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ӨЗIНЕ-ӨЗI ҰҚСАС ШЕШIМДЕРГЕ АРНАЛҒАН ФИЗИКАҒА 
НЕГIЗДЕЛГЕН НЕЙРОНДЫҚ ЖЕЛI (PINN) ӘДIСI

Аңдатпа
Жылу өткізгіштік пен газ динамикасы сияқты күрделі физикалық процестерді сипаттайтын дербес 

туындысы бар дифференциалдық теңдеулерді сандық әдістер арқылы шешу барысында көбіне үлкен 
есептеу қуаты қажет етіледі. Осы қиындықтарды шешу үшін соңғы жылдары ғылым мен техниканың 
назарында физикаға негізделген нейрондық желілер (Physics-Informed Neural Networks, PINN) ерекше 
орын алған. Бұл мақалада PINN әдісі арқылы жылу және газ динамикасы теңдеулерінің шешімдерін 
табу мәселесі қарастырылады. Дәстүрлі сандық әдістерден ерекшелігі, физикаға негізделген нейрондық 
желі әдісі физикалық заңдарды нейрон желісінің құрылымына енгізу арқылы есепті шешуге мүмкіндік 
береді. Яғни, шешім тек қана мәліметтерге емес, сонымен қатар теңдеудің өзіне бағынады. Мақалада 
PINN әдісінің архитектурасы, шығын функцияларының құрылымы және олардың жылу өткізгіштік және 
Эйлер теңдеулерімен байланысы нақты мысалдармен сипатталады. Сонымен қатар, есептің бастапқы және 
шекаралық шарттарын енгізу механизмдері және шешімдердің орнықтылығы мен дәлдігіне әсер ететін 
факторлар талданған. Нәтижелер арқылы PINN-нің тиімділігі мен болашақта күрделі көп фазалы, көпөлшемді 
есептерге қолдану мүмкіндігі көрсетілді. Сонымен қатар, PINN-нің есептеу үдерісін жылдамдату және 
тұрақтылығын арттыру бағытындағы зерттеулер де ұсынылған.

Тірек сөздер: PINN, өзiне-өзі ұқсас, жылу теңдеуi, Эйлер теңдеуi, соққы түтігі (shock tube).

Кiрiспе

Қазiргi таңда дифференциалдық теңдеулердi шешу әдiстерi ғылыми және инженерлiк 
есептерде кеңiнен қолданылады. Атап айтқанда, жылуөткiзгiштiк және газ динамикасы сияқ
ты күрделi физикалық құбылыстарды сипаттайтын дербес туындылы дифференциялдық 
теңдеулер (ДТДТ) – табиғи және техникалық процестердi модельдеудiң негiзгi құралдарының 
бiрi. Осындай есептердi сандық әдiстермен шешу көптеген жағдайларда үлкен есептеу ре
сурстарын талап етедi, әсiресе көпөлшемдi, шекаралық және бастапқы шарттары күрделi 
жүйелерде. Бұл шектеулердi жеңу мақсатында соңғы жылдары ғылым мен техникада физикаға 
негiзделген нейрондық желiлер (Physics-Informed Neural Networks, PINN) ерекше назарға 
iлiндi. 

PINN – машиналық оқыту мен классикалық физиканың синтезi болатын жаңа парадигма. 
Бұл әдiс алғаш рет (2019–2024 жж.) Raissi және т.б. [1–2] еңбектерде ұсынылып, кейiннен 
көптеген күрделi ДТДТ есептерiн шешуде тиiмдiлiгiн көрсеттi. PINN әдiсiнiң басты ерек
шелiгi – ол деректерге ғана емес, сонымен қатар физикалық заңдылықтарға (мысалы: энергия 



144

HERALD  OF  THE  KAZAKH-BRITISH 
TECHNICAL  UNIVERSITY          No. 4(75) 2025

сақталуы, масса сақталуы, импульс заңдары және т.б.) негiзделедi. Мұндай тәсiл модельдiң 
физикалық шындыққа сәйкестiгiн қамтамасыз етiп, мәлiметтердiң жеткiлiксiздiгi жағдайында 
да жақсы нәтиже алуға мүмкiндiк бередi. 

