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QUANTUM-ENHANCED BLOCKCHAIN SECURITY:
INTEGRATING QUANTUM COMPUTING WITH
NETWORK ATTACK DETECTION

Abstract

This paper describes a security framework that uses both blockchain technology and quantum-enhanced
anomaly detection. We propose use of blockchain to create an unchangeable record of security events and smart
contracts to automatically respond to threats that have been confirmed. A variational quantum circuit (VQC) is the
basis for our system's hybrid quantum-classical model. The VQC processes information by turning classical data
into quantum states, using parameterized gates to model complicated dependencies, and then measuring the result
to classify it. We use a One-vs-Rest (OvR) method to find network attacks like Botnet, Brute Force, and Port Scan.
We tested how well it worked in both perfect (noiseless) and simulated noisy quantum environments.The model
was 93% accurate without noise and only 92% accurate with noise, which shows that it is strong. We found a major
trade-off: the OvR method works well, but it costs a lot of computing power. This indicates that subsequent efforts
should concentrate on creating more efficient quantum multiclass classification frameworks.

Keywords: variational quantum circuit (vqc), network anomalies, hybrid quantum-classical architecture,
multi-class classification

Introduction

In the financial technology (fintech) sector, smart contracts play a transformative role by
automating and securing financial transactions and services. They provide more efficient, transparent,
and cost-effective operation. Smart contracts are self-executing agreements whose terms are spelled
directly in the code. By embedding contract terms into code on the blockchain, smart contracts
automatically enforce agreements without intermediaries.

Blockchains are distributed ledgers that help parties securely send transactions without the need
for a trusted third party. Cryptographic technologies and consensus models, such as PoW, PoS, DPoS,
PBFT, and PoA, have made blockchains possible [7]. The blockchain guarantees data integrity, as
changes in the data can be verified using digital signatures and hash values.

This blockchain functionality ensures the integrity of attack logs and security data, rendering
them immutable and available for forensic investigation and compliance verification. Just recording
attacks is insufficient; thus, an automatic response system must be implemented to react immediately
upon the detection of a security breach.
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This can be accomplished via smart contracts to guarantee that designated actions are executed
in reaction to identified threats. Besides autonomously countering attacks, blockchain-based smart
contracts can administer a decentralized reputation system. A trust rating can be allocated to each IP
address or organization, subject to dynamic modification based on its conduct. When a certain source
repeatedly engages in malicious activities, its reputation rating diminishes, enabling other servers
and security systems to obstruct ongoing interactions with that source.

The integration of Al-driven attack classification with blockchain enhances the effectiveness of
this method, utilizing Al to improve threat detection through traffic analysis and reduction of false
positives, while the blockchain element guarantees that security decisions are founded on verifiable
and safeguarded real-time data. Al-enhanced technologies display efficiency through the utilization
of quantum computing. An alternative to this methodology is Quantum Machine Learning (QML).

Quantum computing, through superposition and entanglement for concurrent computation,
improves public blockchain networks by enhancing data security, transaction speed, and analytical
proficiency. These developments are especially applicable to the multi-stage lifetime of a transaction,
involving its progression from user generation and signing to final confirmation on the blockchain
by miners. The last block verification phase is crucial for network security, and we will analyze its
foundational mechanisms, starting with the traditional Proof of Work (PoW), to evaluate their merits
and drawbacks.

PoW is the most classic consensus mechanism on the blockchain, first used by Bitcoin. Its main
idea is that the system’s participants (the miners) use their computing power to compete in a hash
operation (SHA-256). The algorithm for searching for a suitable hash is the most energy-consuming
for miners. Each node consumes energy to solve this problem in a large blockchain network, making
it energy intensive.

The winner, who is the first to find a hash value below the stated goal, has the right to insert a new
block into the blockchain and receive a certain amount of reward. This process requires significant
computational resources and energy, making it a secure but resource-intensive consensus method.

Addressing energy challenges related to Proof-of-Work is more efficiently accomplished through
alternative consensus processes, technological enhancements, and energy-conserving behaviors
within the current classical computing paradigm [1, 5, 16, 17, 29].

