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DEVELOPMENT OF A REAL-TIME UAV RECOGNITION
MODEL BASED ON YOLOV10 NEURAL NETWORK

Abstract

The paper deals with the development of a model for real-time recognition and classification of UAVs and
birds based on the training of the YOLOv10 neural network. The research area is considered relevant in connection
with the problems of UAV detection in the context of security, given their growing use in various fields. A dataset
consisting of 6,255 images collected from proprietary archives and public resources is trained to train the model.
The process of data annotation, augmentation and distribution was implemented using Roboflow.com service.
The model was trained on NVIDIA GeForce RTX 4080 GPU using Ultralytics framework. Test results showed
high recognition accuracy with mAP50 and mAP50-95 metrics exceeding previous versions of YOLO. The model
demonstrates the ability for efficient object segmentation and tracking, which makes it promising for optoelectronic
surveillance applications. The results of the study can be useful for developers of UAV and bird detection and
classification systems, as well as for improving safety in various fields.

Keywords: neural networks, classification, recognition, optoelectronic surveillance channels, UAVs, YOLO,
convolutional neural networks.

Introduction

Real-time recognition of unmanned aerial vehicles (UAVs) through surveillance cameras using
neural networks and visual detectors is an urgent area for scientific research. This is driven by the
need for public and state security, as UAVs are now being actively used for illegal activities including
espionage, smuggling delivery, and combat raids. UAV recognition detection systems are designed
to detect such threats in a timely manner and take appropriate measures to neutralize them. They
also play an important role in protecting critical infrastructure such as airports, power plants and
government buildings where there is a high risk of potential attacks.

The scientific novelty of the study lies in applying the YOLOvV10 architecture — featuring dual
label assignment, consistent matching metrics, and NMS-free design — to the task of real-time UAV
and bird recognition. The work demonstrates improved mAP50-95 accuracy over previous YOLO
versions on a custom dataset and shows the model’s capability for efficient segmentation and tracking.
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The originality stems from adapting and validating the newly introduced YOLOv10 mechanisms
specifically for small, fast-moving airborne objects in optoelectronic surveillance systems.

Real-time drone recognition helps enforce flight regulations and control restricted areas. This
is especially important when there are strict requirements and restrictions on the use of UAVs in
certain areas, such as military bases and private territories. Modern neural networks and machine
learning algorithms have the ability to process large amounts of data, which provides high accuracy
recognition and opens new opportunities for developing effective monitoring systems. Such systems
can be integrated with existing video surveillance systems, making them more affordable and efficient.
The algorithms used as software modules for UAV detection and recognition in optoelectronic
surveillance channels are YOLO, Faster R-CNN, and SSD. The authors found that single-stage
YOLO detectors and two-stage Faster R-CNN algorithms compared to SSD provide better accuracy
of UAV recognition, while the latter algorithm is also effective in target detection tasks [1]. However,
according to the research results presented trained YOLO models outperform Faster RCNN in terms
of accuracy metrics and speed (frames per second — FPS), which makes the former algorithm more
promising for real-time UAV and bird recognition and classification tasks [2—4]. Considering the
recent advances in the improvement of UAV recognition models based on the YOLO algorithm,
we should mention the works [2-9]. The authors prepared a dataset in the form of UAV images for
training the YOLOV2 neural network [2]. As a result of training, the model reached the maximum
value of mAPS50 (average accuracy at the threshold of intersection of bounding boxes 50%) — 0.75.
The authors studied the features of UAV recognition by YOLOvV3 neural network models [3]. By
evaluating the qualitative performance of the trained experimental model, it is proposed to introduce
densely connected modules to improve the inter-layer connectivity of convolutional neural networks,
thereby improving the accuracy and FPS. As a result, the proposed model demonstrated mAP50-
95 values of 0.36 and 60 FPS, which outperform the original YOLOv3 model by 0.03 and 24.45
FPS, respectively. The mAP values presented are not equivalent, as mAP50-95 defines the average
accuracy at the 95% bounding box crossing threshold, which implies comparatively lower values
compared to mAP50 [2, 3]. A better model of the YOLO architecture, YOLOV4, is used where the
authors achieved mAP50 values of 0.75, which is consistent with the results of [2, 4]. However, the
YOLOv4 models can be considered preferable to the YOLOV2 algorithm primarily due to its higher
FPS, which is important for recognizing small objects such as UAVs in real time. YOLOVS was used
as a pre-trained neural network, which is currently considered to be the most popular model of the
YOLO architecture for solving the problems of recognizing and classifying any objects from a user’s
dataset, with training and inference available on the CPU [5, 6]. The neural network from the first
paper achieved a mAP50 value of 0.947, while the authors from trained the model to a mAP50 value
0f 0.904 [5-6]. The paper [7] presents the results of training more advanced versions of YOLO:

