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A NOTE ON THE STRUCTURE OF MINIMAL DARK CEERS

Abstract
The structure of computably enumerable equivalence relations under computable reducibility (commonly 

referred to as ceers) has been actively developed over the past 25 years. A comprehensive survey by Andrews 
and Sorbi presented numerous structural properties of ceers, most notably investigating the existence of joins and 
meets in the degree structure of ceers. They divided the structure into two definable parts: dark ceers (ceers without 
an effective transversal) and light ceers (ceers with an effective transversal).  They also showed the existence 
of an infinite number of minimal dark ceers (modulo equivalence relations with finitely many classes). Minimal 
dark ceers exhibit the distinctive property that every pair of classes is computably inseparable. Furthermore, the 
classes of weakly precomplete equivalence relations (i.e. those that lack a computable diagonal functions) are also 
computably inseparable. In this context, a natural question arises: do minimal dark equivalence relations exist that 
are not weakly precomplete? This paper provides an affirmative answer to this question. Moreover, we establish 
the existence of an infinite family of non-weakly precomplete minimal dark ceers that avoids lower cone of a given 
non-universal ceer. We denote by  the set of ceers consisting of only finite classes. Andrews, Schweber, Sorbi 
showed the existence of dark  equivalences. In this paper, we prove that over any dark  ceer, there exists an 
infinite antichain of dark  ceers. 

Key words: Equivalence relation, computably enumerable equivalence relation, computable reducibility, 
weakly precomplete equivalence relation.

Introduction

The paper studies properties of computable reducibility for computably enumerable binary rela-
tions on the set of natural numbers . Suppose  and  are binary relations on . We say that  is 
computably reducible to  (denoted by ) if and only if there exists a computable function  
such that for every 

Relations  and  are said to be computably equivalent if and only if  and . 
Throughout this paper, we will be working with computably enumerable equivalence relations, or 
ceers for short. A ceer  is called universal if  for every ceer . For more details on -reduc-
ibility in the context of equivalence relations, see [1–13, 16, 19, 21].
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An equivalence relation  is called precomplete if there exists a total computable function 
 such that for all , whenever  is defined, it holds that . Accord-

ing to Ershov’s Fixed-Point Theorem,  an equivalence relation  is precomplete if and only if there 
exists a total computable function  such that for every , if  is defined, then 

 [14].
Badaev weakened the notion of precompleteness by introducing weakly precomplete equiva-

lences [15]: an equivalence relation  is called weakly precomplete if there exists a partial comput-
able function  such that the following holds for each :

Later, Badaev and Sorbi provided a criterion for weakly precompleteness using so-called diago-
nal functions [16]. A total function  is called a diagonal function for an equivalence relation , if 
for every , .

Proposition 1.1. Let  be a ceer. The following statements are equivalent:
1.	  is weakly precomplete;
2.	 ;
3.	  has no computable diagonal function.
Properties of diagonal functions for ceers were studied extensively in [17].
A ceer  is dark if it is incomparable with . A ceer  is called light if . 

Equivalently,  is called light if and only if there is an effective transversal, i.e. there exists a c.e. set 
 whose elements are pairwise non- -equivalent [18].

Andrews and Sorbi showed that, unlike the light ceers (where  is the least light ceer), there 
is no least dark ceer [18]. In particular, they proved the existence of infinitely many incomparable 
minimal dark ceers (see Theorem 3.3 in [18]).

We summarize some basic facts about minimal dark ceers based on Theorem 3.3 in [18].
Observation 1.2. Let  be a minimal dark ceer. Then
1.	 every pair of equivalence classes of  is computably inseparable;
2.	 every equivalence class of  is non-computable;
3.	 every equivalence class of  is infinite.
These statements also apply to weakly precomplete ceers.
A fundamental property of computably enumerable equivalence relations is the finiteness of 

their equivalence classes. A ceer  is called  (standing for finite classes) if all its equivalence 
classes are finite [19]. A stronger notion is -boundedness, meaning that every equivalence class of 

 contains at most  elements for some  with . If such a bound exists for some ,  is 
simply called bounded [6]. An important structural property follows: every bounded ceer is light (see 
Theorem 6.2 (1) in [19]).

Theorem 1.3 ([20]). For every non-universal positive preorder , there exists a weakly precom-
plete minimal positive preorder , which is not reducible to .