Proof-of-Stake (PoS) differs from PoW inusing stakes instead of mathematical puzzles, alleviating
PoW’s energy consumption problem. The term "stake" refers to the number of tokens a user allocates
to participate in the validation process. Nodes do not need to solve a mathematical puzzle; instead,
their participation in the consensus mechanism correlates with their stakes, and larger stakes exert a
more significant impact on the validation of the subsequent block, thus improving both efficiency and
energy conservation in consensus. The concerns of Proof of Stake include the risk of centralization
and the "nothing at stake" attack, wherein validators may endorse numerous competing chains due
to the negligible cost involved, potentially resulting in forks and security vulnerabilities. The Future
Outlook underscores the need to create and integrate quantum-resistant cryptographic methods to
guarantee enduring security [4, 8, 12, 15, 18, 19, 26].

Delegated Proof of Stake (DPoS) is a type of PoS in which participants use their tokens to
select validators who verify and add blocks for rewards. DPoS usually helps to provide much
faster transaction processing than PoW as PoS. As such, DPoS usually has some drawbacks,
including a less decentralization and various security issues. The challenges of DPoS are the risk of
centralization and Manipulation of Voting; due to votes in DPoS systems being based on the amount
of cryptocurrency owned, wealthy participants can potentially influence or monopolize decision-
making. Quantum computing can potentially alleviate some of the issues with DPoS by improving
security, decentralization, and efficiency [9, 10, 20, 23].

Specific consensus mechanisms, such as Practical Byzantine Fault Tolerance and Proof of
Authority, are used for private and protected blockchains.

Practical Byzantine Fault Tolerance (PBFT) is a state machine replica copy algorithm that can be
applied to synchronous network environments. PBFT has three essential components: view, primary,
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and replica. The primary node initiates the voting process, and a replica node ensures its efficiency.
When the primary node fails, the view rotation function is called to modify the current primary node.
The challenges of PBFT are High Communication Overhead and Scalability Issues.

Quantum computation holds promise for alleviating PBFT’s key problems by reducing
communication overhead and improving scalability [6, 14, 21, 25, 27].

Proof of Authority (PoA) is an effective and swift consensus mechanism commonly utilized
in private and regulated blockchains, like the POA Network, VeChain, and the Ethereum Kovan
testnet. In a Proof of Authority (PoA) network, blocks and transactions are validated by authorized
participants referred to as "validator nodes." The validator node can validate transactions, and valid
transactions are passed on to the lead node for inclusion in new blocks. The proper functioning of
PoA requires validator nodes to be uncompromising. Challenges of PoA are centralization, lack of
anonymity, and risks related to trust in validators.

Quantum computing has the potential to mitigate many drawbacks of Proof of Authority by
improving decentralization, security, privacy, and scalability. Significant contributions encompass
quantum randomness for validator selection, quantum-resistant cryptography, and quantum machine
learning for behavioral analysis [11, 24, 28].

Combining artificial intelligence, blockchain technologies, and quantum computing opens
up new opportunities for creating more secure and effective systems for detecting and preventing
attacks. This paper discusses methods for integrating quantum computing with network anomaly
detection mechanisms to enhance the cybersecurity of blockchain systems.

This paper consists of the following sections: Introduction, Materials and methods (which details
integration aspects and detection mechanisms), followed by sections on Results and Discussion and
Conclusion.

Materials and methods

Modern network security uses advanced detection algorithms, including those based on machine
learning and variational quantum circuits (VQC), to accurately identify and classify abnormal
network traffic. Integrating these complex methods with blockchain technology forms a security
ecosystem that ensures data integrity and consensus verification. Where detection results are verified
and recorded on the blockchain, providing a reliable basis for analysis, these characteristics open up
new opportunities to enhance network security by enabling the development of resilient and tamper-
proof cybersecurity systems that seamlessly integrate advanced attack detection mechanisms with
secure data management.

As noted above, smart contracts can automatically trigger actions, instant isolating affected
nodes or blocking malicious IP addresses, when agents confirm the detection of network anomalies
or attacks. To protect the network, smart contracts can distribute verified threat information between
interconnected network segments or partner organizations, and can also initiate recovery protocols to
restore normal operation after neutralizing the threat. This automation reduces reaction time and the
number of human errors during critical security incidents.

