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COMPARATIVE STUDY OF MACHINE LEARNING METHODS
FOR DETECTING ANOMALIES IN NETWORK TRAFFIC

Abstract

The demand for intrusion detection systems (IDSs) that can promptly identify both known and new types of
attacks is on the rise due to the rapid expansion of cyber threats and the consequent increase in network traffic. The
utilization of machine learning techniques to autonomously analyze the behavior of network packets and classify
them as normal or malicious is a promising way to address this issue. The objective of this investigation is to
assess the suitability of a variety of machine learning algorithms for the resolution of network security issues by
employing network data analysis as an illustration. This investigation assesses the efficacy of machine learning
models in detecting network intrusions using the UNSW-NBI15 dataset. This study’s primary objective is to assess
the effectiveness of various machine learning models, including Random Forest, K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), XGBoost, LightGBM, and Logistic Regression, in network security applications.
According to the analysis, all models exhibited high classification accuracy; however, the LightGBM model attained
the most remarkable results. This model exhibited the highest values of Accuracy (95.86%), Precision (96.02%), and
Fl-measure (96.99%), confirming its capacity to effectively manage complex and heterogeneous data. Overall, the
study underscores the significance of selecting the most appropriate model based on the security system’s objectives
and the specifics of the data.

Key words: machine learning, network traffic, LightGBM, cybersecurity, IDS, data analysis.
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1 Introduction

The world of today is undergoing a rapid transformation, and the number and complexity of
cyber threats are increasing as a result of the increasing digitalization. Organizations and consumers
worldwide are increasingly emphasizing information security. The active integration of machine
learning and artificial intelligence into network security systems is being driven by the increasing
ineffectiveness of traditional protection methods in this environment. Not only do these technologies
enhance the precision of malware and network attack detection, but they also adjust to the constantly
evolving tactics of attackers. New opportunities for the development of more robust and proactive
mechanisms to safeguard data and infrastructure are presented by the introduction of intelligent
approaches to information systems protection.

A model for the automatic detection of P-wave seismic signals in the Almaty region was devised
by D. Zhexebay and his colleagues using convolutional neural networks (CNNs) [1]. The authors
determined that the implementation of deep learning enhances the dependability of earthquake
early warning systems and can be effectively employed to reduce the risks associated with natural
disasters. K. Moulaei et al. conducted a comparative analysis of various machine learning algorithms
to predict lethal outcomes in patients hospitalized with COVID-19 [2]. The authors concluded that
machine learning models, particularly RF, can be effectively employed to identify patients at a high
risk of lethality and to assist in clinical decision-making.

Advanced machine learning models are becoming more precise and resilient in their ability to
map vulnerability to natural disasters, such as flooding. A novel method of Flood Susceptibility
Mapping (FSM) was proposed by S. T. Seydi et al with the use of the Cascade Forest Model [3].
Zhao et al employed machine learning algorithms to investigate the capabilities of the Google Earth
Engine (GEE) platform in land use and land cover classification (LULC) tasks [4].

Malware detection continues to be a significant obstacle in the realm of contemporary network
security, necessitating a comprehensive strategy. The accuracy and comprehensiveness of threat
detection can be substantially enhanced through the integration of machine learning techniques with
both static and dynamic analysis. M. Ijaz, M. H. Durad, and M. Ismailin their paper, examined
the efficacy of machine learning techniques for malware detection through both static and dynamic
analysis [5]. The problem of polymorphic malware detection was examined by M. S. Akhtar and
T. Feng through the application of various machine learning algorithms [6]. R. Baker del Aguila and
his associates investigated the feasibility of employing resource-efficient machine learning models
for static malware analysis [7].

Intrusion Detection Systems (IDS) assist in the development of anti-cyberattack defenses by
analyzing network traffic and detecting suspicious activity. Some new and complex forms of attacks
may not be effectively detected by traditional rule-based methods. Machine learning (ML) techniques
are being integrated into intrusion detection systems to enhance their capacity to autonomously
identify attacks in order to resolve this issue.

Traditional machine learning (ML), ensemble learning, and deep learning methods were
evaluated by C. Zhang et al. [8]. Based on the KDD CUP99 and NSL-KDD datasets, experimental
evaluations were conducted using the following algorithms: Decision Tree, naive Bayesian algorithm,
SVM, Random Forest, XGBoost, CNN, and RNN. The results indicated that the naive Bayesian
algorithm was more effective in detecting new forms of attacks, while the ensemble learning methods
demonstrated high accuracy. Furthermore, the efficacy of deep learning methods was determined to
be contingent upon their structure, hyperparameters, and training duration. The primary challenges
and prospective research directions in network attack detection are also emphasized by the authors.

Z. Ahmad and his colleagues examine the most recent advancements and obstacles associated
with network intrusion detection systems (IDS) in their paper [9]. They outline the potential of
deep learning (DL) and machine learning (ML) techniques for the effective detection of attacks.
The authors underscore the necessity of enhancing the precision of intrusion detection systems,

80



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI Ne 4(75) 2025

minimizing false positives, and identifying novel types of attacks. Furthermore, they recommend
future research directions and classify intrusion detection systems according to machine learning/
deep learning.

