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Abstract

In the era of accelerating climate change and growing urban populations, the frequency and severity of natural
disasters have increased significantly, posing substantial threats to infrastructure, economic stability, and human lives.
Disasters, including the likes of earthquakes, floods, and hurricanes usually are the reasons for serious destruction
of buildings, requiring rapid and accurate assessment to aid in emergency response and resource allocation. In light
of this, the research aims to deliver a deep learning based building damage assessment model, which is a hybrid
architecture consisting of Artificial Intelligence and IOT. In this paper we will examine the use of Internet of Things
(IoT) and Artificial Intelligence in disaster management systems in order to improve the automation, transparency,
and sustainability in smart intelligence systems. The system should collect and analyze pre-disaster and post-disaster
aerial imagery to classify buildings into damage categories, i.e. from no damage to destroyed.. Also, we integrate
our model into a wide disaster management system in order to make a visualization of damages on a geospatial
interface, that helps the decision-makers to get a quick look at priority areas and streamline the response of disaster.
This system’s plan is to assist public authorities, NGOs, and first responders with quick decision making in post-
disaster response times.

Keywords: disaster management, damage detection, natural disasters, system architecture, middleware,
Al ToT.

Introduction

Unforeseen disasters, including earthquakes, storms, floods, and wildfires, are constantly
damaging urban centers worldwide, causing serious destruction to buildings and endangering many
lives, and infrastructure. According to data from Our World in Data, between 2010 and 2022, the
most significant contributors to economic damage from natural disasters as a share of GDP—were
storms, earthquakes, and floods [2]. At the same time, the highest disaster-related death rates were
caused by earthquakes, floods, and extreme temperatures [1]. These statistics highlight that while
storms and high temperatures have notable impacts, earthquakes consistently rank among the top
causes of both economic loss and human fatalities. Given their combined impact on infrastructure
and human life, earthquakes are a critical area for focused research and technological intervention.

Therefore, this paper prioritizes earthquake-related disasters when developing and evaluating
the proposed building damage assessment model. In 2010, January 12, an earthquake with magnitude
7.0 brought estimated 220,000+ casualties, 300,000+ injuries and massive destruction in the capital,
Port-au-Prince [3]. This is mainly due to a combination of poor infrastructure, high population
density, and lack of disaster preparedness. Many buildings in Port-au-Prince were poorly constructed
and could not withstand seismic activity, leading to widespread collapse and entrapment [3].
Additionally, emergency services were overwhelmed and under resourced, slowing rescue efforts
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and medical aid. Effective disaster management systems could have significantly reduced casualties
by enforcing safer building codes, providing early warnings, training local emergency responders,
and establishing clear evacuation and response plans. Investing in disaster preparedness before the
earthquake could have saved thousands of lives. By using satellite or drone imagery combined with
Al and machine learning, we could assess building conditions, detect structural weaknesses, and
map high-risk areas. In the aftermath of the earthquake, such a system could also assist in quickly
assessing damage, locating collapsed buildings, and guiding search-and-rescue teams to the hardest-
hit areas, ultimately saving more lives and improving the efficiency of relief operations [19].
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Figure 1 — Death rates and economic damage from disasters

“Disaster Information Management System (DIMS): a mechanism for effectively processing,
organizing, storing and disseminating information required for disaster response and recovery,
particularly in the immediate aftermath of a natural disaster event”. After the aerial photos of the
sites are collected, the damaged site needs to be compared to the site at the beginning of the disaster
to be able to assess damage. The Disaster Damage Map can be created with aerial photos before and
right after a natural disaster that shows the affected areas. This feature in the system provides initial
damage assessments thus helping prioritize search and rescue operations. Moreover, another use of
it is to query building damages that happened because of the accident [4].