Servers can log security events and network anomalies on the blockchain. This will increase
transparency because incidents, such as distributed denial-of-service (DDoS) attacks, intrusion
attempts, or suspicious activity, will be recorded as transactions in a block, which will create an
immutable and reliable audit trail. This approach improves decentralization and distributes trust
across the network reducing the number of points of failure and lowering the risk of manipulation
by insiders.

Even though the combination of blockchain and network attack detection is promising, it is
having trouble scaling up because networks need to be able to handle a lot of real-time security
events without slowing down. There is also the problem of delay, since real-time verification is
very important when threats are changing. Also, the need for good consensus mechanisms that can
quickly check events so that a response can be made in a timely manner must be met. As a result, we
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need to improve blockchain protocols for high-speed security applications, create quantum-resistant
cryptographic methods, and look into adaptive smart contracts.

Security agents are very important in modern cybersecurity systems because they can adapt in
real time, which makes networks more resilient and less likely to have performance problems. In this
context, adding Quantum Machine Learning (QML) can speed up the processing of large amounts of
data, which will help with accurate anomaly detection. Hybrid quantum-classical algorithms, which
mix classical computations with quantum circuits, are the most promising solution, because physical
quantum processors are affected by noise and decoherence, limiting their practical application.

Recent research shows a growing interest in QML. For example, provides detailed guidance
on the practical application of QML, while explores the vulnerabilities of quantum neural networks
and discusses the potential limitations of these methods [3, 22]. Also, demonstrates the effective
application of QML in cybersecurity, specifically to detect network attacks [2].

This work utilizes a hybrid quantum-classical architecture based on a variational quantum circuit
(VQC) for anomaly detection. The hybrid model combines the VQC with traditional preprocessing
and a classification module, where we utilize a One-vs-Rest (OvR) methodology. Our VQC
consists of three components, the first stage involves encoding input data and transforming classical
information into a quantum state. The second stage consist of parameterized quantum gates, which
form the crucial part of the circuit. Here, qubits undergo rotations and entanglement, enabling the
modeling of complex nonlinear dependencies. The third stage involves measuring the output state,
where quantum information is converted back to a classical representation, and the resulting data is
used to update the circuit parameters.

The schematic of our hybrid quantum-classical architecture is outlined as follows:

The scaled inputis then passed through a classical fully connected layer to reduce its dimensionality
to match the number of qubits, Mgyupits.

z = ReLU{W;.x + by, ). (1)

The weights W, are initialized using the Xavier (Glorot) method to promote stable convergence.
Layer normalization and dropout are applied to obtain the following:

z = LayerNorm(z), 2g,,, = Dropout(z,,,). (2)

norm

We apply [13] data reupload technique to improve the results. The quantum circuit encodes the
classical features into a quantum state. For each qubit I, the initial encoding is performed by applying
the following.

ngubits

|1:I-I‘1I}}= @1 Ry(xs:aled,ijlﬂ} (3)

The circuit then comprises Mjayer= Variational blocks. In each block ! and for each qubit I, we
apply parameterized rotations:

[y :) = RY{EL:' + ﬂ-inz{‘;’:,i + ﬂ-i}Rx{'}’:,e +0.1)[4;). )

where 8, ;, @ ;, and Y1 are trainable parameters. The small offset of 0.1 improves stability during
training. Following the rotations, a ring of CNOT gates is applied to entangle the qubits:

o) = (H?::hlt,—i CNOT(i,i + 1)) CNOT (1560 1) 190), (5)

After the entangling layer, the input data is reuploaded by reapplying formula four as suggested
in [13], with the RZ operator. After that, we add noise to correlate with the real environment of
quantum computing. Unlike classical systems, where errors can be corrected using traditional
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correction methods, quantum systems are subject to irreversible changes due to the anticloning
theorem.
ngubits

|1:b|}}= ;@1 RY(xscaledi}RZ({xs:aled,i}z}m} (6)