In the context of a large network data and the Internet of Things (IoT), M. Asif et al. suggest a
MapReduce-based intelligent model (MR-IMID) for security [10]. In order to avert future assaults,
this model detects network attacks in real-time and stores the data in a database. The MR-IMID
model demonstrated an accuracy of 97.7% during training and 95.7% during validation, surpassing
previous methods.

A machine learning (ML)-based intelligent intrusion detection system (IDS) for detecting
cyber attacks targeting Internet of Things devices is examined by authors D. Musleh, M. Alotaibi,
F. Alhaidari, A. Rahman and R. Mohammad [11]. The investigation assessed numerous machine
learning models (including Random Forest, KNN, SVM, and stack models) and various feature
extraction algorithms (including DenseNet and VGG-16). The model that demonstrated the highest
accuracy (98.3%) when utilizing the IEEE Dataport dataset was a combination of VGG-16 and
layering.

The Intrusion Detection System (IDS) model proposed by H. Attou, A. Guezzaz, S. Benkirane,
M. Azrour, and Y. Farhaoui [12] is a security-enhancing approach to cloud computing systems that
employs Random Forest (RF) and feature engineering. The accuracy of the model was 98.3% on
the Bot-IoT dataset and 99.99% on the NSL-KDD dataset. The authors observe that this method
outperformed other state-of-the-art methods in terms of precision, accuracy, and completeness.

A machine learning-based intrusion detection system (ML-IDS) model for detecting attacks
in IoT networks is presented by Y. Saheed, A. Abiodun, S. Misra, M. Holone, and R. Colomo-
Palacios [13]. The UNSW-NB15 dataset was employed in the study, and dimensionality reduction
techniques were implemented through PCA and minimum and maximum normalization. The results
of the testing of six distinct machine learning algorithms were as follows: PCA-XgBoost achieved
an accuracy of 99.99%, PCA-Cat Boost achieved an accuracy of 99.99%, PCA-KNN achieved an
accuracy of 99.98%, PCA-SVM achieved an accuracy of 99.98%, PCA-QDA achieved an accuracy
0f 99.97%, and PCA-NB achieved an accuracy of 97.14%. The authors observe that this method is
in competition with existing methods [14].

A. Turukmane and R. Devendiran suggest a sophisticated Intrusion Detection System (IDS)
that is automated and based on machine learning as a solution to the detection of network intrusions
in their research paper [15]. They employed techniques such as Min-Max normalization, zero-
value processing, class inequality removal using ASmoT, and meaningful feature extraction using
M-SvD to analyze the CSE-CIC-IDS 2018 and UNSW-NB15 datasets. Furthermore, the Mud Ring
Multilayer SVM (M-MultiSVM) was employed to classify the attack classes, and the Opposition-
based Northern Goshawk Optimization (ONgO) was employed to select the most appropriate
features [16]. Consequently, the proposed system obtained an accuracy of 99.89% (CSE-CIC-
IDS 2018) and 97.535% (UNSW-NB15). The K-Nearest Neighbor, Naive Bayes, Support Vector
Machine were tested in detecting 19 different types of attacks based on data from the UNSW-NB15
dataset, and the SVM algorithm showed the best results with an accuracy of 97.78%, exceeding
the others. Despite its ability to achieve 98.9% accuracy on the KDD’99 Cup dataset, the SVM
algorithm proved less effective than the Random Forest algorithm, which demonstrated the highest
result of 99.81% [17]. The study also analyzed the classification of machine learning algorithms
used in intrusion detection systems (IDS) in areas such as IoT, Big Data, Fog computing, and 5G
networks. However, the following study notes that the advantage of this algorithm is revealed when
computational resources are limited [18].

The comparative analysis of state-of-the-art ensemble and classical machine learning algorithms
on the real and diverse UNSW-NB15 dataset is the unique feature of this study. The concentration is
on the efficacy of the models in the face of cyber threats.
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2 Materials and methods

2.1 Description of machine learning

Machine learning (ML) is a subfield of artificial intelligence that enables systems to autonomously
learn from data and make predictions or decisions without the need for explicit programming. It is
predicated on the development of models that can recognize patterns in historical data and apply
those patterns to the analysis of new input data. The machine learning process is comprised of
numerous critical stages, each of which is crucial to the development of the effective model depicted
in Figure 1.