Materials and methods

Disaster management is commonly divided into four key stages—preparedness, response,
recovery, and mitigation—each of which can be significantly enhanced by using IoT technologies [5].
The preparedness stage covers the technical issues of the readiness of measures to be taken before
a calamity occurs. This is where the Internet of Things (IoT) comes in to enable continuous
environmental monitoring, real-time risk assessment, and effective resource allocation. Networks of
sensors, cameras, and other devices give scientists the data necessary to catch early warning signs
and inform the population. For example, IoT based weather stations have displayed variables that
might indicate dangerous weather, giving people enough time to prepare. In the event of disaster
happening, the response phase, comes into play, which is about doing coordinated and quick actions
to lower the harm. IoT is beneficial to this stage by providing the channels for quick communication
between first responders, increasing situation awareness and directing the overall deployment of
search and rescue operations. Drones with [oT sensors can make a rapid map of the affected areas,
estimate the damage of the structures, and point the routes where rescue teams can navigate. Wearable
devices also help to protect the responders due to their ability to track responders’ health metrics and
locations in real time [21]. Then, the recovery stage focuses on normalizing the things and redoing
the damaged infrastructure. Here, the role of the 10T is to promote recovery via the efficient damage
assessment process and identifying rebuilding priorities. For example, loT-enabled structural sensors
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can transmit safety data to central systems, helping officials prioritize which buildings require urgent
repair. Smart grids integrated with IoT systems can also speed up energy restoration, ensuring
essential services return more quickly. Finally, the mitigation and prevention stage seeks to reduce
the severity of future disasters. [oT contributes by collecting and analyzing data from all phases of a
disaster, improving forecasting models and guiding infrastructure improvements [5, 18].
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Figure 2 — Disaster management cycle
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In Middleware for Internet of Things: A Survey, the authors define [oT as a network of uniquely
addressable objects interconnected through standard protocols and examine its key characteristics
from both infrastructure and application perspectives. The architecture we are proposing encompasses
both functional and non-functional requirements listed by Mohammad Abdur Razzaque in his work.
The representation of the functional part, for instance, requires that middleware facilities must,
without human intervention, auto-discover resources and manage resources in the most efficient way
by ensuring resource optimality. It also must apply data management tasks like obtaining, filtering
and aggregating, while event management that codes raw signals into useful events and enables real-
time troubleshooting for analysis. In terms of non-functional requirements, the model emphasizes
scalability, allowing the system to handle increasing numbers of devices through techniques such
as loose coupling and virtualization. Real-time performance is equally vital, assuring the on-time
delivery of services. Reliability and availability are depicted as the critical measures to perform
consistently and fast recovery in case of failure [17].

We want to present a system where Al components are integrated with data sources and IoT
devices. Swarna Kamal Paul in his paper called “Disaster Management through Integrative AI”
demonstrates an innovative framework that combines artificial intelligence, Internet of Things (IoT)
devices, and data services into a unified platform [6]. The main idea is that the disaster management
architecture should be a module, scalable, and interoperable. This is achieved by an integrative
Al platform built on a dataflow graph-based programming model, supported by middleware, and
connected to microservices that represent [oT devices, Al services, and data sources. The programming
model is particularly significant, as it reduces the complexity of developing disaster management
applications. By representing applications as directed acyclic graphs where nodes signify functions
and edges represent dataflows, the system allows modularity and parallelization. This approach
makes programming less syntactically demanding for users while enabling sophisticated application
logic. The middleware layer that positions the API gateway handles communication is the core of
the system. It takes responsibility for the routing between the program interpreter and the external
services, the unification of the data formats, and the prevention of security threats through access
control. This middleware supports both synchronous and asynchronous communication, ensuring
that real-time disaster data from [oT devices and Al models can be processed without bottlenecks [6].

Benssam A. (2017) presents middleware which targets decision support improvement in
a disaster management environment specifically. This research stands on the idea that disaster
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management depends on highly heterogeneous systems, ranging from sensor networks and IoT
devices to existing databases and communication services. This middleware is a unifying layer that
brings coherence among these different components, thus allowing data to be collected, shared, and
processed without any issues. The research question contemplated by this study essentially revolves
around whether middleware can improve decision-making in disaster scenarios by bridging the gap
between the distributed data sources and the more sophisticated decision-making systems. It is stated
that decision-making based on real-time information in critical situations depends not only on the
data reliability but also on the architecture that supports timely processing and communication. In
a broader perspective, middleware is a bridge connecting distributed data and real-time analysis
and is also a tool for system interoperability and adaptive responses. From the results, it has been
determined that middleware platforms are in fact effective in regulating the data paths and easing the
system heterogeneity through the use of standardized APIs and protocols. The benefits gained in this
way should be noted, as the system will share information more quickly and make decisions more
swiftly, thus, reducing the time pressure that is normally present in disasters [7].

Work of Pillai. A, focus on building reliable early warning systems (EWS) by studying service-
oriented [oT architecture for disaster preparedness and forecasting. The point that separates it from
the traditional EWS methods is that the system is based on a layered loT architecture integrated with
a triple modular redundancy (TMR) fault-tolerant mechanism, which ensures the reliability and the
absence of faulty sensor data for accurate cloud-based predictions. The paper notes the increasing
importance of real-time monitoring and decision support systems in reducing risks and mitigating the
socio-economic impacts of disasters, particularly in critical environments like underground mines.
The main research question addressed by the paper is how loT-based service architectures, combined
with cloud-driven machine learning models, can provide accurate, fault-tolerant, and real-time disaster
prediction capabilities. The authors seek to improve upon existing EWS frameworks by embedding
redundancy in sensor networks and integrating machine learning algorithms for predictive analytics.
The contributions of the study are demonstrated through the design of a layered IoT architecture
composed of perception, middleware, service, and interface layers, which together streamline
communication between sensing devices and cloud-based systems. To check the correctness of
the framework the research paper analyzed the case of its utilization in underground mines, where
reliable and continual environmental monitoring is of utmost importance for the provision of safety
to workers and preventing hazardous conditions. The prime outcome suggests that the proposed
system is able to generate highly accurate predictions even if its partial sensor fails. The combined
work of lightweight [oT communication protocols, fault-tolerant sensor integration, and cloud-based
predictive analytics presents a solid means of ensuring non-stop and accurate disaster prediction.
This feature renders the system particularly appropriate for safety-critical sectors where downtime or
erroncous data can have disastrous effects [8].