YOLOvVS: mAP50 - 0.912;

YOLOX: mAP50 - 0.887;

YOLOV7: mAP50 - 0.524;

YOLOV7-tiny: mAP50 - 0.85;

YOLOVS - 0.953.

However, the authors did not provide the performance of the mAP50-95 metric, which can
provide more reliable information about the quality of UAV recognition and detection [7]. In 2023,
Ultralytics presented an improved algorithm, YOLOV9 [8]. By incorporating programmable gradient
information (PGI) and an efficient layer aggregation network into the architecture, this model will
limit the loss of information in successive layers of a deep neural network. YOLOV9 like previous
versions utilizes a non-maximal suppression (NMS) algorithm in the post-processing stage, designed
to remove unnecessary object bounding boxes. Its use often discards useful predictions and increases
computational cost, which is detrimental to the detection and recognition performance of small and
maneuverable objects such as UAVs and birds. In this paper, a YOLOv10 model will be trained, which
by incorporating new post-processing techniques from the DETR architecture, is hypothesized to
increase the recognition and classification accuracy of UAVs and birds [9]. As an analytical accuracy
parameter that guarantees the effectiveness of the developed model, mAP50-95 is chosen.
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Materials and methods

A more advanced model for real-time recognition and classification of UAVs and birds is based
on the YOLOV10 algorithm. YOLOvV10 is a neural network based on two key principles: training the
model without NMPs and designing based on efficiency and accuracy. The first concept is provided
by integrating the advantages of neural networks of the DETR architecture, namely the use of dual
label assignment and a consistent metric for matching predictions (Figure 1).
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Figure 1 — Concept of the YOLOV10 model

The dual purpose of labels is defined by the architectural solution of using two Heads, where
the first Head performs One-to-One matching (provides only one prediction to each benchmark from
the user dataset without the use of NMPs) and the second Head performs One-to-Many matching.
By utilizing the One-to-Many branch, comprehensive and tight control is provided to ensure that
accuracy is maintained. Throughout the training phase, both Heads are used simultaneously, except
for the Inference (prediction) phase. At this stage, only the One-to-One branch is used, this decision
is made to reduce computational cost while maintaining the accuracy and efficiency of the model.
To guarantee the coincidence of the forecasts of the two branches, a consistent metric (or matching
metric) is used. The principle of operation of this metric is described by equation (1):

m(a,b) =d -p®-IoU(B,B)" (1)

where m is the corresponding accuracy metric (“One to One” or “One to Many”), d is the degree
of localization of the prediction reference point within the instance, p is the classification score, a
and b are the parameters defining the classification and localization tasks, respectively, IoU is the
parameter defining the area of overlap between the predicted and actual frames, is the bounding
boxes of the prediction and the instance, respectively. Matching the metrics of both branches ensures
that the best samples are matched, thus comprehensive learning control is realized. Designing a
performance-based model involves facilitating the classification channel by using two depth-separable
convolutions followed by a 1x1 convolution (point convolution). The point convolution allows
increasing the number of channels, while the depth convolution reduces the spatial dimensions, such
a solution allows reducing the computational cost, as well as preserving more useful information
in the downsampling stage. The accuracy orientation of the model is ensured by increasing the
dimensionality of kernels in deep convolution layers, as well as by using the partial self-awareness
module (PSM).

