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ANOTE ON THE STRUCTURE OF MINIMAL DARK CEERS

Abstract

The structure of computably enumerable equivalence relations under computable reducibility (commonly
referred to as ceers) has been actively developed over the past 25 years. A comprehensive survey by Andrews
and Sorbi presented numerous structural properties of ceers, most notably investigating the existence of joins and
meets in the degree structure of ceers. They divided the structure into two definable parts: dark ceers (ceers without
an effective transversal) and light ceers (ceers with an effective transversal). They also showed the existence
of an infinite number of minimal dark ceers (modulo equivalence relations with finitely many classes). Minimal
dark ceers exhibit the distinctive property that every pair of classes is computably inseparable. Furthermore, the
classes of weakly precomplete equivalence relations (i.e. those that lack a computable diagonal functions) are also
computably inseparable. In this context, a natural question arises: do minimal dark equivalence relations exist that
are not weakly precomplete? This paper provides an affirmative answer to this question. Moreover, we establish
the existence of an infinite family of non-weakly precomplete minimal dark ceers that avoids lower cone of a given
non-universal ceer. We denote by FC the set of ceers consisting of only finite classes. Andrews, Schweber, Sorbi
showed the existence of dark FC equivalences. In this paper, we prove that over any dark FC ceer, there exists an
infinite antichain of dark FC ceers.

Key words: Equivalence relation, computably enumerable equivalence relation, computable reducibility,
weakly precomplete equivalence relation.

Introduction

The paper studies properties of computable reducibility for computably enumerable binary rela-
tions on the set of natural numbers . Suppose R and § are binary relations on w. We say that R is
computably reducible to § (denoted by R =_ 5) if and only if there exists a computable function f
such that for every x,¥ € w

(x,7) € R & (flx),f()) € 5.

Relations R and S are said to be computably equivalent if and only if R =_§ and 5 =, R.
Throughout this paper, we will be working with computably enumerable equivalence relations, or
ceers for short. A ceer U is called universal if E = _ U for every ceer E. For more details on =,-reduc-
ibility in the context of equivalence relations, see [1-13, 16, 19, 21].
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An equivalence relation E is called precomplete if there exists a total computable function
f(e,x) such that for all €, x € w, whenever @, (%) is defined, it holds that @, (x) E f{e,x) Accord-
ing to Ershov’s Fixed-Point Theorem, an equivalence relation Eis precomplete if and only if there
exists a total computable function f(x) such that for every e € w, if @, (f (E}} is defined, then
0. (7(e)) E fle) [14].

Badaev weakened the notion of precompleteness by introducing weakly precomplete equiva-
lences [15]: an equivalence relation E is called weakly precomplete if there exists a partial comput-
able function fix such that the following holds for each € € w:

(@, istotal) = [fix(e} L& (fpa (fix(e}} E fix(e})].

Later, Badaev and Sorbi provided a criterion for weakly precompleteness using so-called diago-
nal functions [16]. A total function d is called a diagonal function for an equivalence relation E, if
for every x, (d(x),x) € E.

Proposition 1.1. Let E be a ceer. The following statements are equivalent:

1. E is weakly precomplete;

2. (‘v’e}[qﬂa istotal = (In)e.(n) E n]];

3. E has no computable diagonal function.

Properties of diagonal functions for ceers were studied extensively in [17].

Aceer £ is dark ifit is incomparable with Id = {{x, x) |x € w}. Aceer E is called lightifId =_E.
Equivalently, E is called light if and only if there is an effective transversal, i.e. there exists a c.e. set
W whose elements are pairwise non- E-equivalent [18].

Andrews and Sorbi showed that, unlike the light ceers (where Id is the least light ceer), there
is no least dark ceer [18]. In particular, they proved the existence of infinitely many incomparable
minimal dark ceers (see Theorem 3.3 in [18]).

We summarize some basic facts about minimal dark ceers based on Theorem 3.3 in [18].

Observation 1.2. Let E be a minimal dark ceer. Then

1. every pair of equivalence classes of E is computably inseparable;

2. every equivalence class of E is non-computable;

3. every equivalence class of E is infinite.

These statements also apply to weakly precomplete ceers.