DATA COLLECTION

Ad
DATA PREPROCESSING

i
FEATURE SELECTION l

[‘ 'MODEL DEPLOYMENT l

Figure 1 — Block diagram of the machine learning process

The process commences with the acquisition of data from a variety of sources, including sensors,
databases, and web services. Subsequently, the data is subjected to preprocessing to eliminate outliers,
duplicates, noise, normalize, and code features. Subsequently, feature selection is implemented,
which involves the identification of the most critical attributes that influence the outcome in order
to enhance the model’s precision and simplify its structure. This is followed by the selection of an
appropriate learning algorithm based on the data structure and problem type. The subsequent phase
involves the model’s training, which involves the analysis of the training data to identify the internal
dependencies between inputs and outputs. Following the training process, the model is assessed on
a test sample using a variety of metrics, including the F1-measure and accuracy, to guarantee its
efficacy. The model’s final stage is to be deployed in a real environment, where it begins to process
real data and generate predictions.

2.2 Data preparation

In 2015, the Australian Centre for Cyber Security developed the UNSW-NBI15 dataset,
which served as the foundation for the investigation. This dataset was produced by utilizing IXIA
PerfectStorm traffic, which offers a more accurate and current perspective on the behavior of both
legitimate and malicious network traffic. The dataset comprises a total of 175,341 network sessions,
of which 56,000 are normal and 119,341 are attacking. The nine primary categories of attack traffic
are as follows: Fuzzers (introduction of incorrect data to disrupt the system), Analysis (analysis
and scanning attacks), Backdoors (stealthy remote access), DoS (denial of service attacks), Exploits
(vulnerability exploitation), Generic (cryptographic attacks), Reconnaissance (gathering information
about the system), Shellcode (injection of malicious code through the shell), and Worms (self-
propagating malware).

82



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI Ne 4(75) 2025

UNSW-NB15 comprises 49 attributes, each of which delineates a distinct characteristic of
a network connection. Basic attributes (e.g. IP addresses, ports, and protocols), traffic content
attributes (e.g. HTTP methods and FTP commands), temporal attributes (duration, connection start
and end timestamps), flow attributes (amount of data transferred, number of packets), and additional
automatically generated attributes (e.g. delay values, packet intervals, and TCP connection attributes)
are all possible categories into which these attributes can be roughly categorized. Furthermore, class
labels are present, including a binary label for normal traffic (0) and an attack cat label for aggressor
traffic (1), which denotes the category of the attack. In order to guarantee the generalizability of
the models, the data were partitioned into training and test samples in an 80/20 proportion using
train_test split (random_state=42).

The id and attack cat features were eliminated from the dataset during the preprocessing stage,
as they were deemed unsuitable for binary classification tasks. In order to guarantee the accurate
performance of feature scale-sensitive models, including Support Vector Machine (SVM) and
K-Nearest Neighbors (KNN), categorical variables were transformed using one-hot coding and
numeric features were scaled using StandardScaler. This data preparation enabled the formation of
a balanced and homogeneous sample for the purpose of further training machine learning models.

In this study, the UNSW-NBI15 dataset was selected as the primary benchmark for evaluating
the performance of machine learning models. To justify this choice, a comparative analysis was
conducted with two other widely used datasets in the field of intrusion detection: NSL-KDD and
CICIDS2017. The comparison highlights the strengths of UNSW-NBI15 in terms of modernity, class
balance, and relevance to contemporary cybersecurity challenges.

Table 1 — Comparison of Popular NIDS Datasets

Characteristic UNSW-NBI15 NSL-KDD CICIDS2017
Release Year 2015 2009 (based on 1999 KDD99) 2017
Number of Features 49 (original) / ~186 (after 41 >80
one-hot)
Number of Attack Types 9 categories 4 categories 15+ attack scenarios
Traffic Type Modern protocols (FTP, Outdated protocols (Telnet, Realistic mixed traffic
SSH, HTTP, DNS) ICMP)
Class Balance Moderate (=60% attack Highly imbalanced Highly imbalanced
traffic)
Threat Relevance Modern threats Outdated threats Modern threats
Dataset Size ~2 million packets ~150,000 records >3 million packets
Realism High (generated via IXIA | Low (synthetic benchmark) Very high (real-world
tools) captures)

As shown in the comparison in Table 1, NSL-KDD is an improved version of the outdated KDD99
dataset. However, it does not reflect modern network behavior or attack patterns. CICIDS2017 offers
high realism and a diverse set of attack scenarios but suffers from extreme class imbalance and
excessive volume, which complicates training and evaluation processes.

In contrast, UNSW-NB15 provides a balanced trade-off between size, realism, and diversity
of attack types. It includes up-to-date network traffic and protocols, a reasonable number of well-
defined classes, and moderate class balance, making it ideal for building and benchmarking intrusion
detection models.

2.3 Model training and evaluation

The system initially receives input network traffic, which is data regarding network connections,
including both legitimate and malicious sessions. This data is gathered using specialized tools, such
as IXIA PerfectStorm, to provide a realistic and current representation of the network behavior in
Figure 2.
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Figure 2 — Process of anomaly detection in network
traffic using machine learning

The traffic is subsequently subjected to a data preprocessing stage. The set is purged of irrelevant
features, including connection identifiers and assault categories, as they do not offer any valuable
information for binary classification tasks. Numerical features are scaled using standard normalization,
while categorical variables are transformed using one-hot encoding. This process guarantees the
accurate operation of machine learning algorithms, particularly those that are vulnerable to the scope
of the data, such as the support vector method or K-nearest neighbors.