PINN әдiсiмен салыстырғанда классикалық әдiстер (мысалы: ақырлы элементтер әдiсi 
(FEM), ақырлы айырмалар әдiсi (FDM)) тор генерациясына, дәлдiкке және есептеу тұрақ
тылығына тәуелдi. Бұл әдiстер әсiресе көпөлшемдi, бейсызық немесе стохастикалық ДТДТ-де 
қиындықтарға тап болады. Ал PINN әдiсi кеңiстiктiк торларды қажет етпейдi, оның орнына 
кездейсоқ коллокациялық нүктелер арқылы шешiмдi үйретуге мүмкiндiк бередi. Сонымен 
қатар, PINN әдiсi параллельдi есептеуге ыңғайлы, бұл оны үлкен деректермен жұмыс iстеу 
мен нақты уақыттағы есептерге бейiмделуге мүмкiндiк бередi. 

Бүгiнгi таңда PINN әдiсi жылуөткiзгiштiк, Био теңдеулерi [3], Навье–Стокс [4], Коши 
есебі [5], реакция диффузиялық жүйелер, акустикалық толқындар [6], фазалық өрiс модельдерi 
сынды көптеген салаларда сәттi қолданылуда. Атап айтқанда, жылу мен газ динамикасы тең
деулерi физикалық процестердi сипаттаудың маңызды мысалдары ретiнде PINN әдiсiн қол
дануға өте қолайлы. Бұл есептерде шекаралық және бастапқы шарттар, сондай-ақ күрделi 
шешiм құрылымы жиi кездесетiндiктен, PINN әдiсiнiң артықшылықтары айқын байқалады. 

PINNs әдісінің даму барысымен, қазіргі жағдайы және болашақ зерттеу бағыттарымен 
жүйелі түрде [7] жұмыста танысуға болады. [8] әдебиетте PINN әдісін ғылыми есептеулерде 
қолданудың әртүрлі қырларын қамтитын кең көлемді шолу, оның ішінде PINN-есептегіштерін 
баптау, оқыту теориясының аспектілері, қолжетімді құралдар, болашақ бағыттар мен соңғы 
үрдістер, сондай-ақ дәлдік пен жинақталу мәселелері қарастырылады. PINN әдісінің эво
люциясына арналған шолу, оның ішінде Physics-Informed Kolmogorov-Arnold Networks 
(PIKANs) сияқты жаңа архитектуралар және олардың биомедицина, механика, геофизика 
және басқа салалардағы қолданылуы [9]-да талқыланады. Жасанды нейрондық желілерді 
(artificial neural networks – ANN) қолдану арқылы дифференциалдық теңдеулерді шешу әдісі 
[10]-да сипаталады. [11] мақалада авторлар дәстүрлі машиналық оқыту әдістерін физикалық 
заңдармен біріктіру арқылы күрделі жүйелерді модельдеу мен болжау үшін қолданылатын 
тәсілді сипаттайды, бұл тәсіл әсіресе дифференциалдық теңдеулермен сипатталатын физи
калық процестерге бағытталған.

Осы мақалада бiз өзiне-өзі ұқсас шешiмдерге негiзделген PINN әдiсiн пайдалана отырып, 
жылу және газ динамикасының iшiнара туынды теңдеулерiн шешудiң тиiмдi жолдарын қа
растырамыз. Бұл тәсiлдiң артықшылығы – ол аналитикалық шешiмге жақын, яғни өзiне-
өзі ұқсастық қасиетi бар шешiмдердi нейрондық желi арқылы қалпына келтiруге мүмкiндiк 
бередi. Осы бағыттағы зерттеулер PINN әдiсiнiң теориялық және қолданбалы мүмкiндiктерiн 
кеңейтiп, оны нақты физикалық процестердi модельдеуде кеңiнен қолдануға жол ашады.