A fundamental property of computably enumerable equivalence relations is the finiteness of
their equivalence classes. A ceer E is called FC (standing for finite classes) if all its equivalence
classes are finite [19]. A stronger notion is k-boundedness, meaning that every equivalence class of
E contains at most k elements for some k € e with k& = 0. If such a bound exists for some k, E is
simply called bounded [6]. An important structural property follows: every bounded ceer is light (see
Theorem 6.2 (1) in [19]).

Theorem 1.3 ([20]). For every non-universal positive preorder R, there exists a weakly precom-
plete minimal positive preorder P, which is not reducible to R.

Corollary 1.4 ([20]). For every positive non-universal preorder R, there exist infinitely many
pairwise incomparable weakly precomplete minimal positive preorders, none of which is reducible
to R.

It can be observed that Theorem 1.3 and Corollary 1.4 remain valid if we replace the term “posi-
tive preorder” with “positive equivalence relation”. This naturally leads to a question of whether
minimal dark equivalences exist that are not weakly precomplete. Theorem 3.8, the main result of
this paper, gives an affirmative answer for this question.

The remaining of the paper is organized as follows. In the section Materials and Methods we
explain the finite injury priority method, which serves as the main tool in our proofs. In the section
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Results and Discussion, we establish an existence of non-weakly precomplete minimal dark ceers
and prove a result analogous to Corollary 1.4. Furthermore, we show that over any dark FC ceer,
there exist infinitely many incomparable dark FC ceers (Theorem 3.1).

Materials and methods

Throughout the main section, we will use a standard technique from classical computability
theory called finite injury priority method.

Suppose, we want to build a constructive object (c.e. set, equivalence relation, linear order etc.)
with certain properties. To achieve this, we will play against an effective listing (or a numbering) of
objects (such as c.e. sets, partial computable functions etc.) trying to satisfy specific requirements
that ensure the desired properties.

The fulfillment of each such requirement is dictated by strategies. Each strategy R, typically
has a witness or representative X that witnesses satisfactory outcome of each requirement. It might
happen so that a requirement may fail to be met under the chosen representative, in this case we may
restart the strategy by choosing a new witness. This restarting process is called initialization.

For example, suppose we want to construct a set A with certain properties. Let {R,, Ry, R, ... }
be the set of all requirements that must be satisfied for such set 4 to exist. Assume that R,; wants to
enumerate elements into A, while R,;, 4 aims to prevent certain elements from entering A. Clearly,
even-numbered strategies will conflict with odd-numbered strategies and vice versa.

This is where the priority method comes into play. It allows us to order requirements in such a
way that conflicts between different strategies cannot be completely avoided but are instead orga-
nized so that lower-priority requirements respect the constraints imposed by higher-priority ones.
That is, we define a priority ordering:

Ry <Ry <R, < Ry< -~

A strategy R; can ignore constraints imposed by any R; with j > i, but R; must select its actions
so that the constraints set by each R; are not violated.

The number of possible outcomes for a strategy may vary depending on the problem, but the
main ones are act and wait. We say that the strategy for R_ has the outcome act if there is a witness
X, that meets R_. Otherwise, we say that the strategy has the outcome wait. Of course, at the stage =,
we may not yet know what the ultimate outcome of a given strategy will be.

The process works as follows: suppose we want to enumerate a number x into A to satisfy R,
but earlier, we observed that R, put a restrain on enumerating x into 4. As a result, R, must look
for another element that respects the constraint imposed by R, — meaning that at stage 5, R,4 1s in
the wait state. However, higher-priority strategies, such as those for Ry, R, ..., R;5, may injure the
constraint imposed by R,5 by forcing x into A, thereby switching the strategy to an act outcome. In
this case, we will need to reinitialize R, ; at most seven times. After that, the new constraint imposed
by R, on a different number x' will be respected by the other even-numbered strategies. When each
strategy experiences only a finite number of injuries, we say that the object is constructed using the
finite injury priority method.