Machine learning models are trained using the data that has been preprocessed. The study
employs six distinct algorithms: Random Forest, K-Nearest Neighbors, Support Vector Machine,
XGBoost, LightGBM, and Logistic Regression. From interpretability and fundamental accuracy
to high performance and robustness to overtraining, each has its own parameters and advantages.
Training is conducted on a labeled sample that is divided into normal and assault traffic.

The model that has been trained subsequently acquires new data and performs classification.
The decision phase is responsible for determining whether a specific network connection is normal
or anomalous. The connection is classified as anomalous if the features correspond to malevolent
behavior patterns. Therefore, the system is capable of efficiently filtering network traffic, thereby
detecting potential hazards in near real-time.

Six machine learning algorithms were selected for comparison:

Random Forest

The Random Forest Classifier is implemented by employing a fixed random number generator
sid (random_state=42) and 100 decision trees (n_estimators=100). This method of ensemble
construction achieves high accuracy and robustness against overfitting by constructing multiple trees
and averaging their predictions.

RandomForestClassifier(n_estimators=100, random_state=42)

K-Nearest Neighbors (KNN)
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The parameter n_neighbors=5 is employed in conjunction with the K nearest neighbors method.
It categorizes objects based on the most labels among the adjacent neighbors in the feature space. It
is imperative to scale the data prior to training, as the distances between nodes have a direct impact
on the outcome.

KNeighborsClassifier(n_neighbors=5)

Support Vector Machine (SVM)

The probability parameter = True and the linear kernel (kernel="linear’) were implemented in
the support vector algorithm to facilitate the construction of the ROC curve. SVM is capable of
effectively handling binary classification tasks in the presence of a substantial number of features.

SVC(kernel="linear’, probability=True, random_state=42)

XGBoost

In order to construct a robust gradient-enhancing model, the XGBoost algorithm is employed
with the following parameters: n_estimators=200, learning rate=0.1, and max_depth=6. The loss
during the learning phase is estimated using the eval metric="logloss’ parameter. This algorithm
exhibits a high degree of accuracy and a strong capacity for generalization.

XGBClassifier(n_estimators=200, learning rate=0.1, max_depth=6, eval metric="logloss’,
random_state=42)

LightGBM

LightGBM, like XGBoost, is a gradient-based booleaning algorithm; however, it operates more
efficiently on data of substantial magnitude. The parameters n_estimators=200, learning_rate=0.1,
and max_depth=10 are employed to achieve a balance between performance and accuracy.

LGBMClassifier(n_estimators=200, learning_rate=0.1, max_depth=10, random_state=42)

Logistic regression

In order to ensure convergence with a substantial number of features, the logistic regression
model was implemented with an increased number of iterations (max_iter=1000). Logistic regression
is a fundamental model that is frequently employed as an initial benchmark and is easily interpreted.

LogisticRegression(max_iter=1000, random_state=42)

Each model was trained on a standardized training sample and subsequently tested on the
deferred portion. The evaluation was conducted using the following metrics:

¢ Accuracy — The total proportion of correct predictions.

¢ Precision — The accuracy of attack classification.

¢ Recall (completeness) - the model’s ability to find all attacks.

¢ Fl-score is the harmonic mean between precision and recall.

+ ROC AUC is the area under the ROC curve showing the quality of the binary classification at
different thresholds.

¢ Confusion Matrix — for the visual evaluation of classification errors.

A comparative ROC curve was also generated, which enabled a visual comparison of the models’
quality in terms of AUC by calculating TPR (True Positive Rate) and FPR (False Positive Rate)
values for each model and interpolating them over the total interval.

3 Results and discussion

3.1 Results of the ML algorithms

Based on the results of the experiments, the LightGBM model demonstrated the most effective
performance, as illustrated in Table 2. The model’s exceptional capacity to differentiate between
assaults and normal traffic was demonstrated by its high classification accuracy of 95.86% and
an area under the ROC curve (AUC-ROC) value of 94.6%. Furthermore, the model demonstrated
a precision of 96.02%, recall of 97.98%, and F1-count of 96.99%, indicating a high equilibrium
between the accuracy and completeness of predictions.

The effectiveness of LightGBM in the network attack detection assignment is confirmed by
these results, which are based on the features presented in Figure 3.