Correspondingly, the papers reveal a common aim in overcoming fragmentation in disaster
management systems and enabling faster and more reliable decision-making. First paper highlights the
role of Al-enhanced microservices for predictive and adaptive responses, while Benssam emphasizes
the middleware’s ability to harmonize diverse data sources and ensure robust communication.
And the IoT architecture study highlights fault-tolerance and predictive accuracy in early warning
systems. All these work acknowledge persistent problems such as real-time data constraints,
scalability under high load, and the need for security in handling sensitive information. Their findings
converge on the idea that middleware, whether Al-enhanced or designed as a decision-support hub, is
indispensable in bridging the gap between distributed technologies and effective disaster management
practices [6-8].

Artificial intelligence (Al) has emerged as a transformative tool in disaster management, offering
advanced capabilities for monitoring, prediction, response, and recovery. It offers an innovative
solution that integrates knowledge from diverse data types and sources, enables the simulation of
realistic disaster scenarios, and detects emerging patterns with unprecedented speed. The following
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literature review examines key approaches and applications of Al in disaster management,
emphasizing their effectiveness, challenges, and potential for improving resilience [20].
The formula behind convolution operation in convolutional neural network for multi-class

classification is: kn kw C

Y(i,)) = Z ZZX(i +m,j+nc)xK(mn,c)+b
m=1n=1c=1
Where, input image XeR?*W*C | with height H, width W, channels C, and Y (i,)) is a feature
map value at location (i,j), with bias b.
Activation function is: (ReLU) is A(Z,j) = max(0, Y (i, j)), which introduces non-linearity.
And in order to reduce spatial size and capture dominant features, for a pooling window of pxp,
the max pooling layer formula is:

P(i,j) = maxgn nyepxp AL +m, j + 1)

The formula for Adam optimizer, which will be later used for building damage classification
task is follows, gradient at step t is g = VgL(8,), where &, is model parameters at step t, and
L is the loss function. From there exponential moving average of the gradient would as follows:
m,=Bym,_,+ (1 —B;)g,, wherem, is biased first momentum, while the second momentum
estimate is: v, = B,v,_, + (1 — B,) g7

And the parameter update rule is given by:
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Table 1 — Building damage classification CNN models

Reference | Model [Dataset/ city] Metric Accuracy Size Number of Building
of image epoch / batch features
size
[9] U-Net, Inria Dice metric [97.95% |(512x512) 200 shapes, structures,
ResNet Dataset, Test textures, and
America colours
[10] UNet, Xinxing Accuracy | 84.9 % (900 x 900) to |50 /2 detecting new, old
ResNet | County, (1024 x 1024) buildings
China
[11] U-Net, Boston IoU 82.2 % (1500%1500) |60 residential

ResNet50 accuracy buildings in urban

settings
[12] U-Net, Chicago F1 score 86 % (5000 x 5000) |50/ 4 shadow, man-

ResNet | dataset cutto (512 x made non-

V2 512) building features,
heterogeneity of
roof

[13] U-Net, Nashik, Accuracy |89 % (512x512) |25/16 residential,

ResNet34 | Maharastra industrial, holy

places
[14] U-Net, SpaceNet |Accuracy |[84.7 % (650 x 650) building footprint
ResNet34 extraction

Recent literature on CNN-based building damage classification consistently shows that encoder—
decoder segmentation architectures, most commonly U-Net paired with ResNet backbones, are
effective for extracting building footprints and diagnosing damage from high-resolution aerial and
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satellite imagery [15, 16]. Across diverse datasets such as Inria, SpaceNet, and city-scale datasets
such as Boston, Chicago, Xinxing County, and Nashik, these hybrid models benefit from the strong
feature-extraction capacity of ResNet variants and the spatial-precision of U-Net decoders. Reported
performance varies by dataset and task metric, ranging from very high Dice scores on clean building-
extraction tasks (=97.9% on Inria) to more modest [oU/F1 results (=82—-86%) in urban settings
where roof heterogeneity, shadows, and surrounding man-made features complicate segmentation.
Differences in image resolution, pre-processing, and experimental setup strongly influence outcomes.
Studies using large original tiles (e.g., 1500%1500 or 5000x5000) that are cropped to smaller patches
(commonly 512x512) enable models to learn both contextual and fine-grained cues; however, varying
patch sizes and batch/epoch regimes (examples: 200 epochs at 512x512 vs. 50 epochs with batch
size 2 at 900-1024 tiles) make direct comparison difficult. Performance also depends on the target
labeling: tasks focused on building footprint extraction tend to report higher segmentation metrics,
whereas damage classification, especially distinguishing new vs. old or partially damaged buildings,
suffers from lower recall/F1 because the visual cues of damage are subtle and dataset imbalance is
common [9-14].