Corollary 1.4 ([20]). For every positive non-universal preorder , there exist infinitely many 
pairwise incomparable weakly precomplete minimal positive preorders, none of which is reducible 
to .

It can be observed that Theorem 1.3 and Corollary 1.4 remain valid if we replace the term “posi-
tive preorder” with “positive equivalence relation”. This naturally leads to a question of whether 
minimal dark equivalences exist that are not weakly precomplete. Theorem 3.8, the main result of 
this paper, gives an affirmative answer for this question.

The remaining of the paper is organized as follows. In the section Materials and Methods we 
explain the finite injury priority method, which serves as the main tool in our proofs. In the section 
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Results and Discussion, we establish an existence of non-weakly precomplete minimal dark ceers 
and prove a result analogous to Corollary 1.4. Furthermore, we show that over any dark  ceer, 
there exist infinitely many incomparable dark  ceers (Theorem 3.1).

Materials and methods

Throughout the main section, we will use a standard technique from classical computability 
theory called finite injury priority method.

Suppose, we want to build a constructive object (c.e. set, equivalence relation, linear order etc.) 
with certain properties. To achieve this, we will play against an effective listing (or a numbering) of 
objects (such as c.e. sets, partial computable functions etc.) trying to satisfy specific requirements 
that ensure the desired properties.

The fulfillment of each such requirement is dictated by strategies. Each strategy  typically 
has a witness or representative  that witnesses satisfactory outcome of each requirement. It might 
happen so that a requirement may fail to be met under the chosen representative, in this case we may 
restart the strategy by choosing a new witness. This restarting process is called initialization.

For example, suppose we want to construct a set  with certain properties. Let  
be the set of all requirements that must be satisfied for such set  to exist. Assume that  wants to 
enumerate elements into , while  aims to prevent certain elements from entering . Clearly, 
even-numbered strategies will conflict with odd-numbered strategies and vice versa.

This is where the priority method comes into play. It allows us to order requirements in such a 
way that conflicts between different strategies cannot be completely avoided but are instead orga-
nized so that lower-priority requirements respect the constraints imposed by higher-priority ones. 
That is, we define a priority ordering:

					   

A strategy  can ignore constraints imposed by any  with , but  must select its actions 
so that the constraints set by each  are not violated.

The number of possible outcomes for a strategy may vary depending on the problem, but the 
main ones are act and wait. We say that the strategy for  has the outcome act if there is a witness 

 that meets . Otherwise, we say that the strategy has the outcome wait. Of course, at the stage , 
 we may not yet know what the ultimate outcome of a given strategy will be.

The process works as follows: suppose we want to enumerate a number  into  to satisfy , 
but earlier, we observed that  put a restrain on enumerating  into . As a result,  must look 
for another element that respects the constraint imposed by  – meaning that at stage ,  is in 
the wait state. However, higher-priority strategies, such as those for , may injure the 
constraint imposed by  by forcing  into , thereby switching the strategy to an act outcome. In 
this case, we will need to reinitialize  at most seven times. After that, the new constraint imposed 
by  on a different number  will be respected by the other even-numbered strategies. When each 
strategy experiences only a finite number of injuries, we say that the object is constructed using the 
finite injury priority method.

One way to conceptualize finite injury arguments is through tree of strategies. We introduce this 
notion informally here and refer a curious reader to for all formal details [22]. A tree of strategies  
is a full binary tree (where the branching factor depends on the number of possible outcomes of the 
strategies), with nodes corresponding to requirements  (see Figure 1). A path through  is a string 

a,w . Here, a and w correspond to the act and wait outcomes, respectively. A true path of  is 
a path  such that every requirement along this path is satisfied.
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Figure 1 – Tree of strategies 

Since our construction is done by stages, at each stage , we define an approximation of  as a 
unique string a,w  such that . For example, suppose that at some stage , the 
strategy  is still waiting for its witness to act,  has already placed a restraint on some number, and 

 has acted according to its strategy. In this case,  is currently defined as a green path in Figure 
2. At the next stage, , the strategy for  may act on its witness, but this could injure  and , 
requiring us to initialize them. After initialization, strategies for  and  may no longer be satisfied. 
This situation is illustrated in Figure 3 below. Additionally, note that .