85



HERALD OF THE KAZAKH-BRITISH
No. 4(75) 2025 TECHNICAL UNIVERSITY

Table 2 — Results of the ML algorithms

Model Accuracy Precision Recall F1-score AUC-ROC
Random Forest 95,83 95,96 98,0 96,97 94,6
KNN 93,77 94,45 96,53 95,48 92,2
SVM 93,27 91,12 99,86 95,29 89,5
XGBoost 95,74 95,91 97,92 96,9 94,5
LightGBM 95,86 96,02 97,98 96,99 94,6
Logistic Regression 93,42 92,09 98,83 95,34 90,3

W accuracy [l Precision [ fecall Fiscore [l AUC-ROC

Rangdam Foast KMN SV AGBoost LightGam Logistic
Regression

Figure 3 — Results of the ML algorithms

LightGBM showed the highest AUC-ROC value (94,6) in Figure 4. In general, LightGBM was
the most effective model. The study’s findings indicated that machine learning models are highly
effective in the detection of attacks. The LightGBM model, in particular, demonstrated exceptional
performance on all critical metrics, owing to its ensemble nature and capacity to effectively adjust
to the complexity of the data. This demonstrates that it will be highly beneficial in real-world
applications, particularly when analyzing large volumes of network traffic.

ROC Curves Comparison
He —— Random Forest (AUC=0.946}
—— KNN (AUC=0.922)
—— 5VM (AUC=0.895)
—— XGBoost (AUC=0.945)
—— LightGBM [AUC=0.946)
—— Logistic Regression (AUC=0.903)
--- Random Guess (AUC=0.5)

0.8

0.6+

0.4 4

True Positive Rate (TPR)
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06 0.8 10

00 0z 04
False Positive Rate (FPR)

Figure 4 — Comparison of ROC curves for the six models
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Similar high performance was also obtained by the Random Forest and XGBoost models. This
is a result of their structural similarity (ensembles of decision trees) and their capacity to iteratively
reduce errors. The SVM model was effective in maximizing assault coverage (Recall); however, it
was inferior in terms of overall performance (AUC-ROC, Precision). Although the logistic regression
and KNN algorithms are straightforward and basic models, they demonstrated relatively limited
performance in identifying complex types of attacks, as illustrated in Figure 5.

Random Forest KMNMN
20000 20000
= 10184 985 = 9814 1355
- 15000 - 15000
= =
& - 10000 & - 10000
- 437 5000 - 830 | ca00
0 0
Predicted Predicted
SWVM XGBoost
20000 20000
& - B842 2327 & - 10172 a97
= 15000 - 15000
= =
& -10000 % - 10000
- 34 - 5000 = ~eld - 5000
0 0
Predicted Predicted
LightGEM Logistic Regression
20000 20000
o - 10198 971 o - 9141 2028
= 15000 - 15000
2 2
& - 10000 & - 10000
- 482 5000 - = 280 23620  cho0
0 0
Predicted Predicted

Figure 5 — Confusion matrix analysis for the six models

It is important to acknowledge that the UNSW-NB15 dataset utilized in the study encompasses
specific categories of network attacks; however, it may be deficient in certain aspects of real-time
complexity. Additional testing is necessary to conduct a comprehensive assessment of the performance
of these models in real-world scenarios. Furthermore, it is advised that future research make use of
alternative datasets (e.g., CICIDS, NSL-KDD) and assess the efficacy of the models’ application to
real-time systems.

Therefore, the findings of this investigation demonstrate that reinforcement models, including
LightGBM, are ideal for practical application in the context of automated attack detection, thereby
facilitating the development of effective network security decisions.

An analysis of classification errors by attack category (attack cat) was conducted to conduct a
more thorough assessment of the quality of the models. False positive (FP) and false negative (FN)
classifications were given particular attention, as they are essential components of intrusion detection
systems.
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Table 3 provides a summary of the analysis’ findings, including the quantity of FP and FN errors

for each category of attacks.

Table 3 — Classification errors by attack category

Attack category False Positives False Negatives

Fuzzers 0 416

Analysis 0 40

DoS 0 2

Exploits 0 18

Generic 0 1

Reconnaissance 0 3

Shellcode 0 2

Normal 971 0

The analysis indicates that the Exploits category has the maximum number of FNs, which may
be attributed to the diverse attack behavior patterns in this group outlined in Figure 6. This suggests
that it is necessary to enhance the sensitivity of models to this category.

The number of False Negatives by attack categories
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Figure 6 — Graph of the number of False Negatives by attack category

3.2 Evaluation of efficiency by resource consumption

The results of the measurements of peak memory usage, prediction time, and training time are
summarized in Table 4.

For the practical application of the models, it is crucial to evaluate not only accuracy but also
memory and time efficiency, as illustrated in Figure 7.
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Table 4 — Comparison of resource intensity of models
Model Training time (s) Prediction time (s) Memory (MB)

Random Forest 19.296 0.466 114.5

KNN 0.091 19.070 213.9

SVM 15833.081 60.857 416.5

XGBoost 2.820 0.030 1.5

LightGBM 1.906 0.071 4.1

Logistic Regression 8.979 0.007 2123
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Figure 7 — Comparative plot of learning and memory time
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The results indicate that LightGBM exhibits the highest accuracy/performance ratio, with
minimal training time and relatively low resource consumption.

3.3 Configuring hyperparameters

Heuristics and expert settings were implemented to enhance the models’ precision through
manual hyperparameter selection. The parameters utilized for each model and their fitting procedure
are summarized in Table 5.