Материалдар мен әдістер

Өзiне-өзі ұқсастық ұғымы
Өзiне-өзі ұқсас шешiм – уақыт немесе кеңiстiк масштабталғанда шешiмнiң формасы 

өзгермей, тек үлкейiп немесе кiшiрейiп отыратын сипат. Жалпы түрде шешiм келесiдей 
болады:

мұндағы f (·) – өзiне-өзі ұқсас профиль, ал α,  – масштабтау көрсеткiштерi [12].
Жылу теңдеуiне PINN қолдану
Зерттеуiмiзде тәжiрибе ретiнде жылу өткiзгiштiк және газ динамикасы теңдеулерiн 

шешу үшiн PINN әдiсiн қолдануды көрсетемiз. Бұл әдiстiң негiзiнде нейрондық желiнi тек 
қана деректерге емес, сонымен қатар физикалық заңдарға – дифференциалдық теңдеулерге 
бағынатын түрде үйрету қағидасы қалай болатынын нақтылаймыз.
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Жылу теңдеуі үшін модель

Аналитикалық шешiмi:

.
x – кеңістік координатасы;
t – уақыт;

  – өзiндiк ұқсастық айнымалысы;
 температура функциясы;

 PINN арқылы үйрелінетін өзіндік ұқсас функция.
 .

	
PINN шығын функциясы

  ,

MAE (Mean absolute error):

RMSE (Root mean square error):

x

-5 0
-2 +0.02
0 0
2 -0.02
5 0

Төмендегі 1-суретте жылу теңдеуі үшін аналитикалық және PINN шешімдерінің салыс
тырмасы ұсынылған. 

Сурет 1 – Жылу теңдеуі: аналитикалық және PINN шешімдерінің салыстырмасы 
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Нәтижелер мен талқылау

1D Эйлер теңдеулерi және өзiне өзі ұқсастық
Эйлер теңдеулерiнiң 1 өлшемдi формасы:

Соққы түтігі бастапқы шарттары:

PINN әдiсiне негiзделген шығын функциясы
1D Эйлер теңдеулерi үшiн PINN архитектурасы t және x айнымалыларын кiрiс ретiнде 

қабылдап, тығыздық , жылдамдық u(t, x) және қысым p(t, x) функцияларын болжайды. 
Бұл функциялардың көмегiмен келесi қалдықтар анықталады:

мұндағы,  – жалпы энергия. 
Осы қалдықтарды ескере отырып, шығын функциясы келесi түрде жазылады:

мұнда  – мәліметтерге (data) негізделген (мысалы, MSE), ал – физикалық қалдықтардан 
тұратын бөлік:

мұндағы  – физикалық нүктелер саны, ал  – физикалық заңдарды сақтау салмағы. Бұл 
функция PINN моделiнiң физикалық заңдарды сақтап шешiм үйренуiне мүмкiндiк бередi.

Эйлер теңдеуі үшін соққы түтігі жағдайында PINN нәтижеci 2-суретте ұсынылған.
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Сурет 2 – PINN нәтижеci: Эйлер теңдеуі (соққы түтігі жағдайы)

PINN моделi және шығын функциялары
PINN архитектурасы 
PINN архитектурасы – көпқабатты перцептрон (MLP) түрiнде құрылады. Мысал ретiнде, 

3 жасырын қабатты нейрондық желi қарастырайық (3-сурет). Оның кiрiсiнде x және t айны
малылары (кеңiстiк пен уақыт), ал шығысында (t, x) шамасы берiледi, мұндағы θ – модель 
параметрлерi (салмақтар мен ығысу).

Сурет 3 – PINN моделi архитектурасы (Қосымша A негiзiнде)

Желi қабаттарының жалпы сипаттамасы: 
�	 Кiрiс қабаты: x, t мәндерiн қабылдайды. 
�	 Жасырын қабаттар: активация функциясы ретiнде tanh немесе sin пайдаланылады.
�	 Шығыс қабаты: (t, x) – шешiмнiң жуықталған мәнi.

Шығын функциялары
PINN-нiң негiзгi ерекшелiгi – оның шығын функциясы физикалық қалдықтарды да 

қамтиды. Жалпы шығын функциясы келесi түрде жазылады:

				    					     (1)
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Мұндағы:
�	  – мәлiметтерге негiзделген шығын (мысалы, нақты өлшемдермен салыстыру); 
�	   –  физикаға негiзделген қалдықтар: ; 
�	  – салмақ параметрлерi.
Физикалық қалдықтар  – жылу немесе басқа теңдеулердiң шешiмiндегi теңсiздiктер 

арқылы анықталады. Мысалы, жылу теңдеуi үшiн жоғарыда берiлген формасын тағы да бiр 
еске саламыз:

				    . 			   (2)

Мұнда α – диффузия коэффициентi,  – физикалық нүктелер саны. Модельдiң басты 
артықшылықтары: 
�	 Шешiмнiң физика заңдарын бұзбай үйренуi; 
�	 Деректер аз болған жағдайда да жұмыс iстей алуы; 
�	 Бастапқы және шекаралық шарттарды оңай енгiзу мүмкiндiгi; 
�	 Жоғары өлшемдi есептерге бейiмдеуге болатын икемдi құрылым.