Common challenges and recommended directions emerge from these works. First, data
heterogeneity between different cities, roof materials, shadows, and non-building objects requires
robust augmentation, domain adaptation, or fine-tuning strategies to transfer models between regions.
Second, combining spectral, temporal (pre/post-disaster) and contextual metadata often improves
damage detection beyond single-image segmentation.

Results and discussion

Building on the insights from existing research, the proposed system architecture is designed to
address the challenges of fragmentation, real-time data processing, scalability, and security in disaster
management. It is an integrated, Al-driven platform that analyzes pre-disaster and post-disaster
imagery to assess structural damage in buildings following an earthquake. This system architecture
could be described as modular, cloud-native, and it is organized around microservices to provide
flexibility, fault tolerance, and ease of deployment. The pivotal component of the whole system is the
Data Ingestion Layer, which aggregates data from lots of sources, such as satellite and drone images,
IoT sensor data from in-situ devices, and historical building records. This layer facilitates both batch
and real-time data collection through secure APIs and automated upload pipelines. After collection,
the data enters the Middleware and Communication Layer, which operates as the platform’s central
nervous system. Here, the Middleware using Kafka or RabbitMQ integrates message queues and
event brokers to transform the data, adapt formatting, and ensure proper, asynchronous module
communication, which thus, upon dealing with integration gaps specified in the literature, facilitates
the whole process [17]. The Al and ML layer is the system intelligence hub. It has a collection
of microservices, which are containerized and can be updated independently. They perform tasks
such as building detection, comparing pre- and post-event images, and deep learning models for
damage classification. These models are fine-tuned for speed and reliability, supporting both real-
time inference and batch processing after the incident.

The Decision Support Layer, for example, gets the outputs from this layer and it is here that the
various outputs such as damage scores, heatmaps, and risk assessments that are generated and
presented through a web dashboard. The dashboard was created specifically for emergency response
teams with visual tools and prioritization recommendations to help them during rapid and informed
decision-making. The entire architecture is underpinned by the Storage and Data Management Layer,
which is solid and robust. It makes use of distributed object storage for high-resolution images and
structured databases like PostgreSQL for metadata and model outputs. Data versioning, indexing,
and lineage tracking are implemented to ensure auditability and traceability which are key requirements
in disaster scenarios. To prevent breaches of sensitive information, the system incorporates a Security
and Access Control Layer that implements role-based access, encrypts data both at rest and during
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transit, while also maintaining comprehensive audit logs for accountability. The system, in the end,
is built not only for scalability but also for fault tolerance. This is achieved by each microservice
being horizontally scalable which enables the system to burst during high traffic moments under a
natural disaster. Health checks, load balancing, and redundancy mechanisms will keep the system
working even though not all parts are functioning correctly. Simply, all these architectural decisions
are behind a strong, intelligent, and capable platform that can deliver timely and reliable post-
earthquake building damage assessments.
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Figure 3 — Proposed system architecture

To evaluate the effectiveness of the proposed architecture, we implemented and tested the Al-
based damage classification component, which plays a central role in the system’s analytical layer.
This component would be integrated within the broader microservices framework described earlier,
enabling seamless data flow from ingestion to analysis and visualization. Approach for building
damage assessment using satellite imagery is to pose the problem as a combination of segmentation
and classification tasks and to train deep-learning models on pre-disaster and post-disaster satellite
images. The problem of damage classification can be thought of as a change detection problem, where
the change is to be calculated over a period of time with a pair of pre- and post-disaster images [22].
The model was trained using the xBD dataset by Maxar and Microsoft Al for Earth is a large-
scale satellite imagery dataset for building damage assessment, containing pre- and post-disaster
imagery with building footprint annotations and damage classifications (No Damage, Minor, Major,
Destroyed). The method of identifying damage level is that the model firstly represents a particular
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building as a polygon and assigns a damage class to the polygon by comparing the difference between
polygon representation of pre- and post-disaster satellite imagery.