YOLOV10 supports 6 scales depending on the limitations of the computational resources of
the hardware. The YOLOv10m version, which represents a medium version for universal use, is
chosen for the experimental study. The dataset for training the neural network includes two classes of
images: UAVs and birds. The dataset files in the form of images and videos are taken from the UAV’s
own flight archive, as well as open-source resources Roboflow, Kaggle, Ultralytics, and GitHub. The
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stages of image annotation, augmentation and dataset distribution in the percentage ratio of 70/20/10
(training, validation and testing, respectively) are implemented in Roboflow.com service.

Training, validation and testing of the model (Figure 2) YOLOv10m is realized on the basis of
ADI103 graphics processor of NVIDIA GeForce RTX 4080 graphics card with support of CUDA
Toolkit 12.1. The program code in Python language is implemented in PyCharm 2024 environment
using Ultralytics framework, which allows using the open source resource of pre-trained YOLOv10
models. The following hyperparameters are set for training the neural network on the user set: number
of epochs: 300; packet size: 16; learning rate: 0.001; momentum: 0.9; weight drop: 0.0005 and image
size: 640. The trained YOLOvV10m model has a file size of “best.pt” of 101 MB. In order to determine
the FPS, the trained neural network is tested on inference using two test videos of UAV and bird
flights.

Figure 2 — Testing of the trained YOLOv10m neural network model

To compare the accuracy of the experimental neural network with the previous versions, the
YOLOv8m and YOLOv9m models corresponding in purpose were also trained on the user dataset.
The mAP50-95 metric was chosen as the comparative accuracy parameter to evaluate the ability of
visual detectors to recognize and localize small objects.

Results

Figure 3a-d shows the accuracy metrics of the YOLOv10m model trained on a custom dataset of
UAVs and birds.
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Figure 3 — Metrics of training results of the YOLOv10m neural network:
a - Precision; b - Recall; ¢ - mAP50; d - mAP50-95
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The frames of testing the trained model on the inferno using two videos of a DJI F450 UAV flight
and a bird are shown in Figure 4a, b.

;i;'ane 0.91§

bird 0.93

Figure 4 — Inference frames of the trained YOLOvV10m model:
(a) frame from the DJI F450 flight video; (b) frame of a bird (seagull) flight

Figure 5a, b shows the comparison plots of mAP50-95 accuracy metric and fast performance
(FPS) of YOLOv8m, YOLOV9m and YOLOv10m neural networks.
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Figure 5 — Comparison plots of mAP50-95 accuracy metrics and FPS of YOLOv8m,
YOLOvV9m and YOLOv10m neural networks

As aresult of the diagrams analysis we can conclude about the effectiveness of using the trained
YOLOv10m model in the tasks of recognition and classification of UAVs and birds in optoelectronic
surveillance systems.

Discussion

A dataset of 6255 UAV and bird images is prepared for training the experimental model of
YOLOvV10m neural network. After annotation and augmentation stages, the user dataset using
Roboflow.com service is distributed in the percentage of 70/20/10 for training, validation and testing
tasks, respectively. The training of experimental neural network resulted in the following maximum
values of accuracy metrics (Figure 4a—d):
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Completeness: 0.883;

Accuracy: 0.907;

mAP50: 0.953;

mAP50-95: by 0.628.

In terms of mAP50 metric, this model outperforms detectors from [2—7]. Comparing the mAP50-
95 metrics (Figure 5a), YOLOv10m outperforms YOLOvV8 by 0.058 and YOLOvV9 by 0.031 in terms
of accuracy, which proves the greater efficiency of the first model to recognize and localize small
objects such as UAVs and birds in the far-field surveillance area. In terms of FPS, YOLOv10m is
second only to the trained model YOLOv8m, which proves that the first model can be used in real-
time in optoelectronic surveillance channels, combining the segmentation and tracking functions of
small objects such as UAVs and birds.