Қорытынды

Осы мақалада бiз PINN әдiсi арқылы жылу теңдеуi және газ динамикасы теңдеулерiн 
(Эйлер теңдеулерi) шешудiң мүмкiндiктерiн қарастырдық. PINN – бұл физикалық жүйелердi 
модельдеудiң жаңа парадигмасы болып табылатынын дәлелдедiк. Ол сандық әдiстер мен 
машиналық оқытудың үйлесiмiн қамтамасыз етiп, дәстүрлi дискретизация әдiстерiне балама 
ұсынатынын көрсеттiк. Өзiне өзi ұқсас шешiмдер PINN моделiнiң тиiмдiлiгiн арттырып, оқу 
уақытын қысқартатыны көрсетiлдi. Бұл тәсiл әсiресе аналитикалық шешiмi жоқ күрделi дербес 
туындылы дифференциялдық теңдеулер үшiн пайдалы екенiн анықтадық. PINN әдiсiнiң 
қазiргi таңда әлеуетi өте жоғары, алайда ол да жетiлдiрудi қажет ететiнiн мойындауымыз 
керек. Болашақ зерттеулерге келесi бағыттарды ұсынуға болады: 
�	 Мультифизикалық есептер: PINN бiрнеше теңдеулерден тұратын жүйелерге (мысалы, 

кеуектi серпiмдi, көп фазалы ағын) кеңейтiлуi мүмкiн [13]; 
�	 Есептiң өлшемiн үлкейту: Қазiргi жұмыс бiр немесе екi өлшемге негiзделген. Алдағы 

мақсат – үш өлшемдi кеңiстiктiк және уақыттық есептерге бейiмдеу; 
�	 Адаптивтi торлармен бiрiктiру: Тор тығыздығын қалдық мәнiне қарай өзгертiп отыратын 

PINN түрiн жасау – есептеу тиiмдiлiгiн арттыруға сеп болады;
�	 Шығын функциясын автоматты теңшеу:  сияқты гиперпараметрлердi автоматты 

түрде реттейтiн стратегияларды зерттеу керек; 
�	 Сирек мәлiметтер жағдайы: Реалистiк жағдайда деректер өте аз және толық емес 

болады. Мұндай жағдайда, PINN-дi күшейту үшiн генеративтi модельдермен (мысалы, VAE, 
GAN) бiрiктiру даму мүмкіндігі бар бағыт.

Нәтижелер көрсеткендей, PINN арқылы алынған шешiмдер жоғары дәлдiкке ие. Соны
мен қатар, оның шешiмдерi аналитикалық түрде алынатын шешiмдерге жақын және сәйкес 
келетiндiгi сандық тәжiрибелердiң графикалық салыстырулары арқылы дәлелдендi. Қоры
тындылай келе, PINN – ғылым мен техникадағы көпқырлы күрделi есептердi шешуде бола
шақтың қуатты құралдарының бiрi бола алады деп айта аламыз.

1.	 Қосымша А
# PINN арқылы өзіндік ұқсас шешімді үйрену – толық Python коды (жылу теңдеуі мыса

лында)
import torch
import torch.nn as nn
import torch.autograd as autograd
import matplotlib.pyplot as plt
# Құрылғыны анықтау
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device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# PINN моделі
class SelfSimilarPINN(nn.Module):
    def _init_(self):
        super()._init_()
        self.net = nn.Sequential(
            nn.Linear(1, 50),
            nn.Tanh(),
            nn.Linear(50, 50),
            nn.Tanh(),
            nn.Linear(50, 1) )

    def forward(self, x, t):
        xi = x / torch.sqrt(t + 1e-5)
        f = self.net(xi)
        u = f / torch.sqrt(t + 1e-5)
        return u
# Оқу деректерін генерациялау
def generate_training_data(n=1000):
    x = torch.linspace(-5, 5, n).reshape(-1, 1)
    t = torch.linspace(0.1, 1.0, n).reshape(-1, 1)
    x, t = torch.meshgrid(x.squeeze(), t.squeeze(), indexing='ij')
    return x.reshape(-1, 1).to(device), t.reshape(-1, 1).to(device)