One way to conceptualize finite injury arguments is through tree of strategies. We introduce this
notion informally here and refer a curious reader to for all formal details [22]. A tree of strategies T
is a full binary tree (where the branching factor depends on the number of possible outcomes of the
strategies), with nodes corresponding to requirements R; (see Figure 1). A path through T is a string
o € {a,w}“. Here, a and w correspond to the act and wait outcomes, respectively. A true path of T is
a path Tp such that every requirement along this path is satisfied.
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Figure 1 — Tree of strategies T’

Since our construction is done by stages, at each stage s, we define an approximation of TP as a
unique string TP, € {a,w}™“ such that |TP,| = s. For example, suppose that at some stage s = 0, the
strategy R s still waiting for its witness to act, R4 has already placed a restraint on some number, and
R has acted according to its strategy. In this case, TE, is currently defined as a green path in Figure
2. At the next stage, s + 1, the strategy for Ry may act on its witness, but this could injure R, and R,
requiring us to initialize them. After initialization, strategies for Ry and R, may no longer be satisfied.
This situation is illustrated in Figure 3 below. Additionally, note that (¥t = s)[TP.(0) = TP{0)}].

g o

Bz itz Ry

iy » ® s Iy Ity

Figure 2 — Approximation of TF at stage § Figure 3 — Approximation of TP at stage 5 + 1

As seen in the pictures above, some requirements have multiple copies as backups. This is done
to ensure that every requirement is eventually satisfied. Note that each strategy can remain in the
waiting state for a long time unless it acts. In the latter case, if no higher-priority strategies injure it,
the requirement will never switch back to the waiting state, thereby stabilizing some initial segment
of TP. Since higher-priority strategies either never act or act only once, each TF,{i) (i" element of
the string TP,) changes only finitely many times.

Results and discussion

It can be shown that FC dark ceers exist (see, e.g., Example 3.2 in [21]). We show that the upper
cone of any such ceer contains an infinite antichain of FC dark ceers.

Theorem 3.1. Let F be any F¢ dark ceer. Then there exist infinitely many incomparable FC dark
ceers (E} )., such that F < E, forall I € w.

Proof. We construct a sequence of ceers (E,),.,, such that in each E, the elements of
W = w!® = {{0, x)|x € w} are reserved for coding F. That s, in E, we E;-collapse (0, x} and (0, y)
if and only if (x, v) € F. We satisfy the following requirements:

QE": Ifk = I then @, is not a reduction from E, to E,.
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PB': @ is not a reduction from Id to E,.
't The Ei-class of € is finite.

We fix a computable order on the requirements of order type w. We say that a requirement K has
higher priority than a requirement K" if K strictly precedes K "in the order defined above (in this case,
K" has lower priority than K). Coding F on the set W = ! in each £t will ensure reduction F = E,.
The set W will grow in the sense that we will redefine W each time when some element @ € W gets
E;-collapsed with & &€ W. We allow strategies to set two types of restraints for strategies of lower
priority: (@, b, I) meaning that a can not be E; -collapsed with b; and R{(W; &, I) meaning that @ can
not be E;-collapsed with any element from W,

Strategy for QX. Informally, we will try to diagonalize directly when possible, if not we will
code a universal ceer into E;. Fix a universal ceer U with its computable approximation {U, }.-,,. We
start by setting a counter ™ = @ then proceed by choosing a pair of fresh elements ¥, and *; taken
from outside of W part of E;, and place a restraint R(x,,%;,k). At each later stage, we continue to
look for fresh elements x.,, and placing restraints R(x;, x,,, k) while growing our counter m for every
i =~ m. If the function @, fails to halt on at least one of the chosen witnesses, that is, if we wait for
infinity, it means that the function #; is not a reduction at all, and we have won.

Formal description of the strategy:

1) Setm:=1;

2) Choose new witnesses ¥; for i =m and for any i,j =m with i #j place restraints
R(:x;, x;, k), R(W; x,,K);

3) Wait for @, (x;) to converge for all i < m;

4) Assume @, (x;) = y; forall i =m.

(a) Ifthere are ¥; and ¥; such that (y;,¥; ) € E; and both ¥'s are from outside of W in E;, then we E, -
collapse x; and x; and place restraints R{}-‘EJ Vi E}, R(W; vy, 1) and R(W; ¥, .