    Figure 2 – Approximation of  at stage 	          Figure 3 – Approximation of  at stage 

As seen in the pictures above, some requirements have multiple copies as backups. This is done 
to ensure that every requirement is eventually satisfied. Note that each strategy can remain in the 
waiting state for a long time unless it acts. In the latter case, if no higher-priority strategies injure it, 
the requirement will never switch back to the waiting state, thereby stabilizing some initial segment 
of . Since higher-priority strategies either never act or act only once, each  ( th element of 
the string ) changes only finitely many times.

Results and discussion

It can be shown that  dark ceers exist (see, e.g., Example 3.2 in [21]). We show that the upper 
cone of any such ceer contains an infinite antichain of  dark ceers. 

Theorem 3.1. Let  be any  dark ceer. Then there exist infinitely many incomparable  dark 
ceers  such that  for all .

Proof. We construct a sequence of ceers  such that in each  the elements of 
 are reserved for coding . That is, in  we -collapse  and  

if and only if . We satisfy the following requirements:
If  then  is not a reduction from  to .
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  is not a reduction from  to .

The -class of  is finite.

We fix a computable order on the requirements of order type . We say that a requirement  has 
higher priority than a requirement  if  strictly precedes  in the order defined above (in this case, 

 has lower priority than ). Coding  on the set  in each  will ensure reduction . 
The set  will grow in the sense that we will redefine  each time when some element  gets 

-collapsed with . We allow strategies to set two types of restraints for strategies of lower 
priority:  meaning that  can not be -collapsed with ; and  meaning that  can 
not be -collapsed with any element from .

Strategy for  Informally, we will try to diagonalize directly when possible, if not we will 
code a universal ceer into . Fix a universal ceer  with its computable approximation . We 
start by setting a counter  then proceed by choosing a pair of fresh elements  and  taken 
from outside of  part of  and place a restraint . At each later stage, we continue to 
look for fresh elements  and placing restraints  while growing our counter  for every 

. If the function  fails to halt on at least one of the chosen witnesses, that is, if we wait for 
infinity, it means that the function  is not a reduction at all, and we have won.

Formal description of the strategy:
1)	 Set ;
2)	 Choose new witnesses  for  and for any  with  place restraints 

;
3)	 Wait for  to converge for all ;
4)	 Assume  for all .
(a)	If there are  and  such that  and both s are from outside of  in , then we - 

collapse  and  and place restraints  and .
(b)	If  and  for some , then we keep restraints  

and .
(c)	If there are  such that , and , then we -collapse  and , and 

set the restraint .
(d) If every  and for every  we have such that  

where
				     			                               (1)

then we -collapse every pair , increase our counter  by , and proceed to 
define , i.e. we set , choose a new witness , and go to Step 3.

The outcomes are either wait at Step 3 waiting for  to converge, or act when  appears to 
converge everywhere, while at the same time not being closely tied to  part (Steps 4(a), 4(b) and 
4(c)), in which case we can diagonalize. Alternatively,  might tend to mimic ; if this happens 
infinitely often, we will eventually obtain a reduction from  to  via the function , 
which contradicts the fact that  is dark.

Strategy for . 
1)	 Set ;
2)	 Wait for  to converge for every ;
3)	 Assume  for all .
(a)	If there exist  and  ( ) such that , then the requirement is satisfied.
(b)	If all s are pairwise non- -equivalent and there exist  and  ( ) such that they do not 

have restraints from higher priority strategies, then we -collapse  and say that the require-
ment is satisfied.
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(с) If all s are pairwise non- -equivalent and have restrictions posed by higher priority 
strategies, then set , and go to Step 2.

The outcomes are either wait at Step 2, or act at Step 3. We diagonalize directly in Steps 3(a) and 
3(b). If  continues to grow infinitely often, then it means that infinitely many s have restraints 
set by higher priority requirements. However, this is impossible because there are only finitely many 
higher priority requirements placing no more than finite number of restraints each (see Lemma 3.3).

Strategy for . This strategy restrains the -class of  from collapsing with any other -class 
by lower priority requirement. Since there are only finitely many requirements of higher priority,  

-class of  will be finite. We will denote such restraints by .
Construction

The construction is by stages. More specifically, we will construct computable approxima-
tions  of  for all . We say that a requirement  is initial-
ized meaning that it chooses (or looks for) a new set of parameters. We say that a requirement 

 requires attention at stage , if  is initialized at stage , or  has not 
taken any action since its last initialization, but is now ready to take action. Keep in mind that each 
requirement must deal with restraints of the form  and  imposed by high-
er priority strategies. If , then it sets up the restraint  once and it will never be canceled.