# PDE қалдығын есептеу
def pde_residual(model, x, t):
    x.requires_grad = True
    t.requires_grad = True
    u = model(x, t)
    u_t = autograd.grad(u, t, grad_outputs=torch.ones_like(u), retain_graph=True, create_

graph=True)[0]
    u_x = autograd.grad(u, x, grad_outputs=torch.ones_like(u), retain_graph=True, create_

graph=True)[0]
    u_xx = autograd.grad(u_x, x, grad_outputs=torch.ones_like(u_x), retain_graph=True, cre-

ate_graph=True)[0]
    return u_t - u_xx

# Модель және optimizer
model = SelfSimilarPINN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

# Оқу деректері
x_train, t_train = generate_training_data(200)

# Оқыту циклі
loss_history = []
for epoch in range(1000):
    optimizer.zero_grad()
    residual = pde_residual(model, x_train, t_train)
    loss = torch.mean(residual ** 2)
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    loss.backward()
    optimizer.step()
    loss_history.append(loss.item())
    if epoch % 100 == 0:
        print(f"Epoch {epoch}, Loss: {loss.item():.6f}")

# Шығын функция графигі
plt.plot(loss_history)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.grid(True)
plt.show()

2.	 Қосымша В
# PINN арқылы Эйлер теңдеуін шешу(Self-Similar Shock Tube) — Python коды                                                                     

import torch
import torch.nn as nn
import torch.autograd as autograd
import matplotlib.pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
gamma = 1.4
# Желі блогы
class Net(nn.Module):
    def _init_(self):
        super(Net, self)._init_()
        self.net = nn.Sequential(
            nn.Linear(1, 64),
            nn.Tanh(),
            nn.Linear(64, 64),
            nn.Tanh(),
            nn.Linear(64, 1)  )
    def forward(self, xi):
        return self.net(xi)

# PINN моделі: rho, u, p
class EulerPINN(nn.Module):
    def _init_(self):
        super(EulerPINN, self)._init_()
        self.rho_net = Net()
        self.u_net = Net()
        self.p_net = Net()
    def forward(self, x, t):
        xi = x / (t + 1e-5)
        rho = self.rho_net(xi)
        u = self.u_net(xi)
        p = self.p_net(xi)
        return rho, u, p
# PDE қалдықтары
def euler_residuals(model, x, t):
    x.requires_grad = True
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    t.requires_grad = True
    rho, u, p = model(x, t)
    m = rho * u
    E = p / (gamma - 1) + 0.5 * rho * u**2
    rho_t = autograd.grad(rho, t, grad_outputs=torch.ones_like(rho), retain_graph=True, cre-

ate_graph=True)[0]
    m_t = autograd.grad(m, t, grad_outputs=torch.ones_like(m), retain_graph=True, create_

graph=True)[0]
    E_t = autograd.grad(E, t, grad_outputs=torch.ones_like(E), retain_graph=True, create_

graph=True)[0]
    rho_x = autograd.grad(rho, x, grad_outputs=torch.ones_like(rho), retain_graph=True, cre-

ate_graph=True)[0]
    m_x = autograd.grad(m, x, grad_outputs=torch.ones_like(m), retain_graph=True, create_

graph=True)[0]
    p_x = autograd.grad(p, x, grad_outputs=torch.ones_like(p), retain_graph=True, create_

graph=True)[0]
    u_x = autograd.grad(u, x, grad_outputs=torch.ones_like(u), retain_graph=True, create_

graph=True)[0]
    E_x = autograd.grad(E, x, grad_outputs=torch.ones_like(E), retain_graph=True, create_

graph=True)[0]