(b) Ify; E; y;and '[XE-J x}-} & E, forsomei, j = m,then we keep restraints R {x i Xj k}, R(W;x, k)
and R(W; x;, k).

(¢) If there are i,j=m such that ¥; EW, ¥;EW, and {}’[J}’j :EE[, then we Ej -collapse %; and %, and
set the restraint R( yi,yi,l}.

(d) If every ; € W and for every #,j = m we have x; B, X; & ¥; E; ¥; such that 7(p,) F r(p;)
where

v, = puqlg = (0,9) & q E; v,], (1)

then we Ej-collapse every pair {xi,x}-} < i U], increase our counter m by 1, and proceed to
define x,,,44, i.6. we set m :== m + 1, choose a new witness %, and go to Step 3.

The outcomes are either wait at Step 3 waiting for ¢s to converge, or act when ¥, appears to
converge everywhere, while at the same time not being closely tied to W part (Steps 4(a), 4(b) and
4(c)), in which case we can diagonalize. Alternatively, #; might tend to mimic F; if this happens
infinitely often, we will eventually obtain a reduction from U to F via the function f(t) = r(p.),
which contradicts the fact that F is dark.

Strategy for P!.

1) Setm:=1;

2) Wait for @, (1) to converge for every i < m;

3) Assumey; = @,(i) forall i =m.

(a) If there exist ¥; and ¥; (i # j) such that ¥; E; ¥;, then the requirement is satisfied.

(b) If all ¥;s are pairwise non-E, -equivalent and there exist ¥: and ¥; (1 # J) such that they do not
have restraints from higher priority strategies, then we E; -collapse {}-}-J}-‘j} and say that the require-
ment is satisfied.
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(c) If all ¥;s are pairwise non-E;-equivalent and have restrictions posed by higher priority
strategies, then set m := m + 1, and go to Step 2.

The outcomes are either wait at Step 2, or act at Step 3. We diagonalize directly in Steps 3(a) and
3(b). If m continues to grow infinitely often, then it means that infinitely many ¥;s have restraints
set by higher priority requirements. However, this is impossible because there are only finitely many
higher priority requirements placing no more than finite number of restraints each (see Lemma 3.3).

Strategy for F!. This strategy restrains the E;-class of € from collapsing with any other E; -class
by lower priority requirement. Since there are only finitely many requirements of higher priority,
E; -class of € will be finite. We will denote such restraints by RB{e, ).

Construction

The construction is by stages. More specifically, we will construct computable approxima-
tions {E:-‘E}SE:.J of E, for all I € w. We say that a requirement K € {Q¥, P! : ¢,k,1 € w] is initial-
ized meaning that it chooses (or looks for) a new set of parameters. We say that a requirement
K € {QF',P! : e, k,1 € w] requires attention at stage 5, if K is initialized at stage s, or K has not
taken any action since its last initialization, but is now ready to take action. Keep in mind that each
requirement must deal with restraints of the form R{a, b, 1),R(W;a, 1) and R{a,l) imposed by high-
er priority strategies. If K = E;, then it sets up the restraint R{e, 1) once and it will never be canceled.

Stage 0. Initialize all @ and P requirements and define E; ; = Id.

Stage s + 1. Code F, ., in every E; with I < s + 1, i.e. E;-collapse (0, x) and (0,yviexF .,y
Consider the least K requirement that requires attention at the current stage.

If K is a P-requirement, then take K-action. If K is a F-requirement then place a corresponding
restraint. Otherwise,

¢ if | is initialized, then choose new parameters for it as described in the strategy for K;

¢ if K is not initialized, then take K-action as described.

After K has acted, initialize all requirements K ' > K.

End of stage. Define E; .54 == E; . U {all pairs which have been E,-collapsed at stage s + 1}.
Proceed to the next stage.

Verification

We show that each requirement will eventually be satisfied by proving Lemmas 3.2, 3.3, 3.4
below.

Lemma 3.2. Every Q¥ requirement is satisfied.

Proof. Note that every requirement Q¥ either hangs in the waiting state forever at Step 3 of the
strategy or eventually acts at Step 4(a) or 4(b) or 4(c). After each action, @¥"* can be injured only
finitely many times by higher priority strategies. Therefore, it will act at most finitely many times.
Thus, @¥* is eventually satisfied. b

Lemma 3.3. If ¢, is total, then the outcome for £, is act.