Figure 4 — Satellite imagery and polygon representation

This CNN architecture is designed for 4-class building damage classification. It begins with
three convolutional blocks (Conv2D — MaxPooling — BatchNorm), progressively reducing spatial
dimensions while increasing feature depth. The output is flattened and passed through a dense layer
with 128 units, followed by dropout for regularization. Finally, a dense output layer with 4 units
predicts the damage class. The subsequent part enumerates the performance statistics of the building
damage classification model, underscoring its precision, trustworthiness, and realistic utility in post-
earthquake scenarios. These findings also provide information on the effectiveness of the system
in actual circumstances thereby serving to prove the practicability of the use of Al in decision
support within the system. The training and validation accuracy curves in the top plot show that the
CNN model consistently achieves around 75.5% accuracy, with little improvement over 30 epochs,
indicating early convergence. Meanwhile, the loss curves in the bottom plot demonstrate that training
loss steadily decreases, while validation loss fluctuates, suggesting that the model may be overfitting
slightly or struggling to generalize, especially due to class imbalance.
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Figure 5 — Accuracy and loss function graph
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Table 2 — Confusion matrix

precision recall fl score support
class 0 0.76 1.00 0.86 6935
class 1 0.31 0.06 0.10 514
class 2 0.5 0.02 0.04 1675
accuracy 0.77 9124
macro avg 0.52 0.36 0.33 9124
weighted avg 0.68 0.77 0.67 9124

The matrix shows that the model is biased toward class 0, which dominates the dataset. Class
0 achieves strong performance with a precision of 0.76, perfect recall of 1.00, and an F1 score of
0.86, indicating that almost all instances of this class are predicted correctly. In contrast, the minority
classes perform poorly. Class 1 and 2 have modest precision, but a low recall, which results in a
weak F1 score, meaning most true instances of this class are missed. Overall accuracy is 0.77, but
this is misleading because it is mainly driven by the number of correctly classified class 0 samples.
The macro average precision 0.52, recall 0.36, F1 0.33 highlight poor balance across classes. The
performance on classes 1 and 2 is very likely linked to their much smaller support compared to class
0. As a result, it learns to prioritize predicting the majority class, since doing so maximizes overall
accuracy.

Afterbalancing the datasetacross classes and adopting the SiamUnet model which is more effective
compared to traditional sequential CNN model, we see improvements in results, as shown in table 3.
The architecture of the model consists of two identical U-Net encoders and decoders that process the
pre- and post-event images separately. Each branch extracts multi-scale features using convolutional
and pooling layers, followed by symmetric upsampling and decoding. After individual decoding, the
Siamese module computes the difference between feature maps (bottleneck 2 and bottleneck 1) to
capture the extent and location of changes. These difference maps are then progressively upsampled
and concatenated with encoder differences from earlier layers, enabling the network to reconstruct
fine-grained change patterns. The model was trained using the Adam optimizer with a learning rate
of le-4 and batch size of 8, training on 20 epoch. Two types of experiments were conducted:

Cross-event training: where model was trained randomly on all 19 different disaster events
included in xBD dataset.

Event-specific training: where model was trained and evaluated only on images from Mexico
City earthquake, following the 80/10/10 proportional split.

The results demonstrate significant improvements. It can be observed that the model performed
better in classes 0 (no damage) and 2 (major damage), than in class 1 (minor damage), even though
the dataset was balanced across classes. We can deduce that it might be because classes 0 and 2 have
higher and more pronounced visual signs compared to minor-damaged-class. Interestingly, when
the model was trained on earthquake specific dataset, classes 0 and 2 improved, whereas class 1 did
not. It might be because earthquake-specific training is best at enhancing only distinctive cues, while
minor damage class can be visually ambiguous, and poor satellite resolution can make it overlap with
class 0.

Table 3 — F1 score for general and earthquake specific training

Class 0 Class 1 Class 2
Metric fl score fl score fl score
General 0.88 0.25 0.41
Earthquake-specific 0.89 0.21 0.43
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Conclusion

The proposed architecture presents a scalable, Al-driven, and cloud-native platform designed
to deliver timely and reliable building damage assessments in the aftermath of earthquakes. By
integrating diverse data sources, including satellite imagery, drone captures, [oT sensor readings, and
historical records, the system ensures a realistic view of disaster impact. Its modular microservices
design, supported by middleware for seamless communication and a robust storage layer, provides
flexibility, resilience, and high performance. The inclusion of advanced Al and deep learning models
enables accurate detection, classification, and visualization of structural damage. As the present
work concentrates on the conceptual design of the disaster management architecture, future efforts
will focus on completing the full system architecture. The next steps will involve developing the
data ingestion layer to enable seamless integration of satellite/drone imagery, loT sensor feeds,
and building records. Additionally, work will extend to building the decision support layer, with an
interactive dashboard that translates Al outputs into actionable insights for emergency responders.
Efforts will also include establishing the storage and data management layer with distributed storage,
indexing, and auditability, along with implementing the security and access control to safeguard
sensitive information. Additionally, advancements in edge computing can be leveraged to bring
Al inference closer to disaster sites, reducing latency and enabling offline operation in bandwidth-
constrained environments.