    # Қалдықтар
    mass_eq = rho_t + m_x
    momentum_eq = m_t + autograd.grad(m * u + p, x, grad_outputs=torch.ones_like(p), re-

tain_graph=True, create_graph=True)[0]
    energy_eq = E_t + autograd.grad((E + p) * u, x, grad_outputs=torch.ones_like(E), retain_

graph=True, create_graph=True)[0]
    return mass_eq, momentum_eq, energy_eq

# Деректер генерациясы
def generate_data(n=1000):
    x = torch.linspace(-1, 1, n).reshape(-1, 1).to(device)
    t = torch.ones_like(x) * 1.0
    return x, t

# Модель және optimizer
model = EulerPINN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
x_train, t_train = generate_data(1000)

# Оқыту циклі
loss_history = []
for epoch in range(1000):
    optimizer.zero_grad()
    mass_eq, mom_eq, energy_eq = euler_residuals(model, x_train, t_train)
    loss = torch.mean(mass_eq*2) + torch.mean(mom_eq2) + torch.mean(energy_eq*2)
    loss.backward()
    optimizer.step()
    loss_history.append(loss.item())
    if epoch % 100 == 0:
        print(f"Epoch {epoch}: Loss = {loss.item():.6f}")
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# Шығын функция графигі
plt.plot(loss_history)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("PINN Training Loss (1D Euler, self-similar)")
plt.grid(True)
plt.show()
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МЕТОД ФИЗИЧЕСКИ ОБОСНОВАННОЙ НЕЙРОННОЙ СЕТИ (PINN), 
ОСНОВАННЫЙ НА САМОПОДОБНЫХ РЕШЕНИЯХ

Аннотация
При численном решении дифференциальных уравнений в частных производных, описывающих слож-

ные физические процессы, такие как теплопроводность и газовая динамика, зачастую требуется значитель-
ная вычислительная мощность. Для решения этих сложностей в последние годы особое внимание науки 
и техники привлекают физически информированные нейронные сети (Physics-Informed Neural Networks, 
PINN). В данной статье рассматривается задача нахождения решений уравнений теплопроводности и га-
зовой динамики с помощью метода PINN. В отличие от традиционных численных методов, метод физиче-
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ски информированных нейронных сетей позволяет решать задачи, внедряя физические законы в структуру 
нейронной сети. То есть решение подчиняется не только данным, но и самому уравнению. В статье описы-
ваются архитектура метода PINN, структура функций потерь и их связь с уравнением теплопроводности 
и уравнениями Эйлера на конкретных примерах. Кроме того, анализируются механизмы введения началь-
ных и граничных условий, а также факторы, влияющие на устойчивость и точность решений. Полученные 
результаты демонстрируют эффективность PINN и возможность их применения в будущем для решения 
сложных многомерных и многофазных задач. Также предложены исследования, направленные на ускорение 
вычислительного процесса и повышение стабильности PINN.

Ключевые слова: PINN, самоподобие, уравнение теплопроводности, уравнение Эйлера, ударная труба 
(shock tube).
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PHYSICS-INFORMED NEURAL NETWORK (PINN) 
METHOD BASED ON SELF-SIMILAR SOLUTIONS

Abstract
In the numerical solution of partial differential equations that describe complex physical processes such as heat 

conduction and gas dynamics, substantial computational resources are often required. To address these challenges, 
Physics-Informed Neural Networks (PINNs) have gained increasing attention in recent years within the fields of 
science and engineering. This paper investigates the application of the PINN methodology to obtain solutions to the 
heat conduction and gas dynamics equations. Unlike traditional numerical approaches, the physics-informed neural 
network framework incorporates governing physical laws directly into the neural network architecture. Consequently, 
the solution is constrained not only by data but also by the underlying differential equations. The paper presents 
the architecture of the PINN framework and details the structure of loss functions, demonstrating their relationship 
with the heat equation and the Euler equations using specific examples. Furthermore, the implementation of initial 
and boundary conditions is discussed, along with an analysis of factors influencing the stability and accuracy of 
the obtained solutions. The results highlight the efficiency of PINNs and demonstrate their potential for solving 
complex multiphase and high-dimensional problems in the future. Additionally, current research directions aimed at 
accelerating the computational process and enhancing the robustness of PINNs are outlined.

Keywords: PINN, self-similarity, heat equation, Euler equation, shock tube.
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