Stage 0. Initialize all  and  requirements and define .
Stage . Code  in every  with , i.e. -collapse  and   .  

Consider the least  requirement that requires attention at the current stage.
If  is a -requirement, then take -action. If  is a -requirement then place a corresponding 

restraint. Otherwise,
	� if  is initialized, then choose new parameters for it as described in the strategy for ;
	� if  is not initialized, then take -action as described. 

After  has acted, initialize all requirements .
End of stage. Define all pairs which have been -collapsed at stage  

Proceed to the next stage.
Verification

We show that each requirement will eventually be satisfied by proving Lemmas  
below.

Lemma 3.2. Every  requirement is satisfied.
Proof. Note that every requirement  either hangs in the waiting state forever at Step 3 of the 

strategy or eventually acts at Step 4(a) or 4(b) or 4(c). After each action,  can be injured only 
finitely many times by higher priority strategies. Therefore, it will act at most finitely many times. 
Thus,  is eventually satisfied.			      

Lemma 3.3. If  is total, then the outcome for  is act.
Proof. By way of contradiction, suppose that  is total and we don’t see Steps 3(a) and 3(b) in-

finitely often. Note that we won’t get stuck at Step 2 because  is total. Therefore, we must be stuck 
at Step 3 infinitely often. Since we don’t see 3(a), it follows that 
. Furthermore, since we don’t see 3(b) either for all  pairs  have restraints set by higher 
priority strategies, or both  and  are in . Since only finitely many restraints are set by higher 
priority strategies, there exists some  such that for all  we have . Let’s introduce 
a function  as a modification of the function defined in Eq. (1) as follows:

 with .
It is not difficult to verify that the function  computably reduces  to , 

contradicting to the fact that  is dark.						        
Lemma 3.4. Every class of each ,  is finite.
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Proof. The statement is equivalent to saying that every -requirement is satisfied. By Lemma 
3.2 and Lemma 3.3 every  and  requirements act finitely often, where . Hence, the class 

 grows only finitely many times.		                         
This completes the proof of Theorem 3.1.					      	    
Next, we present some facts about  dark ceers related to minimality. 
Corollary 3.5. No minimal dark ceer is reducible to a  dark ceer.
Proof. If a minimal dark was reducible to a  dark ceer, then some non-computable class would 

be reduced to a finite (computable) one, which is impossible.		     
Corollary 3.6. There are no minimal  dark ceers.
Proof. Let  be a  dark ceer and  be representatives from distinct -classes. Define a 

ceer  as , where  and  are collapsed. Now define a computable function  as follows:

				  
𝑓𝑓(𝑥𝑥) = �

𝑥𝑥,
𝑎𝑎0,

if 𝑥𝑥 ∉ [𝑎𝑎0]𝐹𝐹 ,
if 𝑥𝑥 ∈ [𝑎𝑎0]𝐹𝐹 . 

It is easy to check that  is a reduction from  to . The reduction from  to  does not exist 
because of self-fullness of  (recall that every dark ceer is self-full).   

We now proceed to the main result of the paper, namely, that there exist weakly precomplete 
minimal dark ceers.

Theorem 3.7. Let  be any non-universal ceer. Then there exist infinitely many non-weakly 
precomplete pairwise incomparable minimal dark ceers  such that  for every .

Proof. Let  be a non-universal ceer. To construct ceers  that are non-weakly precomplete, we 
define a computable diagonal function  for every  as follows:

				  
				  

𝑑𝑑(𝑥𝑥) = �𝑥𝑥 + 1, if 𝑥𝑥 is even,
𝑥𝑥 − 1, otherwise.  	

In the construction we will place a restraint for -collapsing any pair  and this restraint 
will never be cancelled. This will ensure that  is non-weakly precomplete (see Proposition 1.1).

	 Now, we will construct ceers  ( ) satisfying the following requirements:

: If  intersects infinitely many -classes, then it intersects .

If  then  is not a reduction from  to .

  is not a reduction from  to .

The -requirements guarantee that the ceers  are pairwise incomparable. The -requirements 
ensure that the ceers  are minimal and dark. Fulfilling the -requirements ensures that the ceers  
remain outside of the lower cone of .