Depolarization means that a 1 —p qubit remains unchanged with probability p and with
probability P it becomes a random state. It is modeled as applying Pauli operators with equal
probability, meaning that depolarization noise destroys the superposition and randomly changes the
qubit’s state. A depolarizing channel is applied to each qubit with probability p = 0.01:

E(p)=(1-plp+ ’p‘r;- (N

In real quantum processors (such as IBM, Google, and Righetti), noise is unavoidable, and its
impact increases with the number of qubits. Therefore, noise modeling in quantum simulators makes
it possible to test the stability of quantum algorithms, develop error correction methods, and optimize
quantum circuits before running them on real quantum devices. Thus, noise simulation plays a key
role in the development of quantum computing, ensuring the transition from theoretical models to the
practical use of quantum algorithms.

The circuit concludes with getting the results and converting them to classical values using the
Pauli operation:

= {wvarlzilwvar}i I=1, s Mauhies: (8)
s W e WY e W Y oY e e
0 — R H R/ HRHR HT—FE——-—%
\ 7\ J o\ J \ J \ 4\ 4\ J \ J
f N\ N\ [ N [ Y r \ N\ [ Y
1 — R o4 Rf |4 RZ o RX Rf  RZ |- —%
S I W N W A W N B W N W . J

Figure 1 — Full quantum circuit diagram with two qubits,
one layer, and noise simulation

The quantum circuit outputs a feature vector q € R"™3ubi= \hich is processed by a classical
classifier:

h = ReLU(W,q +b, ), 9)
logits = W, h + b,. (10)

The predicted class is determined by:
# = argmax (logits). (11)

In our OVR strategy, a separate binary classifier is trained for each class ¥. For each binary
classifier, the labels are defined as:

Yoo = {1, ify = k,
bin 0, otherwise. (12)
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Each binary classifier is trained using the binary cross-entropy loss:
1 ' i j i

where pm = ﬁ(lﬂgit(i}} and ¢ denotes the sigmoid function. During inference, the final class
prediction is made by selecting the class with the highest probability:

Yov = argmax p;. (14)
Results and discussion

This section presents the experimental results of the hybrid quantum-classical model for network
anomaly detection. We evaluate multi-class classification of network threats, including Botnet, Brute
Force, DoS/DDoS, Web Attack, Port Scan, and Normal traffic. Two scenarios are considered.: without
noise and with noise introduced to simulate the realistic environment of quantum computing. The
results are analyzed regarding precision, recall, and F1-score, followed by a comparative analysis
and discussion of the findings.

For testing, we create a quantum model using the PennyLane framework to classify different types
of attacks: Botnet, DoS/DDoS, Brute Force, Web Attack, and Port Scan. The testing environment
utilizes a laptop with 32 GB of RAM, a 13th-gen Intel® CoreTM 19-13980HX CPU, and an NVIDIA
GeForce RTX 4090 laptop GPU. The model determines whether the input is an attack or not. In the
event of an attack, the model triggers a defense activation function, which then records the IP address
as blocked.

This work utilizes network traffic data from several publicly available sources to evaluate our
hybrid quantum-classical classifier. The dataset is formed by concatenating multiple CSV files from
the CIC IDS 2017 dataset (https://www.unb.ca/cic/datasets/ids-2017.html) and the CIC-DDoS 2019
evaluation dataset available on Kaggle ( www.kaggle.com/datasets/aymenabb/ddos-evaluation-
dataset-cic-ddos2019/data/). These files contain traffic captures corresponding to various attack types
(e.g., Port Scan, Web Attacks, DDoS, Infiltration) and normal traffic collected at different times and
days.

Due to merging datasets with some different parameters, we needed these parameters for
datasets that lack them, mainly synthetic IP addresses (Source IP and Destination IP) are generated.
After merging the CSV files, the dataset undergoes preprocessing steps, including mean imputation
for missing values, standard scaling, and class balancing via SMOTE. The final dataset comprises
approximately 12000 samples, distributed evenly among six classes: Botnet, Brute Force, DoS/
DDoS, Normal, Port Scan, and Web Attack. For testing, 20% of the dataset is used.