Table 5 — Model hyperparameter settings

Model Selection method Parameters Values

Random Forest Manual selection n_estimators 100

KNN Manual selection n_neighbors 5

SVM Manual selection kernel, probability linear, True

XGBoost Manual selection n_estlinato‘rs, max_depth, 200, 6, 0.1
earning_rate

LightGBM Manual selection n_esiiiators, max_depth, 200, 10, 0.1
earning_rate

Logistic Regression Manual selection max_iter 1000

To ensure optimal model performance, hyperparameter tuning was performed using Optuna, a
Bayesian optimization framework. The study optimized n_estimators, learning_rate, and max_depth
for LightGBM, as well as n_estimators, max_depth, and min_samples_split for Random Forest over
30 optimization trials each, using 3-fold cross-validation and ROC-AUC as the objective function in
Table 6.

Table 6 — Results of LightGBM and Random Forest

Model Accuracy Precision Recall F1-score AUC-ROC Best Parameters

LightGBM 95,97 96,09 98,06 97,07 99,40 n_estimators=279,
learning_rate=0.0910,
max_depth=14

Random 95,92 95,81 98,32 97,05 99,40 n_estimators=297, max_
Forest depth=26, min_samples_
split=5

Due to their superior baseline performance, hyperparameter optimization was initially applied to
LightGBM and Random Forest classifiers. Other models were evaluated with standard or manually
selected parameters, as their optimization yielded marginal or less impactful improvements.

Both LightGBM and Random Forest, after Bayesian optimization via Optuna, achieved almost
identical performance with an AUC of 99,4. LightGBM demonstrated slightly higher precision
(96,09) and a better F1-score (97,07), while Random Forest had slightly better recall (98,32). These
results confirm the high effectiveness of ensemble models in detecting network anomalies in the
UNSW-NBI15 dataset.

3.4 Importance of attributes

In order to enhance the interpretability of the models, feature importance diagrams were generated
for the LightGBM and Random Forest models contained in Table 7.
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Table 7 — Top 10 traits by importance (LightGBM)

Ne sign Importance value
1 smean 575
2 sbytes 527
3 ct_srv_src 432
4 ct_srv_dst 266
5 ct dst_src Itm 246
6 sload 229
7 dbytes 201
8 synack 198
9 stepb 195
10 dmean 187
The 10 most critical features, as indicated by the LightGBM version, are illustrated in the
Figure 8.
st
shytes
o_srv_5iC
ct_srv_dst

ct_dst_src_ltm

shoad

diytes

synack

stepb

dmean

100

Critical attributes include:
sbytes (bytes sent)
dbytes (bytes received)

*

*

¢ ct_state ttl (connection state and TTL)

¢ ct dst sport Itm (port destination frequency)
*

sttl (packet lifetime)
These features have the greatest impact on the final solution of the model, which confirms their
importance in the task of detecting anomalous behavior in the network.

400 500

Figure 8 — Top 10 attributes by importance of LightGBM
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3.5 Error Analysis

A refined evaluation of classification results underscores the significance of analyzing false
positives (FP) and false negatives (FN) in intrusion detection. For the LightGBM model, 950 FPs and
463 FNs were observed, while the Random Forest model yielded 1028 FPs and 403 FNs. Although
overall error rates were moderate, false negatives are particularly critical as they represent undetected
attacks.

Key causes of false negatives include overlapping feature distributions between benign and
malicious traffic, underrepresentation of specific attack types, and high intra-class variability.
Conversely, false positives may arise from benign behavior mimicking attacks under certain
conditions, increased noise due to high-dimensional features, and classifier uncertainty near decision
boundaries.

To mitigate these errors, the following strategies are recommended:

+ Employ class balancing techniques (e.g., SMOTE, class weight adjustment) to reduce FNs.

* Apply feature selection or dimensionality reduction to minimize FPs.

¢ Optimize classification thresholds using validation metrics.

¢ Evaluate model performance per attack type to identify and address specific weaknesses.

Several related works have evaluated machine learning models on the UNSW-NB15 dataset, yet
their reported performance metrics vary depending on the selected models, features, and experimental
setups.

For example, the study by Yakub Kayode Saheed et al. applied PCA and XGBoost to the UNSW-
NB15 dataset and achieved an accuracy of 99.99%. However, the study did not report detailed
F1-scores or confusion matrices, making it difficult to assess classification robustness across all
classes [19].

Another study by Turukmane and Devendiran used a multi-class SVM ensemble on the CSE-
CIC-IDS2018 dataset, reporting an F1-score of 99.89%. While the performance is high, the dataset
used was significantly larger and more diverse, which limits the comparability to UNSW-NB15
results [20].

In contrast, our optimized LightGBM and Random Forest models, evaluated strictly on the
UNSW-NBIS5 dataset, achieved F1-scores of 97.07% and 97.05%, respectively, along with ROC
AUC scores of 0.994, which are highly competitive. Additionally, our models demonstrated strong
generalization without relying on excessive feature engineering or complex ensembles.