	 Strategy for . 
1.	 Choose a large number 
2.	 Check whether  and  intersect. If they do, the requirement is satisfied. If not, proceed 

to Step 3.
3.	 Wait for some  such that  for every .
4.	 -collapse classes  and .
Strategy for 
1.	 Choose new witnesses  and  and place a restriction 
2.	 Wait for  to converge for all .
3.	 Assume  for every .
(a)	If , then -collapse  and , and place a restraint .
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(b)	If , then keep the restraint .
Strategy for . 
1.	 Set .
2.	 Choose new witnesses  and  and place a restraint .
3.	 Wait for  to converge for all .
4.	 Assume  for all .
(a)	If for all 

then we -collapse every pair  (where  is a univer-sal ceer), we set 
, choose a new witness  and go to Step 3.

(b)	Otherwise, the requirement is satisfied.
Construction

The construction proceeds in stages. More precisely, we will construct computable approxima-
tions  of  for all . We say that a requirement  is initialized 
at stage  meaning that it chooses a new set of parameters, and when  is initialized, the restraint 
imposed by  is canceled. Note that  and  requirements must deal with restraints of the form 

 posed by higher priority strategies.
Stage 0. Initialize all -requirements and define  for each .
Stage . If  acts for some  then perform -action as described. Otherwise, if  is 

initialized choose new parameters for  as described in the strategy for ; if  is not initialized then 
take -action.

End of stage. Define all pairs which have been -collapsed at stage . Go 
to the next stage.

Verification
We show that each requirement is satisfied by the respective strategy and that they don’t collapse 

numbers  and  for every . 
Lemma 3.8. If  intersects infinitely many -classes, then it intersects . More-over, the 

strategy  doesn’t collapse elements  and  for every .
Proof. Towards a contradiction, assume that  intersects infinitely many -classes and does 

not intersect the class . This means that each time we check the intersection at Step 2 we get a 
negative answer, and we proceed to Step 3. At Step 3, we wait for some  such that  
for every  to appear. Otherwise, we may collapse an element from  and . Since we wait at 
Step 3 infinitely often,  can only intersect classes smaller than , leading to a contradiction.

	 Therefore, we collapse classes  and  according to Step 4 of the strategy. Now, we 
show that classes  and  cannot be of the form  and . Assume that .  
Recall Step 3 which says  for all  where we chose  to be a number greater than 

. Thus, the number  cannot be in .					   
Lemma 3.9. If  is total, then  is not a reduction from  to . Moreover, the strategy does 

not collapse numbers  and  for every .
Proof. Suppose  is total. When  and  converge, either we do nothing, while keep-

ing the restraint  if  already holds, or we act if still . 
Either way, the -requirement succeeds in diagonalization which is then preserved by the restraints 
posed by the strategy.

The strategy never collapses pairs  for any . The only way some of the ele-
ments can be collapsed by the strategy is at Step 3(a), and those elements are even. 	   

Lemma 3.10. If  is a reduction from  to , then there is a reduction from  to . Moreover, 
the strategy doesn’t collapse the numbers  and  for every .
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Proof. Suppose  is a reduction from  to . Then for every  a parameter  is assigned. 
For every  we have . Note that this way we can reduce  to , 
contradicting to the fact that  is non-universal.

The strategy never collapses numbers  and . The only instance when some elements 
might get collapsed by the strategy occurs at Step 4(a), and in such case the collapsed elements are 
even. 								          

The proof of Theorem 3.8 is complete.						          

Conclusion

This paper gives a positive answer to the question about existence of minimal dark equivalences 
that are not weakly precomplete. Moreover, we proved the existence of infinitely many incomparable 
non-weakly precomplete minimal dark ceers that avoid lower cone of a given non-universal ceer. We 
also showed that over any dark  ceer, there exists an infinite antichain of dark  ceers.

Acknowledgements

The work is supported by Science Committee of Ministry of Science and Higher Education of 
the Republic of Kazakhstan (Grand no. AP19676989).

REFERENCES

1	 Ershov, Y. L. Positive equivalences. Algebra and Logic, 10(6), 378–394 (1971). 
2	 Bernardi, C. On the relation provable equivalence and on partitions in effectively inseparable sets. 