Table 1 — Classification Report Without Noise

Label Precision Recall Fl-score Support
Botnet 0.92 0.97 0.94 439
Brute Force 0.90 0.99 0.94 439
DoS/DDoS 0.92 0.98 0.95 439
Normal 0.97 0.75 0.85 439
Port Scan 0.96 0.97 0.97 439
Web Attack 0.95 0.92 0.93 439
Accuracy 0.93 2634
Macro avg 0.93 0.93 0.93 2634
Weighted avg 0.93 0.93 0.93 2634
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When evaluating the model’s performance in a noise-free environment, it achieves an overall
accuracy of 93% across all classes. The model demonstrates high reliability for the Botnet class with
a precision of 0.92, a recall of 0.97, and an F1-score of 0.94, indicating minimal false positives. The
model does a good job of finding Brute Force attacks, with a precision of 0.90 and a recall of 0.99,
which means that it has a low false negative rate.

For DoS/DDoS attacks the model has a balanced precision of 0.92 and a recall of 0.98, which
gives it a strong F1-score of 0.95. Port Scan detection is quite accurate, with a precision of 0.96 and
a recall of 0.97. Web Attacks are classified effectively, with a precision of 0.95 and a recall of 0.92,
which means that the system is both sensitive and specific. The accuracy for Normal traffic is good at
0.97, but the recall is much lower at 0.75, which means that there are some false negatives.

The model achieves 93% accuracy in a noise-free setting, which shows that it can generalize well
across all classes. The macro-averaged precision, recall, and F1-score are 0.93, which shows that
the classification performance is stable and trustworthy. These metrics show that the model can tell
different forms of network traffic apart, with only small changes in performance between the classes.
The results show that the hybrid quantum-classical model can accurately identify network threats in
a perfect, noise-free environment. This proves that the variational quantum circuit architecture works
well when used with classical preprocessing.

Table 2 — Classification Report with Noise

Label Precision Recall F1-score Support
Botnet 0.92 0.93 0.92 439
Brute Force 0.90 1.00 0.95 439
DoS/DDoS 0.86 0.97 0.92 439
Normal 0.97 0.75 0.84 439
Port Scan 0.93 0.98 0.95 439
Web Attack 0.94 0.88 0.91 439
Accuracy 0.92 2634
Macro avg 0.92 0.92 0.92 2634
Weighted avg 0.92 0.92 0.92 2634

The addition of noise changes how well different classes are classified. The model still has a
high overall accuracy of 92%. For the Botnet class, precision stays the same at 0.92, but recall goes
down a little to 0.93, which shows that noise has little effect. The Brute Force detection can still work
even when there is noise, and it still has perfect recall at 1.00. When it comes to finding DoS/DDoS
attacks, the accuracy drops to 0.86, which means there are more false positives, but the recall stays
high at 0.97. Normal traffic classification has a high precision of 0.97 but a low recall of 0.75. This
means that the noise did not have a big effect on how careful the model was. Port Scan detection is
very reliable, with a precision of 0.93 and a recall of 0.98. Web Attack detection's recall goes down a
little to 0.88, but its overall performance is still good, with an F1-score of 0.91. The macro-averaged
precision, recall, and F1-score are all 0.92, which shows that the performance is stable across all
classes. In general, the model is 92% accurate even when there is a lot of noise, which shows that
it is very reliable even when the environment changes. The model still has high recall rates, which
means that most attacks are still found, even though noise affects accuracy for some specific classes.
The fact that the results stay the same even when there is noise shows that the model is strong and
flexible, which shows that it could be useful in real-world quantum computing settings.

In terms of how well the model works, we can find numerous crucial indications by comparing
the results we got with and without noise. Adding noise caused a little drop in overall accuracy,
from 93% to 92%, which shows that the model's ability to classify things was only slightly affected.
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The impact of noise differs by category. The recall rate for the Brute Attack class stays perfect at
1.00 in both cases, showing that the model is quite good at finding these kinds of attacks even when
there is noise. For DoS/DDoS attacks, on the other hand, the accuracy drops from 0.92 to 0.86. This
means that there are more false positives because of noise, but the recall number stays high at 0.97.
For normal traffic, the same pattern can be seen, with a high precision of 0.97. The recall value, on
the other hand, is lower at 0.75, which means that noise did not have a big effect on how the model
classified normal requests.