Conclusion

1) Inorder to develop a new efficient model for UAV and bird recognition and classification, the
YOLOvV10m model is selected, which bypasses the Non-Maximal Suppression (NMS) algorithm in
its architecture by introducing the concepts of dual label assignment, consistent metric for prediction
matching and focus on accuracy and efficiency in design. A user dataset of 6,255 images is prepared
to train the experimental models, of which 4,379 (70%) are specifically designed for training, 1,251
(20%) are oriented for validation and the remaining 625 (10%) are used in the testing phase of the
neural network.

2) YOLOvI1O0m training is implemented on the basis of AD103 GPU of NVIDIA GeForce
RTX 4080 video card with CUDA Toolkit 12.1 support. As a result of evaluation of the obtained
accuracy metrics, YOLOV10 outperforms the known visual detectors YOLOv2, YOLOv3, YOLOV4,
YOLOVS, YOLOvV7, YOLOX and YOLOVS described by mAP50 [2—7].

3) To compare the efficiency of recognition and localization of small objects using the mAP50-
95 metric, previous versions of the YOLO algorithm: YOLOv8 and YOLOvV9 were trained on a user
dataset. YOLOv10m was 9% more accurate than the former and 5% more accurate than the latter.

4) As a result of testing the trained YOLOv10m neural network on inference, it is found that
this model is able to recognize and classify UAVs and birds in real time with high accuracy and
efficiency. According to the high FPS values (average 196 FPS), this model is capable of segmenting
and tracking localized objects, combining the classification task.

5) Theresults of this study will be useful to the developers of UAV and bird detection, recognition
and classification systems.
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YOLOV10 HEHPOH/IBIK )KEJICI HET'I3IH/IE HAKTBI
YAKBITTA YIHIKBIHICHI3 YIIY AITIITAPATTAPBIH
TAHY MOJEJIIH 93IPJIIEY

Angarna

Maxkamaga YOLOVIO HeHpOHIBIK JKETICIH OKBITy HETI3IHAE€ HAKTBl YaKbIT PEXHUMIHIC VIIKBIIICHI3
ylIy anmapartapbl MEH KYCTap/bl TaHy J>KOHE JKIKTEYy MOJENIH o3ipiiey KapacThIpbliajbl. 3epTTey OarbIThl
OpTYpIi canajapia onapAbl KOJJAHYAbIH apTyblH €CKepe OTBIPBIN, KayilCi3[iK TYPFBICHIHAH YIIKBIIICHI3 YIIIY
anmaparTapblH aHBIKTAy MACeJIeNIepiHiH ©3eKTUIriMeH OaiinaHbICThl. MOJENbi OKBITY YIIIH JKEKe MypararTap
MEH allbIK pecypcTapiaH KHHAIFaH 6255 cypeTTeH TYpaThiH IePeKTep KUBIHTBIFBI TabIHIAIbl. AHHOTALHUIIIAY,
JIEpeKTepAl KYIICHTY XKoHe TapaTy mporeci Roboflow.com KbI3MeTi apKBLTHI JKy3eTe achIpbUIAB. MOAETBIi OKBITY
ULTRALYTICS ¢peiimBopkin xonamana oteipbii, NVIDIA GeForce RTX 4080 rpadukaibik HpomeccopbiHaa
xyprizingi. Tecriney notmkenepi mAPSO sxone mAPS50-95 kepcerkimrepi Ooitbiaimia YOLO skemmiciniy an-
JIBIHFBI HYCKaJIapbIMEH CaJIBICTBIPFaHIa TAHY/IBIH JOFapbl JOJJITIH KepceTTi. Mojenb OOBEKTiIepai THIMIIL
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CerMEHTAIIMSUIAY JKOHE KaJaranay KaOlleTiH KepceTTi, OyJI OHbI ONTHKAJIBIK-JICKTPOHABI OaKpuidy JKyHenepiHe
KOJJIaHyFa MEepCIEeKTHBAIbI eTe/li. 3epTTey HOTHIKENEpPi YIIKBIIICHI3 YIy anmaparrapbl MEH KycTapibl aHbBIKTay
JKOHE JKIKTEY JKYHeNepiH a3ipieyliiepre, COHIal-aK apTypil cananap/a Kayirnci3maikTi apTTeIpyFa maiansl 00Iys
MYMKiH.