Proof. By way of contradiction, suppose that ¥, is total and we don’t see Steps 3(a) and 3(b) in-
finitely often. Note that we won’t get stuck at Step 2 because ¥ is total. Therefore, we must be stuck
at Step 3 infinitely often. Since we don’t see 3(a), it follows that (Wi #j) ['[fﬂg (}’5}1 @, 1'._}}}} 2 E';]
. Furthermore, since we don’t see 3(b) either for all i # j pairs (34, ¥;) have restraints set by higher
priority strategies, or both »; and ¥; are in W. Since only finitely many restraints are set by higher
priority strategies, there exists some N € @ such that for all ¥ ® N we have ¥k € W Let’s introduce
a function Px (*) as a modification of the function defined in Eq. (1) as follows:

Py (X) = Py, with ¥ =% + ¥y

It is not difficult to verify that the function g(x) = r{py(x)) computably reduces Id to F,
contradicting to the fact that  is dark. O

Lemma 3.4. Every class of each £}, I € w is finite.
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Proof. The statement is equivalent to saying that every Fl-requirement is satisfied. By Lemma
3.2 and Lemma 3.3 every Q" and P} requirements act finitely often, where i, j = &. Hence, the class
[e] £, grows only finitely many times. =

This completes the proof of Theorem 3.1.

Next, we present some facts about FC dark ceers related to minimality.

Corollary 3.5. No minimal dark ceer is reducible to a FC dark ceer.

Proof. If a minimal dark was reducible to a FC dark ceer, then some non-computable class would
be reduced to a finite (computable) one, which is impossible. =

Corollary 3.6. There are no minimal FC dark ceers.

Proof. Let E be a FC dark ceer and @g: @ be representatives from distinct E-classes. Define a
ceer F as E, where @y and a; are collapsed. Now define a computable function f as follows:

a

(%, ifx & [ag]p,
fe) = {‘10: if x € [aZ]i.

It is easy to check that T is a reduction from F to E. The reduction from E to F does not exist
because of self-fullness of E (recall that every dark ceer is self-full). &

We now proceed to the main result of the paper, namely, that there exist weakly precomplete
minimal dark ceers.

Theorem 3.7. Let R be any non-universal ceer. Then there exist infinitely many non-weakly
precomplete pairwise incomparable minimal dark ceers (E;);e., such that E, £ R forevery | € w-

Proof. Let R be a non-universal ceer. To construct ceers E, that are non-weakly precomplete, we
define a computable diagonal function d for every E; as follows:

_(x+1, ifxiseven,
d(x) = {x — 1, otherwise.

Inthe construction we will place arestraint for E, -collapsing any pair (2x, 2x + 1) and thisrestraint
will never be cancelled. This will ensure that E, is non-weakly precomplete (see Proposition 1.1).
Now, we will construct ceers E; (I € w) satisfying the following requirements:

Di}-; If W, intersects infinitely many E; -classes, then it intersects .
%1 Ifk # I then @, is not a reduction from E,, to E;.
P/: @, is not a reduction from E, to R.

The @-requirements guarantee that the ceers E; are pairwise incomparable. The D-requirements
ensure that the ceers E; are minimal and dark. Fulfilling the P-requirements ensures that the ceers E;
remain outside of the lower cone of R.

Strategy for D} ;.

1. Choose a large number m > j + 1.

2. Check whether W, and (i g Intersect. If they do, the requirement is satisfied. If not, proceed
to Step 3.

3. Wait for some x € W, such that (x, a) & E, for every a = m.

4. E,-collapse classes [x]g, and [l g,

Strategy for Q.

1. Choose new witnesses 2x, and 2x; and place a restriction R(2x,, 2x;,1).

2. Wait for @(2x;) to converge for all i = 0,1.

3. Assume @, (2x;) =, foreveryi = 1.

(a) If (33, ¥, ) & E,, then E,-collapse 2x, and 2x, , and place a restraint R{y,, v, k).
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(b) If ¥ Ey 1, then keep the restraint R(2x,, 2x,,1).