The model has shown that it is stable in the Port Scan and Web Attack classes, keeping high levels
of precision and recall even with noise. The results show that the model can handle interference well,
especially when it comes to finding Brute Force, Port Scan, and Web Attacks. Even still, the higher
number of false positives in DoS/DDoS attacks and the persistently poor recall for Normal traffic
show that more optimization is needed to get a more even spread of indications across all classes. In
general, the results demonstrate that noise might lower false alarms in certain areas but make others
less sensitive. To increase performance in real-world situations, deliberate changes are needed.

Conclusion

This paper examines the integration of blockchain networks and smart contracts with quantum-
enhanced anomaly detection systems to improve cybersecurity systems. We use a hybrid quantum-
classical architecture with VQC. In silent and noisy environments, the model demonstrates an overall
accuracy above 90% when classifying network anomalies such as Botnet, Brute Force, DoS/DDoS,
Web Attacks, and Port Scans.

The model achieves an overall accuracy of 93% in a noiseless environment. However, due to the
lower recall for normal traffic we can see an increase in false positives. In conditions of increased
noise, the accuracy decreases slightly to 92%. Comparative analysis has shown that noise factors
reduce false positives in some categories but reduce sensitivity in others. This indicates the need for
further optimization to balance performance indicators in all classes.

A fundamental component of this research is the implementation of a binary classification
strategy utilizing the OvR methodology. This technique trains different binary classifiers for each
class, which lets the model handle difficult multiclass classification problems. But this method needs
to train quantum circuits n times (where n is the number of classes), which costs a lot of computing
power, and the accuracy improvement isn't much more than that of a single quantum multiclass
model. This indicates that additional study is required to enhance the OvR technique for quantum
circuits or to investigate more efficient designs for quantum multiclass classification. Consequently,
subsequent research must enhance the OvR method, augment noise resilience, investigate more
intricate quantum circuits, and create adaptive smart contracts for dynamic threat landscapes.
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Angarna

Byt Mmakasaga OJOKYCHH TEXHOIOTHSIChI MEH KBAaHTTBHIK-KYIICHTIITCH aHOMAJIMSIAP bl aHBIKTAY/IbI OIpIKTIpe-
TIH Kayinci3mik xyheci cunarrananbl. bi3 kayincizaik oKuragapbIHbIH ©3repMEHTIH ka30achlH xkKacay YIIiH OJIOK-
YelH/i, all pacTanraH Kayil-Karepiaepre aBToOMarThl TYpAe jKayar Oepy YIIiH cMapT-KeliciMIapTTapipl naiaana-
HyIbl YChIHaMBI3. Bapuanusimelk kBaHTTHIK cxeMa (VQC) Oi3miH sKyHeMi3aiH THOPUITI KBAaHTTHIK-KIIACCHKAIIBIK
mozemniHiH Heri3i. VQC akmapaTThl KJIACCHKAJBIK ACPEKTepIli KBAHTTHIK KYWiIepre alHAIIBIPY, KYpAeli Toyel-
IUTIKTEpi MOAETBACY VIIiH MapaMEeTPIIeHTeH TeHTTepaAl KONJaHy KOHE HOTIKCHI JKIKTEY YIIH OJIIey apKbLIbI
enzeini. biz Botnet, Brute Force >xoHe mopTrap/pl CKaHepiey CHSKTBI JKeJUIK 11a0ybliiapabl aHbIKTAy YIIiH
«bipeyi 6opine kapcb» (OVR) oxicin KonganambI3. bi3 oHbIH OHIMIUTITIH Haean bl (IIyChI3) )KOHE MOJECIBICHTCH
IIyJIbl KBAaHTTBIK OpTajapia TeKcepAik. MoaenbIiH Jaiiri mychi3 opraga 93%-1pl Kypaabl ®KoHE LIyJIbl opTana
92%-¥a neiliH FaHa TOMEHIE, OYJI OHBIH TYPAaKTBUIBIFBIH KopceTeai. bi3 MaHBI3IbI BIMBIPAHBI aHBIKTAIBIK: OVR
omici THimai, Oipak YJIKEH eCenTeyilll MIBIFRIHAApAbI KaKeT eTeli. by Oomamakrarbl 3epTTeyiepai KBaHTTHIK
KOTIKJIACTHI JKIKTEYIiH THIMAIPEK JKyienepin KypyFa OarpITTay KepPEeKTIriH KopceTei.