Tipek co31ep: HEUPOHIBIK JKETIIIEP, KIKTEY, TaHY, ONTHKAIIBIK-3JIEKTPOH I Oakbutay apHaiapsl, UAV, YOLO,
KOHBOJTIOIMSUTBIK HEHPOHIBIK KEIiIep.
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PA3PABOTKA MOJIEJIM PACITO3HABAHMUS BILJIA
B PEXXUME PEAJIBHOT'O BPEMEHUA
HA OCHOBE HEMPOHHOM CETHU YOLOV10

AHHOTALMA

B crarbe paccmarpuBaeTcst pazpaboTka MOJenH pacno3HaBanus U knaccuduxamuu BITJIA u nTuil B pexume
peasibHOTO BPEMEHHU Ha OCHOBE oOyucHwus HeliporHoit cetn YOLOV10. HampasneHue uccieqoBaHus CYMTACTCS
aKTyaJIbHBIM B CBsI3M ¢ npoOiemaMu oOHapyxeHust BIIJIA B koHTekcTe obecrieueHus 0e30MacHOCTH, YYUTHIBAs
HX pacTyllee HCIIOIb30BaHWE B pa3ninuHbIX cdepax. s oOydyeHHs MOIeny MOArOTOBIEH AaTaceT, COCTOSIINN
n3 6255 n3o0paxeHuii, COOpaHHBIX U3 COOCTBEHHBIX apXMBOB M OTKPHITHIX pecypcoB. IIponecc aHHOTHpOBAHMS,
ayTMEHTALlNU W paclpeeNIeHus JaHHBIX OBIT Peaj30BaH C MCIIOIh30BaHUEeM cepBrca Roboflow.com. O6yuenHwme
MOJICSTH IPOBOAMIOCH Ha rpadudeckom mporeccope NVIDIA GeForce RTX 4080 ¢ ucroab3oBaHueM (GppeiiMBOp-
ka Ultralytics. Pe3ynbrarsl TecTHpOBaHUs MOKa3aln BBICOKYIO TOYHOCTH pacro3HaBaHusi ¢ MeTpukamu mAPS0 u
mAPS50-95, npeBblnaromMy nokasarenu npeasiaymux sepeuit YOLO. Mogenb 1eMOHCTPUPYET CIIOCOOHOCTh K
3¢ PEKTUBHOM CETMEHTAalMN U TPEKUHTY OOBEKTOB, YTO JIETAaeT €€ MEePCIEeKTHBHON Ul IPUMEHEHUS B CHCTEMax
OTITHKOJIEKTPOHHOTO HAONIOAEH!. Pe3ynbraTel HCCIeI0BaHNS MOTYT OBITh TIOJIC3HBI ISl pa3padOTUNKOB CHCTEM
obHapyxenuns u knaccudurarun BIUUIA n nTri, a Takke A MOBBIIICHNS 0€30IIACHOCTH B PA3IMYHBIX 00TaCTSIX.

KioueBble cjioBa: HepOHHBIE CETH, KIIAaCCU(HKAIHS, PACTIO3HABAHUE, ONITUKOAIEKTPOHHBIE KaHaJIbl HaOIII0-
nenusi, BITJIIA, YOLO, cBepTouHble HEHPOHHBIE CETH.
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