This study demonstrated the potential of CNN-based models for building damage classification
within disaster management systems. The results show that while the model performed strongly on
class 0 (no damage), it struggled with classes 1 and 2. This imbalance highlights the challenges posed
by unequal class distributions, where the majority class dominates training outcomes while minority
classes remain underrepresented. After ensuring more balanced learning across all categories, classes
0 and 2 showed great performance, while class 1 struggled because of low visual cues and poor
image quality that make it hard to capture subtle nuances of class 1. To address this, future work will
focus on two main directions. First, I plan to incorporate Transformer-based architectures, which can
capture richer contextual relationships and long-range dependencies, improving recognition of subtle
classes. These improvements are expected to enhance the model’s robustness and make it more
reliable for real-world disaster management applications.

REFERENCES

1 Our World in Data. (n.d.). Decadal average: Death rates from natural disasters*. Our World in Data
(access: August 24, 2025). URL: https://ourworldindata.org/grapher/decadal-average-death-rates-from-
natural-disasters.

2 Our World in Data. (n.d.). Decadal average: Economic damages from disasters as a share of GDP.
Our World in Data (access: August 24, 2025). URL: https://ourworldindata.org/grapher/decadal-economic-
disasters-type.

3 Koshy, M., & Smith, D. Community resilience implications for institutional response under uncertainty:
Cases of the floods in Wayanad, India and the earthquake in Port- au- Prince, Haiti. Sustainable Development,
32(2), 1412-1427 (2024).

4 Murayama, Y., Scholl, H. J., & Velev, D. Information technology in disaster risk reduction. Information
Systems Frontiers, 23(5), 1077-1081 (2021).

5 Nasar, W., Da Silva Torres, R., Gundersen, O. E., & Karlsen, A. T. The use of decision support in
search and rescue: A systematic literature review. ISPRS International Journal of Geo-Information, 12(5), 182
(2023).

6 Kamal Paul, S., & Bhaumik, P. Disaster management through integrative ai. In Proceedings of the 23rd
International Conference on Distributed Computing and Networking (2022, January), pp. 290-293.

7 Benssam, A., Nouali-Taboudjemat, N., Nouali, O., & Kabou, A. A middleware platform
for decision support in disaster management. In 2017 4th International Conference on Information
and Communication Technologies for Disaster Management (ICT-DM). IEEE (2017, December),

pp. 1-8.
263



HERALD OF THE KAZAKH-BRITISH
No. 4(75) 2025 TECHNICAL UNIVERSITY

8 Pillai, A.S., Chandraprasad, G.S., Khwaja, A.S., & Anpalagan, A. A service oriented [oT architecture
for disaster preparedness and forecasting system. Internet of Things, 14, 100076 (2021).

9 Aghayari, S., Hadavand, A., Mohamadnezhad Niazi, S., & Omidalizarandi, M. Building detection
from aerial imagery using inception resnet unet and unet architectures. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 10, 9-17 (2023).

10 Alsabhan, W., Alotaiby, T., Dudin, B. Detecting buildings and nonbuildings from satellite images
using U-Net. Comput. Intell. Neurosci (2022). https://doi.org/10.1155/ 2022/4831223.

11 Alsabhan, W., & Alotaiby, T. Automatic building extraction on satellite images using Unet and
ResNet50. Computational Intelligence and Neuroscience, 2022(1), 5008854 (2022).

12 Erdem, F., & Avdan, U. Comparison of different U-net models for building extraction from high-
resolution aerial imagery. International Journal of Environment and Geoinformatics, 7(3), 221-227 (2020).

13 Vasavi, S., Somagani, H. S., & Sai, Y. Classification of buildings from VHR satellite images using
ensemble of U-Net and ResNet. The Egyptian Journal of Remote Sensing and Space Sciences, 26(4), 937-953
(2023).

14 Van Etten, A., Lindenbaum, D., & Bacastow, T.M. SpaceNet: A Remote Sensing Dataset and Challenge
Series. ArXiv, abs/1807.01232 (2018).

15 Mohammad, A., Gullapalli, O. S., Vasavi, S., Jayanthi, S., Updating of GIS maps with Change Detection
of Buildings using Deep Learning techniques, 2022 International Conference on Futuristic Technologies
(INCOFT), Belgaum, India, 2022, pp. 1-6. https://doi.org/10.1109/INCOFT55651.2022.10094545.