Studia Logica, 40, 29–37 (1981).
3	 Bernardi, C., Sorbi, A. Classifying positive equivalence relations. The Journal of Symbolic Logic, 

48(3), 529–538 (1983).
4	 Andrews, U., Lempp, S., Miller, J. S., Ng, K. M., San Mauro, L., Sorbi, A. Universal computably 

enumerable equivalence relations. The Journal of Symbolic Logic, 79(1), 60–88 (2014).
5	 Andrews, U., Badaev, S., Sorbi, A. A survey on universal computably enumerable equivalence 

relations. In Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 
60th Birthday (pp. 418–451). Cham: Springer International Publishing (2016).

6	 Andrews, U., Sorbi, A. The complexity of index sets of classes of computably enumerable equivalence 
relations. The Journal of Symbolic Logic, 81(4), 1375–1395 (2016).

7	 Bazhenov, N. A., Kalmurzaev, B. S. On dark computably enumerable equivalence relations. Siberian 
Mathematical Journal, 59, 22–30 (2018).

8	 Ng, K. M., Yu, H. On the degree structure of equivalence relations under computable reducibility. 
Notre Dame J. Formal Logic, 60(4), 733–761 (2019).

9	 Andrews, U., Badaev, S. A. On isomorphism classes of computably enumerable equivalence relations. 
The Journal of Symbolic Logic, 85(1), 61–86 (2020).

10	Andrews, U., Schweber, N., Sorbi, A. Self-full ceers and the uniform join operator. Journal of Logic 
and Computation, 30(3), 765–783 (2020).

11	 Andrews, U., Sorbi, A. Effective inseparability, lattices, and preordering relations. The Review of 
Symbolic Logic, 14(4), 838–865 (2021).

12	Delle Rose, V., San Mauro, L., Sorbi, A. A note on the category of equivalence relations. Algebra and 
Logic, 60(5), 295–307 (2021).

13	Andrews, U., Belin, D. F., San Mauro, L. On the structure of computable reducibility on equivalence 
relations of natural numbers. The Journal of Symbolic Logic, 88(3), 1038–1063 (2023).

14	Ershov Yu. L. The Theory of Enumerations, Nauka, Moscow (1977).  [Russian].
15	Badaev S. A. On weakly pre-complete positive equivalences, Sib. Math. J., 32 (2), 321–323 (1991).
16	Badaev, S.A., Sorbi, A. Weakly precomplete computably enumerable equivalence relations. Math. 

Log. Quart. 62, No. 1–2, 111–127 (2016).



208

HERALD  OF  THE  KAZAKH-BRITISH 
TECHNICAL  UNIVERSITY          No. 3(74) 2025

17	Badaev, S.A., Bazhenov, N.A., Kalmurzayev, B.S., Mustafa, M. On diagonal functions for equivalence 
relations. Archive for Mathematical Logic. 63, 259–278 (2023).

18	Andrews, U., Sorbi, A. Joins and meets in the structure of ceers. Computability, 8 (3–4), 193–241 
(2019).

19	Gao, S., Gerdes, P. Computably enumerable equivalence relations. Studia Logica, 27–59 (2001).
20	Badaev, S. A., Kalmurzaev, B. S., Mukash, N. K., Khamitova, A. A. Special classes of positive 

preorders. Sib. Elektron. Mat. Izv., 18:2, 1657–1666 (2021).
21	Andrews, U., Schweber, N., Sorbi, A. The theory of ceers computes true arithmetic. Ann. Pure Appl. 

Logic. (171:8), 102811 (2020).
22	Soare R. Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-

Verlag, Berlin (1987).

1Бадаев С.А.,
ф.-м.ғ.д., профессор, ORCID ID: 0000-0003-0444-2394,

e-mail: sbadaev@gmail.com 
1Искаков А.М.,

докторант, ORCID ID: 0009-0005-2550-2079,
E-mail: bheadr73@gmail.com 

1*Калмурзаев Б.С.,
PhD, қауымдастырылған профессор, ORCID ID: 0000-0002-4386-5915,

*e-mail: birzhan.kalmurzayev@gmail.com 
1Асқарбекқызы А.,

докторант, ORCID ID: 0000-0003-0075-4438,
e-mail: ms.askarbekkyzy@gmail.com

1Қазақстан-Британ техникалық университеті, Алматы қ., Қазақстан

МИНИМАЛ ҚАРАҢҒЫ ЕСЕПТЕЛІМДІ САНАЛЫМДЫ 
ЭКВИВАЛЕНТ ҚАТЫНАСТАРДЫҢ ҚҰРЫЛЫМЫ ЖАЙЫНДА

Аңдатпа
Есептелімді көшіруге қатысты есептелімді саналымды эквиваленттік қатынастардың (қысқаша ceers) 