Tipexk ce3gep: BapuanusblK KBaHTTHIK cxema (VQC), Kemiiik aHoManusiaap, THOPHIATI KBaHTTHIK-
KJIaCCHKAJIBIK apDXUTEKTYPa, KOTI KJIaCThI JKIKTEY.
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KBAHTOBO-YCUJIEHHAS BE3OITACHOCTbD BJIOKEIEFIHA:
NHTET'PAIIMA KBAHTOBBIX BBIYNCJIIEHUU
C OBHAPYXEHUEM CETEBBIX ATAK

AHHOTALUA
B nanHOI! cTaThe OMMUCHIBACTCS CUCTEMa OE30TTaCHOCTH, KOTOpast OObEINHACT TEXHOJIOTHIO OJIOKUEIH 1 KBaH-
TOBO-YCHJICHHOE OOHapyKeHHE aHOMaIHNA. MBI IpeTaraeM MCIIOIb30BaTh OJOKICHH [T CO3aHNs HEU3MEHIeMOit
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3amucu coObITHIT 0E30MaCHOCTH, @ CMapT-KOHTPAKTHI — JJIsl aBTOMAaTHYECKOTO pearupoBaHms Ha MOJTBEPIKICHHbIC
yrpo3sl. Bapuanuonnas kBantoBast cxema (VQC) neHUT B OCHOBE TMOPHUIHON KBaHTOBO-KJIACCHUECKOW MOJIENN
Hame# cucrembl. VQC o0pabaTsiBaeT HHGOPMALHXIO ITyTEM IpeoOpa30BaHus KJIACCHYECKUX JAHHBIX B KBAHTOBBIC
COCTOSIHHSI, ICTIOIb30BaHUS TapaMETPU30BAHHBIX T€HTOB /ISl MOJICITUPOBAHMS CIOKHBIX 3aBUCMMOCTEH U mociie-
IYIOIIETO M3MEPEHHS pe3yabraTa I ero Kiaccupukannu. Mel ucrnons3yeM mMeton «OmauH npotuB Beex» (OVR)
JUTsl OOHApYKEHHsI CeTEeBBIX aTak, Takux Kak Botnet, Brute Force n ckanupoBanue moptoB. Mbl IPOTECTUPOBATH
ee MPOM3BOJUTENBEHOCTh KaK B HJICANIbHBIX (OSCUIYMHBIX), TaK U B CAMYJIMPOBAHHBIX [IIYMHBIX KBaHTOBBIX Cpe/ax.
Tounocth Mozenu cocraBuiia 93% B cpeze 03 1ymMa ¥ JIMIIb He3HAYUTEeNIbHO CHU3MIIACh 10 92% B 1lyMHO# cpeje,
YTO AEMOHCTPHPYET €€ YCTOMYMBOCTh. MBI BBISIBIIIN CyIIeCTBEHHBIH KoMmnpomuce: Meton OVR addekTusenH, HO
TpeOyeT 3HAUNTENbHBIX BRIYUCINTEIBHBIX 3aTPaTt. DTO YKa3bIBAaeT HA TO, YTO MOCIIEAYIONINE YCHIIUS OJKHBI OBITh
COCpEIOTOYCHBI HA CO3AaHNH OoJiee IPPEKTUBHBIX CHCTEM KBAaHTOBOH MHOTOKIIACCOBOH KITaCCH(HUKALINH.

KuroueBble ciioBa: BapuannonHas kBantoBas cxema (VQC), ceTeBble aHOMATUH, THOPUIHAS KBAHTOBO-KJIac-
CHYECKasl apXUTEKTYpa, MHOTOKJIACCOBAsl KilacCH(UKaIus.
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