16 Kaku, K. Satellite remote sensing for disaster management support: A holistic and staged approach
based on case studies in Sentinel Asia. International Journal of Disaster Risk Reduction, 33, 417-432 (2019).

17 Razzaque, M.A., Milojevic-Jevric, M., Palade, A., & Clarke, S. Middleware for internet of things: a
survey. IEEE Internet of things journal, 3(1), 70-95 (2015).

18 Sun, W., Bocchini, P., & Davison, B. D. Applications of artificial intelligence for disaster management.
Natural Hazards, 103(3), 2631-2689 (2020).

19 Khan, S.M., Shafi, L., Butt, W.H., Diez, [.D.L.T., Flores, M.A.L., Galan, J.C., & Ashraf, I. A systematic
review of disaster management systems: approaches, challenges, and future directions. Land, 12(8), 1514
(2023).

20 Raj, A., Arora, L., Girija, S.S., Kapoor, S., Pradhan, D., & Shetgaonkar, A. Al and Generative Al
Transforming Disaster Management: A Survey of Damage Assessment and Response Techniques. arXiv
preprint arXiv:2505.08202 (2025).

21 Pu,E,Li,Z., Wu, Y., Ma, C., & Zhao, R. Recent Advances in Disaster Emergency Response Planning:
Integrating Optimization, Machine Learning, and Simulation. arXiv preprint arXiv:2505.03979 (2025).

*Kaiinyaiaes MLA.,
nokropant, ORCID ID: 0009-0000-7727-9095,
*e-mail: mi_kaidullayev@kbtu.kz
TAxkanaoBa AJK.,
PhD, npodeccop, ORCID ID: 0000-0002-1141-7595,
e-mail: a.akzhalova@kbtu.kz

'Kaszakcran-bpuran TeXHUKaIIBIK YHUBEPCHTETI, AJIMATHI K., KazakcTan
ATIATTAPIBI BACKAPY )KYWECIHIH )KYHUEJIK APXUTEKTYPACHI

Angarna

KnumarTelg e3repyiHiH jkemenneyi *KoHe Kajda XalKbIHBIH ecyl jKarmaiiblHaa TaOuWfw amaTTapZblH KU
MEH aybIpJIbIFbl alTapJIbIKTail apThIl, WHPPAKYPbUIBIMFA, YKOHOMHUKAJBIK TYPAKTHUIBIKKA XKOHE aJaM eMipiHe
eneyni Kayin Tenaipyae. JKep CUIKiHICTEpi, Cy TAaCKbIHIAphI JKOHE JAybUIAAp CUSKTHI TaOWFU amarTap KeOiHece
KYPBUIBIMJIBIK 3aKbIMIAHYJIApFa oKeJe/l, Oyl TOTEHIIE jKaraaiiap/pl JKOIFa J)KoHE pecypcrapabl THIMII Oeryre
JKEJIeIT 9pi Ao7 OaranayIblH KaXKeTTUTIrH apTThipaasl. OChl CBIH-KaTepiepre xKayar peTiHae OyJ1 3epTTey/e )KacaHabl
nHTeIUIeKT TeH loT TexHonormAnmapelH OipiKTIpeTiH THOPUATI apXWUTEKTypara HETi3NeNreH FUMapaTTapAblH
3aKpIMJAHYbIH Oarajay MOJEN YCBIHBUIAAbL. 3epTTey CMapT-UHTEIUICKT JKYHeNnepiHae aBTOMaTTaHIBIPYIHL,
AIIBIKTBIKTBl JKOHE TYPAKTBUIBIKTBI apTTHIPY YIIIH 3aTTap WHTEPHETI MEH JKacaHAbl MHTEIUISKTTIH KeIIeH/I
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MHTErPAIUSICHIH MalianaHa bl ¥ ChIHBUIFAH JKYHE anarka ACUIHT1 )KOHE anmarTaH KeiiHri aspodororycipitiMaep i
JKMHAII, TAJI1ay apKbIIbl FUMapaTTap/IblH 3aKbIMJIaHy JICHIeHiH «3aKbIMIaHOaFaH» KYHJIeH OacTarl «TOJIBIK KHpaFaH»
JIeHreire neiinri caHartapra skikrelai. COHBIMEH Karap, MOJENb KEHEWTUIreH amarrapibl Oackapy sKyleciHe
OIpIKTIpUTiN, TEOKEHICTIKTIK MHTEp(ErcTe 3aKbIMIaHy KOPCETKIMITEPiH KOPHEKI Typie YChIHAABL. By mrermrim
KaOBIIIayIIbUIapra 3apAal MeKKeH aiMaKTapasl THIMII Oaranayra, 0achIM OaFbITTapIbl alKbIHAAyFa JKOHE araTKa
KapChI iC-KUMBUIIAP/I6I OHTAUIAHABIPYFa MYMKIHIIK Oepe/ii. ¥ ChIHBUIBIN OThIPFaH KYyie MEMIIEKETTIK OpraHaapra,
YKIMETTIK eMec YibIMIapFa )KoHe aJFalliKbl KOMEK KOpCeTyIIiepre anaTTal KeHiHri KarFaiinap/aa sxeaen, el
JKOHE YaKTBUIbI IIENTM KaObl11ayabl KOJiayFa OarbITTalFaH.