құрылымы соңғы 25 жылда белсенді түрде зерттелуде. Эндрюс пен Сорбидің шолу еңбектері ceers құры
лымына тән көптеген құрылымдық қасиеттерді ашып көрсетті. Олар супремум мен инфимумның бар-жоғын 
зерттей отырып, құрылымды анықталымды екі бөлікке бөлді: қараңғы (яғни, тиімді трансверсалі жоқ) 
және жарық (тиімді трансверсалі бар) эквиваленттіліктер. Сонымен қатар, Эндрюс пен Сорби минималды 
қараңғы есептелімді саналымды эквиваленттік қатынастардың (бұдан әрі – минималды қараңғы ceers) шексіз 
саны бар екенін дәлелдеді. Мұндағы минималдылық – бұл қатынастардың төменгі конусында тек кластар 
саны шектеулі болатын эквиваленттіктер ғана жатуы мүмкін деген мағынада. Мұндай минималды қараңғы 
эквиваленттіктердің маңызды қасиеті – кластардың кез келген жұбы есептелімді түрде ажыратылмайды. 
Сондай-ақ, ceers теориясында әлсіз жартылай толық эквиваленттік қатынастар да зерттелуде. Бұл  
есептелімді диагонал функциясы жоқ эквиваленттіктер. Аталған қатынастарда да кластардың кез келген 
жұбы есептелімді түрде ажыратылмайды. Осыған байланысты әлсіз жартылай толық, минималды қараңғы 
эквиваленттік қатынастардың бар-жоғы туралы сұрақ туындайды. Бұл мақалада аталған сұраққа оң жауап 
беріліп отыр. FC арқылы барлық класы ақырлы болатын есептелімді саналымды эквиваленттік қатынас 
белгіленсін. Эндрюс, Швебер және Сорби қараңғы FC эквиваленттіктерінің бар екенін көрсеткен болатын. 
Ал бұл зерттеуде біз кез келген қараңғы FC эквиваленттік қатынасының үстінде қараңғы FC эквиваленттік 
қатынастардан тұратын шексіз антитізбек (антишынжыр) бар екенін дәлелдейміз.

Тірек сөздер: эквиваленттік қатынас, есептелімді саналымды эквиваленттік қатынас, есептелімді 
көшіру, әлсіз жартытолық эквиваленттік қатынас.
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О СТРУКТУРЕ МИНИМАЛЬНЫХ ТЕМНЫХ ВЫЧИСЛИМО 
ПЕРЕЧИСЛИМЫХ ОТНОШЕНИЙ ЭКВИВАЛЕНТНОСТИ

Аннотация
Структура вычислимо перечислимых отношений эквивалентности относительно вычислимой своди

мости (коротко – ceers) активно развивается на протяжении последних 25 лет. В обзоре Эндрюса и Сорби 
было показано множество структурных свойств структуры ceers. Эндрюс и Сорби исследовали существо-
вание супремумов и инфимумов. Они разделили структуру на две определимые части: темные (эквивалент-
ности без эффективного трасверсаля) и светлые (с эффективным трансверсалем) эквивалентности и по-
казали существование бесконечного числа минимальных (в том смысле, что строго под ними могут быть 
только конечные эквивалентности) темных ceers. Минимальные темные эквивалентности имеют следую-
щее свойство: каждая пара классов вычислимо неотделима. Также в теории ceers изучаются слабо предпол-
ные эквивалентности  (то есть те эквивалентности, для которых не существует вычислимых диагональных 
функций). Также у данных эквивалентностей каждая пара классов вычислимо неотделима. В связи с этим 
возникает вопрос о существовании минимальных темных эквивалентностей, не являющихся слабо пред-
полными. В данной статье дается положительный ответ на этот вопрос. Через  обозначим в.п. отношение 
эквивалентности все классы которого конечны. Эндрюс, Швебер, Сорби показали существование темных 

 экивалентностей. В этой статье доказывается, что над любой темной  эквивалентностью существует 
бесконечная антицепь темных  эквивалентностей.

Ключевые слова: отношение эквивалентности, вычислимо перечислимое отношение эквивалентно-
сти, вычислимая сводимость, слабо предполные отношения эквивалентности.
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