Strategy for P!.

1. Setm := 1.

2. Choose new witnesses 2x, and 2x, and place a restraint R{2x, 2x,,1).

3. Wait for ¢, (2x;) to converge for all i =m.

4. Assume @,(2x,) =, forall i =m.

(a) Ifforalli,j = m

2x; B 2x; @ v, Ry;

then we Ej-collapse every pair (2x,, 2xj} < i Uj (where [J is a univer-sal ceer), we set
m = m + 1, choose a new witness 2x,, and go to Step 3.

(b) Otherwise, the requirement is satisfied.

Construction

The construction proceeds in stages. More precisely, we will construct computable approxima-
tions {Efﬁ}:-sm of E, for all I € w. We say that a requirement R € {pﬂij Qe k,l € m} is initialized
at stage s meaning that it chooses a new set of parameters, and when ** is initialized, the restraint
imposed by R is canceled. Note that ¢ and P requirements must deal with restraints of the form
R(a,b, 1) posed by higher priority strategies.

Stage 0. Initialize all R-requirements and define E; ; = Id for each 1.

Stage 5 + 1. If Di}. acts for some i, j, I then perform Di}--action as described. Otherwise, if g is
initialized choose new parameters for B as described in the strategy for R; if R is not initialized then
take R-action.

End of stage. Define E, ., , := E, _ U {all pairs which have been E, -collapsed at stage 5 + 1}. Go
to the next stage.

Verification

We show that each requirement is satisfied by the respective strategy and that they don’t collapse
numbers 2k and 2k + 1 for every k € w.

Lemma 3.8. If W, intersects infinitely many E, -classes, then it intersects (i1 5+ More-over, the
strategy DE?J}. doesn’t collapse elements 2k and 2k + 1 for every k € w.

Proof. Towards a contradiction, assume that W; intersects infinitely many E,-classes and does
not intersect the class [/l . This means that each time we check the intersection at Step 2 we get a
negative answer, and we proceed to Step 3. At Step 3, we wait for some x € W, such that {x, a) € E,
for every a = m, to appear. Otherwise, we may collapse an element from W, and . Since we wait at
Step 3 infinitely often, I¥; can only intersect classes smaller than ™, leading to a contradiction.

Therefore, we collapse classes [x] 5 and [j] g according to Step 4 of the strategy. Now, we
show that classes [x], and [j]5 cannot be of the form [2k] g and [2k + 1] g . Assume that ] = 2k.
Recall Step 3 which says x & [a] g, for all @ = m where we chose m to be a number greater than
j+ 1 =2k + 1. Thus, the number x cannot be in [2k + 115:-

Lemma 3.9. If @, is total, then @s is not a reduction from E, to E,. Moreover, the strategy does
not collapse numbers 2k and 2k + 1 for every k € w.

Proof. Suppose @, is total. When @, (@) and @, (B) converge, either we do nothing, while keep-
ing the restraint R(a, b, 1) if @;(@) E, @,(b) already holds, or we act if still (¢, (a), @, (b)) & E,.
Either way, the @-requirement succeeds in diagonalization which is then preserved by the restraints
posed by the strategy.

The strategy never collapses pairs (2x, 2x + 1) for any & € w. The only way some of the ele-
ments can be collapsed by the strategy is at Step 3(a), and those elements are even.

Lemma 3.10. If ¢, is a reduction from E| to R, then there is a reduction from I to R. Moreover,
the strategy doesn’t collapse the numbers 2k and 2k + 1 for every k € w.
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Proof. Suppose @ is a reduction from E, to R. Then for every i € w a parameter 2¥; is assigned.
For every i,j € @ we have i U j & ¢,(2x,) R @_(2x;). Note that this way we can reduce U to R,
contradicting to the fact that R is non-universal.