Tipek ce3nep: anarrapasl 6ackapy, 3aKbIMIaHY/Ibl aHBIKTAY, TAOUFHU anarrap, >KYHelliK apXuTeKTypa, apaiblk
Oarnapnama, XKV, 3aTTapapiH HHTEpHETI
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CUCTEMHAA APXUTEKTYPA IJ151 CACTEMBbI YIIPABJIEHU A
CTUXUUHBIMU BEJACTBUAMU

AHHOTAIHUA

B 3moxy ycKOpSIFOLIErocsi U3MEHEHHUsT KIIMMara U POCTa FOPOJACKOr0 HACENICHUsSI YaCTOTa U WHTEHCHBHOCTH
CTUXHUIHBIX OSICTBUI 3HAYUTEIHLHO BO3POCIH, PEICTABIISISL CEPhE3HYIO YTPo3y HHPPACTPYKTYpPE, SIKOHOMUUECKOI
CTaOMJILHOCTH U JKU3HHM Jtofieil. Takue cTuXuitHble OEACTBHS, KaK 3eMJICTPSICEHHSI, HABOJHEHHSI U yparaHbl, 4acTo
MPUBOJAT K OOLIMPHBIM pa3pyIICHHUSIM 3[aHuil, TpeOys ObICTPON U TOUHON OLIEHKH JIJIsl SKCTPEHHOTO PearnpoBaHus
U pacrpeesieHus: peCcypcoB. B 0TBET Ha 3TH BBI30OBHI B TJAHHOH padoTe mpencTaBlicHa MOJEITh OIICHKH yiiepOa 3/1a-
HUSM Ha OCHOBE IIYOOKOTO OOyYCHWS, UCIIONB3YONIAsi THOPUIHYIO apXUTCKTYPY, COUCTAIOIIY) HCKYCCTBECHHBIIN
WHTEJUICKT ¥ UHTEpHET Belel. JlanHoe ucciieoBaHne 00beANHICT HHTEPHET BEIIEH U MCKYCCTBEHHbBIH HHTEIICKT
JUTS TIOBBIIICHHST ABTOMATU3AIINH, TPO3PAYHOCTH U YCTOMYMBOCTH MHTEIUIEKTYabHBIX cucTeM. CrcTeMa mpeHas-
Ha4yeHa s cOopa 1 aHanmu3a a3po(OTOCHUMKOB [0 M IOCTIE CTHXUITHBIX OeICTBUI I KITacCU(PHUKAIINN 3MaHUHA 1O
KaTeropusM yiepoa — OT HEMOBPEXKCHHBIX J10 pa3pylIeHHbIX. Kpome Toro, Mbl HHTEIpUpyeM MOJIeIb B OoJiee Iiu-
POKYIO CHCTEMY YIPaBICHHS CTUXUHHBIME OCIICTBUSMHU, KOTOPasi BU3yaIM3UPYET OICHKH yiepOa B IreomnpoCcTpaH-
CTBCHHOM HHTepeiice, MO3BOJISS JTUIaM, IPUHUMAIOIINM PEIICHUS, OIPEICISITh IPUOPUTETHOCTD TTOCTPAIaBIINX
palioHOB M ONITHMHU3UPOBATh MEPHI pearnpoOBaHMs Ha CTHXUHHBIC OCICTBU. DTa CHCTEMa IPHU3BaHa IIOMOYb TOCY-
JIAPCTBEHHBIM YUPEIKICHHUSIM, HETPABUTEILCTBEHHBIM OPraHU3AIMSAM U CIY)K0aM OBICTPOTO PearupoBaHUs IPUHH-
Marh 00OCHOBaHHbIC U CBOCBPEMEHHBIE PEIICHHUS B CUTYAIHSX [0CJIEe CTUXUHHBIX OSICTBHUIA.

KaioueBble cioBa: Gopbba co CTUXMUHBIMH OCJCTBUSIMU, OOHapyeHHe yiiepOa, CTHXHIHbIE OelCTBUS,
CHCTeMHas apXUTEKTypa, IPOMEKYTOUHOE NporpaMmuoe obecrieuenne, VI, narepHer Beniel.
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