This comparison emphasizes the effectiveness and simplicity of the proposed approach,
showcasing that with proper hyperparameter optimization, standard tree-based models can achieve
state-of-the-art results on modern intrusion detection datasets.

Conclusion

The performance of a variety of machine learning algorithms, such as Random Forest, K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), XGBoost, LightGBM, and Logistic Regression,
was compared in this study. All of the models that were evaluated exhibited exceptional performance
in the classification of network traffic; however, certain algorithms were particularly noteworthy.

After applying Bayesian hyperparameter optimization using Optuna, both LightGBM and
Random Forest models achieved significant performance improvements across all key evaluation
metrics. The LightGBM model demonstrated the best overall performance, with an accuracy of
95.97%, precision of 96.09%, recall of 98.06%, and an F1-score of 97.07%, alongside a near-perfect
ROC AUC score 0f 0.994. Random Forest model achieved nearly equivalent results, with an accuracy
of 95.92%, precision of 95.81%, recall of 98.32%, F1-score of 97.05%, and the same ROC AUC
score of 0.994. The high adaptability of this model to complex heterogeneous data structures, as well
as its overall efficacy, are demonstrated by these figures. Gradient bousting, a high learning rate, the
efficient handling of large quantities of data, and the ability to minimize errors at each iteration step
are the primary benefits of LightGBM. In addition, the model is particularly well-suited for real-
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time cyber threat detection systems due to its ability to perform well on categorical features and its
reduced resource consumption.

Random Forest and XGBoost also demonstrated satisfactory performance, with an F1-estimation
that exceeded 96.9% and an AUC-ROC value of approximately 94.5%, in addition to LightGBM.
These findings substantiate the reliability of ensemble methods and their exceptional prediction
accuracy in network security tasks.

The SVM model’s recall was 99.86%, which was an intriguing characteristic that suggested its
capacity to accurately identify all affirmative cases. Additionally, it demonstrated an exceptionally
high level of sensitivity to attacks. Nevertheless, its AUC-ROC and overall accuracy were inferior
to those of the ensemble models. The Logistic Regression and KNN models, despite their simplicity,
also obtained satisfactory results; however, they demonstrated less robustness when confronted with
more intricate types of attacks.

The research demonstrated that LightGBM is the most balanced model in terms of speed,
responsiveness, and accuracy. These attributes render it an ideal choice for practical implementation
in network threat detection systems. The significance of meticulously selecting a machine learning
model in real-world applications is underscored by the paper, which considers the complexity of
data, the availability of computational resources, and the accuracy requirements.
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AKEJLIIK TPAOUKTEI'T AHOMAJIMAJIAPABI AHBIKTAY YIHIIH
MAHMUWHAJIBIK OKBITY 9AICTEPIH CAJIBICTBIPMAJIBI 3EPTTEY

Anjiarna

KubepkayinTepaiH KapKeIHIBl 6CYIHE JKOHE COHBIH CalJapbIHAH JKEIUTIK TPaQUKTiH apTyblHa OailIaHBICTHI
Oenrini jkoHE jkaHa IMA0yBUT TYPIICPIH JKBIIAM aHBIKTAl amaTblH malybUaapAbl aHbIKTay kyhenepine (IDS)
CYpaHbIC apThI Kememi. JKemiTik makeTTepAiH dpeKeTiH aBTOHOM/IBI TYP/IE Talaay JKOHE OJIapbl KaJBIITH HeMece
3MSIH/IBL JIETT KIKTEY YIIIH MalllMHAJBIK OKBITY 9JICTEpiH MaijanaHy — OyJl MoceseHl IIeNIy/IiH MepCHeKTHBAIIbI
Tocim. By 3epTTeyniH MakcaThl — WUTFOCTPAIUsS PETIH/IC JKEJi JSPEKTEPIiH Tauaayabl KOJIaHa OTBIPHII, KEILTIK
Kayilci3aik MacesesepiH IIenIye apTypili MallMHAIBIK OKBITY aJrOpUTMICpPIHIH THIMALIIriH Oaranay. 3eprrey
OapriceiEa UNSW-NB15 nepexrep sKMHAFbI HETi31HAE JKeJire 3aHCHI3 Kipy/i aHBIKTayldaFbl MAITHHAIBIK OKBITY
yirinepinin eHiMaimiri Tekcepinmi. Herisri mazap Random Forest, K-Nearest Neighbors (KNN), Support Vector
Machine (SVM), XGBoost, LightGBM »xone LOngth Regress1on MoOJenbAepiHe Ay/IAPBLIIBL. Tan/:[ay HOTIKECiHe
OapJIbIK MOJIEITBIep KOFaphI Knaccu@nxaum JoIiria kepeeri; anaiina LightGBM mozeni eH y3iik HoTHKelepre
KOJT JKeTKi3ai. Atam ailTKaHaa, of ANIAiK OonbiHIma — 95,86%, HaKTHUIBIK OobiHIIa — 96,02% sxone F1-emmem
Ooitpiama — 96,99% HoTmXKeNepiH KepceTTi. by oHbIH Kypz[em 9p1 OipTeKTi emec nepeKTepAl THiMi 6aCI<apy
MYMKIHAITH pactajasl. JKaimsl anranaa, 3epTTey KeJLTiK Kaylncnz[uc JKYHenepinae KONTaHbLIATBHIH YITiIepi
TaH/ay/IbIH MaHBI3ABUIBIFBIH alKbIHAaa6l. HoTmxenep IDS ixyiienepin sxobanaya HaKThI MakcaTTap MEH AEpeK-
TEpIiH epeKIIeNKTepiHe ColKec €H KONaiIbl MAIIMHAIBIK OKBITY YITICIH TaHAAyAbIH THIMIUIITIH JOIeaeHI.