The strategy never collapses numbers 2k and 2k + 1, The only instance when some elements
might get collapsed by the strategy occurs at Step 4(a), and in such case the collapsed elements are
even. e

The proof of Theorem 3.8 is complete. &

Conclusion

This paper gives a positive answer to the question about existence of minimal dark equivalences
that are not weakly precomplete. Moreover, we proved the existence of infinitely many incomparable
non-weakly precomplete minimal dark ceers that avoid lower cone of a given non-universal ceer. We
also showed that over any dark FC ceer, there exists an infinite antichain of dark FC ceers.
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MHUHUMAJI KAPAHFBI ECEIITEJTIM/I CAHAJIBIM/IbI
IKBUBAJIEHT KATBIHACTAPAbBIH K¥PbIJIBIMbI " KAUBIHIA

Anjrarna

Ecenremimai kermipyre KaTBICTHI €CENTENIM/II CaHATBIMIBI SKBUBAJCHTTIK KaThIHACTApABIH (KhICKAIIa Ceers)
KYPBUIBIMBI COHFBI 25 XbUIma OenceHnai Typae 3eprrenyne. Juapioc meH CopOumiH mony eHOeKTepi ceers Kyphl-
JIBIMBIHA TOH KONTEreH KYPbUIBIMBIK KACHETTEP/I alibi kopceTTi. Onap cynpeMyM MeH HH(GUMYMHBIH Oap->KOFbIH
3epTTeH OTBIPBIIN, KYPBUIBIMJIBI aHBIKTAJIBIMJIBI €Ki OeJiKke Oeiii: KapaHFbl (SIFHH, THIMJI TpaHCBEpcalli JKOK)
JKOHE JKapbIK (THIMII TpaHCBepcati 0ap) skBuBajeHTTUTIKTep. COHBIMEH Katap, DHaptoc nieH CopOu MUHUMATIIBI
KapaHFbl €CeNTeNIM/I1 CaHaIBIM/Ibl SKBUBAJIEHTTIK KaTbIHACTAPBIH (Oy/1aH 9pi — MUHUMAJI/Ibl KAPAHFbI CEErs ) LIEKCI3
caHbl 0ap ekeHiH Janenaeni. MyH/IaFrbl MUHUMANIBUTBIK — OYJT KAThIHACTAP/IbIH TOMEHTT KOHYCBIH/IA TEK KI1acTap
CaHbI KTy I 0OIaThIH SKBUBAJICHTTIKTED FaHA )KAaTybl MYMKIH JIereH MarbiHaa. MyH/1ail MUHUMAIIIbI KApaHFbI
SKBUBAJICHTTIKTEP/IIH MaHBI3Ibl KACHETI — KJIACTap/bIH Ke3 KeJreH YObl eCenTeNiMIi TYpAe aKbIpaTblIMAaiIbl.
CoHpaii-ak, ceers TEOPHSICBHIHIA OJICI3 JKapThUIall TOJBIK OSKBUBAJICHTTIK KaTblHAcTap Ja 3eprrenyne. byi
ecenTeNimMai AuaroHan (QyHKIUSICH KOK AKBHBAJICHTTIKTEp. ATajraH KaTblHACTap/a Ja KiacTap/blH Ke3 KelreH
JKYOBI ecenTeNiMIl TYpAe axbIpaTbuIMaiabl. OchIFaH OaIaHBICTHI JICI3 JKAPThUIAM TOJBIK, MUHUMAJIBI KapaHFbI
IKBUBAJICHTTIK KAaThIHACTAP/IBIH OAp-KOFBI Typasibl Cypak TybIHAaibl. Byl Makanama aranran cypakka OH yKayarl
6epimin oreip. FC apKbutel OapiblK KITAChl aKbIPIBI OONATHIH €CENTeNiM/Al CaHaJIBIMIBI YKBUBAJIICHTTIK KaThIHAC
Oenrinencin. Duaproc, [1IBedep xone CopOu Kapanrbl FC 2KBUBaNeHTTIKTEpiHIH 0ap eKeHIH KOPCEeTKEH OOIaThIH.
A Oy 3eprreyae 0i3 ke3 kenreH Kapanrbl FC 9KBUBAJICHTTIK KaThIHACKIHBIH YCTiHIC KapaHFbl FC 9KBUBAJICHTTIK
KaTbIHACTAP/aH TYPAThIH IIEKCI3 aHTUTI30eK (aHTUILBIHXXBIP) Oap eKeHIH JaJemieiiMis3.

