
and geophysical modeling. The method remains stable and accurate under increased problem 
complexity and dimensionality, making it a promising computational tool for modern inverse and 
direct problems.
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Аталған теңдеулер қойылымының дұрыс еместігімен (иллю-пост) ерекшеленеді, яғни кіріс деректеріндегі 
шағын өзгерістер шешімге айтарлықтай әсер етуі мүмкін. Сондықтан мұндай теңдеулерді шешу үшін ор
нықты және дәл сандық әдістер қажет. Ұсынылып отырған әдісте орто-нормаланған және компакты тірегі 
бар Альперт вейвлеттері қолданылады, олар локализация қасиеттерімен ерекшеленеді және интегралдық 
операторды проекциялағанда жақсы жағдайланған, сиретілген (разреженные) матрицалар береді. Бұл өз 
кезегінде сандық орнықтылықты арттырып, есептеу күрделілігін азайтады. Әртүрлі тор тығыздықтары 
мен полиномдық дәрежелер үшін сандық эксперименттер жүргізілді. Әдістің дәлдігі нақты аналитикалық 
шешіммен салыстыру арқылы бағаланды. Нәтижелер абсолюттік қателіктердің өте кіші екенін, кейбір 
жағдайларда машиналық дәлдікке жақындайтынын көрсетті. Сонымен қатар, полиномдық базистермен 
салыстырмалы талдау Альперт вейвлеттеріне негізделген тәсілдің жуықтау сапасы мен жинақтылық жыл
дамдығы жағынан басымдығын растады. Жалпы алғанда, әдіс тиімділігімен, орнықтылығымен және кө
пөлшемді немесе шуды деректер жағдайларына кеңейту мүмкіндігімен ерекшеленеді. Бұл Альперт вейв
леттері негізінде құрастырылған Галеркин сұлбаларының қолданбалы ғылымдардағы дұрыс қойылмаған 
және кері есептерді сандық шешуге арналған сенімді құрал екенін көрсетеді.
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вейвлеттері, дұрыс қойылмаған есеп, орто-нормаланған базис.
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ЧИСЛЕННОЕ РЕШЕНИЕ ИНТЕГРАЛЬНОГО УРАВНЕНИЯ ФРЕДГОЛЬМА 
ПЕРВОГО РОДА МЕТОДОМ БУБНОВА–ГАЛЁРКИНА 

С ИСПОЛЬЗОВАНИЕМ БАЗИСОВ ВЕЙВЛЕТОВ АЛЬПЕРТА

Аннотация
В данной статье представлен численный подход к решению интегральных уравнений Фредгольма 

первого рода с применением метода Бубнова–Галёркина и базисных функций в виде вейвлетов Альперта. 
Эти уравнения известны своей некорректностью: малейшие изменения во входных данных могут вызы-
вать существенные отклонения в решении. В связи с этим необходимы устойчивые и точные численные 
методы. Предлагаемый метод использует ортонормированные и компактно поддержанные вейвлеты Аль-
перта, обладающие отличными локализационными свойствами. Они обеспечивают хорошо обусловленные 
и разреженные матрицы системы при проецировании интегрального оператора, что повышает численную 
устойчивость и снижает вычислительную сложность. Серия численных экспериментов была проведена с 
различными уровнями уточнения и степенями полиномов. Точность метода оценивалась путем сравнения 
приближенных решений с точным аналитическим решением. Результаты показали исключительно малые 
абсолютные ошибки, зачастую близкие к машинной точности. Кроме того, сравнительный анализ с базиса-
ми из степенных полиномов подтвердил превосходство подхода, основанного на вейвлетах Альперта, как 
по скорости сходимости, так и по качеству аппроксимации. В целом метод продемонстрировал эффектив-
ность, устойчивость и пригодность к дальнейшему расширению на более сложные классы интегральных 
уравнений, включая многомерные задачи и задачи с зашумленными данными. Это подтверждает потенциал 
вейвлетных схем Галёркина с базисами Альперта как надежного инструмента для численного решения не-
корректных и обратных задач в прикладных науках.

Ключевые слова: интегральное уравнение Фредгольма первого рода, метод Бубнова–Галёркина, 
вейвлет Альперта, некорректность задачи, ортонормированный базис.
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