Tipek ce3mep: MalIMHAIBIK OKBITY, ek Tpaduk, LightGBM, kubepkayincismaik, IDS, nepexrepai Tanaay.
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CPABHUTEJBHOE HCCIEJOBAHUE METOJOB MAIINMHHOT'O OBYYEHMUA
JAJIAA BBIABJIEHUA AHOMAJIMU B CETEBOM TPA®UKE

AHHOTAUMS
Crpoc Ha cucteMbl 00HapykeHus Bropxkennit (IDS), KoTopbie MOTYT OTepaTHBHO ONPEACTSITh KaK H3BECTHBIE,
TaK U HOBBIC THUIIBI aTaK, PACTET M3-3a OBICTPOrO PACIIUPEHUS KHOSPYTpO3 U MOCICIYIOIIETO YBEIHUCHHSI CETEBOIO
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Tpa(i)I/IKa. Hcnonp3oBanue METOA0B MAILIMHHOI'O o6yquI/151 JUI1 aBTOHOMHOTI'O aHaJIn3a IIOBCACHUS CETECBLIX ITIAKETOB
1 KJIaCCU(HKAIMH MX KaK HOPMAJIbHBIX MJIM BPEJIOHOCHBIX SBJISIETCSI MHOTOOOCIIAIONIMM CIIOCOOOM PEILeHHUS STOM
ripoOiembl. Llenpio JaHHOTO MCCIIEOBAaHMS SIBISICTCS OLICHKA ITPUTOAHOCTH Pa3IMYHBIX aJTOPUTMOB MAIIMHHOTO
00y4eHHs JUISl PEIICHUs IPOOJIeM CETEeBOI Oe30IIaCHOCTH ITyTEM HCIIOJIb30BaHHs aHaIN3a CETeBBIX JAHHBIX B Ka-
4YecTBe WUIIOCTpalMu. B naHHOM HcciieoBaHUH OLeHUBaeTCs (M(GEKTHBHOCTh MOJEINICH MAalIMHHOTO OOy4eHHUS
Ipu 00HAPY>KEHUU CETEBBIX BTOP)KEHUH ¢ UCToNMb30BaHKeM Habopa naHHeix UNSW-NBI15. OcHoBHas 11e71b 3TOTO
UCCJIEZI0OBAHUS — OLCHUTH A(P(PEKTUBHOCT PA3IMYHBIX MOJIeIeH MalIMHHOTO 00yUeHHMsI, BKIIIOUasl CITydaifHbI Jiec,
merox K-ommxaimux coceneid (KNN), onopayto Bekropryto matnny (SVM), XGBoost, LightGBM u noructnye-
CKYIO PErpeccuio, B MPHIOKEHHSIX ceTeBoi Oe3onacHocTH. COIIacHO aHaIn3y, BCE MOJEIN IPOAEMOHCTPHPOBAIN
BBICOKYIO TOYHOCTH KiaccH(UKaluu; oxHako Monenb LightGBM mocturia caMbIX 3HAYMTEIBHBIX PE3YNIBTaTOB.
OTa MozEIb NPOAEMOHCTPHPOBAJIA CaMBbIE BEICOKHE 3HaYEHHS TOUHOCTH (95,86%), TouHoCcTH (96,02%) 1 F1-Mepst
(96,99%), uto MoATBEPKIAET ee CIIOCOOHOCTH AP (HEKTHBHO YIPABISTH CIOKHBIMHA M HEOJHOPOIHBIMH JJAHHBIMU. B
[EJIOM MCCIIS/IOBAaHUE MOAYEPKUBACT BAXKHOCTh BBIOOpA Hanbosee MoAXO/IIeH MOJIENIM Ha OCHOBE 1IEJIeH CUCTEMbI
0€3011acCHOCTH M CIIEUU(PHUKN TaHHBIX.

KaroueBsbie cioBa: MammHHOe 00y4eHue, ceteBor Tpaduk, LightGBM, kxubepbdezonacHocts, IDS, anamus
JAHHBIX.
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