Tipek ce31ep: SKBUBAJCHTTIK KATBIHAC, €CENTENIM/I CaHaIBIMIBI SKBHBAJCHTTIK KATBIHAC, €CETTEeIIMIIL
KeIIIipY, 9JICi3 JKapTHITOIBIK IKBUBAIICHTTIK KATHIHAC.
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O CTPYKTYPE MUHUMAJIbBHBIX TEMHBIX BBIMHCJIUMO
HNEPEYUCIUMBIX OTHOIIEHUU S5KBUBAJIEHTHOCTH

AHHOTAIUA

CTpyKTypa BBIUHCIUMO MEPEUUCITUMBIX OTHOIICHUH 3KBUBAJICHTHOCTH OTHOCHTEIBHO BBIYMCIMMOMN CBOIIHU-
MOCTH (KOPOTKO — CEers) aKTUBHO Pa3BHBACTCs Ha MPOTSHKCHUU mociienHux 25 net. B 0630pe Duaproca u Copou
OBLTO MMOKA3aHO MHOKECTBO CTPYKTYpPHBIX CBOWCTB CTPYKTYpHI ceers. DHIproc 1 CopOu MCCIeIoBaIl CyIIeCTBO-
BaHHUE CYNIPEeMyMOB 1 HHPUMYMOB. OHHU pa3IeNiiii CTPYKTYPY Ha JIBE OMPEIeTUMBIC YacTH: TEMHBIC (SKBHBAJICHT-
HOCTH 0€3 3(h(eKTUBHOTO TpacBepcalisi) U cBetible (C d(h(HEKTUBHBIM TpaHCBEPCAeM) SKBHBAJIEHTHOCTH H TIO-
Kazajii CylEeCTBOBAHUE 6CCKOHe‘-IHOFO qyHciia MUHHUMAJIbHBIX (B TOM CMBICJIE, YTO CTPOIro 1o HUMU MOT'YT 6I)ITI)
TOJIbKO KOHCYHBIC SKBHBAJCHTHOCTH) TEMHBIX ceers. MUHUMAIbHBIC TEMHBIC SKBHBAJCHTHOCTH UMCIOT CIICAYIO-
ee CBOWCTBO: KaK/Iasl Imapa KJIacCOB BRIYHACIMMO HEOTACTHMA. TaKke B TEOPUH CEers U3ydaroTcCsl C1ad0 MpeIrnor-
HBIC SKBHBAJCHTHOCTH (TO €CTh T€ 3KBHUBAJICHTHOCTH, JJI1 KOTOPHIX HE CYIIECTBYET BBIYMCIMMBIX JHATOHAIBHBIX
(yskumit). Taxke y JaHHBIX SKBUBAJICHTHOCTEH Ka)kaas mapa KJIaccOB BEIUYMCIMMO HEOTAeTNMa. B CBA3M ¢ ATHM
BO3HHKAET BOMPOC O CYIIECTBOBAHMH MUHUMAJBHBIX TEMHBIX SKBUBAJICHTHOCTEH, HE SIBISAIOMIMXCSA CIa00 Mpea-
MOJHBIME. B 1aHHO# cTaThe JaeTcs MoNoKHUTENbHBIN 0TBET Ha 3TOT Bonpoc. Yepes FC 06o3naumnM B.11. oTHOMIEHNE
9KBUBAJICHTHOCTH BCE KJIACCHI KOTOPOTO KOHEYHbI. DHJproc, L1IBeGep, CopOu mokaszaim CymecTBOBaHHE TEMHBIX
FC skupanenTHOCTEH. B 3T0ii cTaThe nokaspiBaeTcs, uTo Haj moboii Temuoit FC sxsuBanentnocthio cymmecTsyer
6eckoneunas antuiens TeMHbix FC sxBuBaneHTHOCTEIH.

KiroueBble cjioBa: OTHOIICHHUE OKBUBAJICHTHOCTH, BBIYUCIIMMO NEPCYHUCITIUMOEC OTHOIICHUEC DKBUBAJICHTHO-
CTH, BbIUUCJIMMasA CBOANUMOCTbD, ciabo MPEANOIHBIC OTHOIICHUA SKBUBAJICHTHOCTH.
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