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OPTIMIZING INDOOR THERMAL COMFORT
PREDICTION USING MACHINE LEARNING MODELS

Abstract

Predicting thermal comfort in indoor environments is important for improving residents’ well-being,
productivity, and energy efficiency. This study explores machine learning approaches, specifically Support Vector
Machines (SVM) and Random Forest (RF), to improve thermal comfort prediction. Traditional methods rely on
subjective assessments, whereas our approach leverages data-driven models trained on large thermal comfort
datasets. The dataset underwent rigorous preprocessing, with 80% used for training and 20% for testing. The
integration of the Internet of Things (IoT) further enhances predictive accuracy by enabling adaptive control in
smart building systems. A comparative analysis of SVM and RF reveals that while both models effectively capture
the complex interactions between environmental parameters and resident comfort, RF demonstrates greater stability
and higher accuracy in most scenarios. The paper proposes potential strategies for integrating additional predictive
features to further enhance model accuracy, demonstrating the advancement of machine learning in optimizing
indoor comfort.

Keywords: heating systems, energy management, thermal comfort, support vector machine, random forest,
machine learning

Introduction

Optimizing indoor environments for human habitation is essential for ensuring comfort, health,
and productivity. Thermal comfort, a key aspect of indoor environmental quality, is significantly
influenced by climate change, which has led to more frequent and severe extreme weather events.
The ability to predict and manage thermal conditions effectively has become increasingly important
as it directly impacts human well-being. Poor indoor thermal conditions, whether excessively hot or
cold, can cause discomfort, fatigue, and health issues, ultimately reducing productivity in workplaces,
educational institutions, and homes.

Beyond individual well-being, the economic impact of inadequate thermal comfort is substantial.
When indoor conditions are not optimized, occupants rely more on heating, ventilation, and air
conditioning (HVAC) systems to maintain comfort, leading to increased energy consumption and
higher utility costs. This, in turn, contributes to environmental degradation due to higher carbon
emissions. Consequently, there is an urgent need for advanced predictive models capable of accurately
forecasting occupants’ thermal comfort preferences in diverse environmental conditions and
architectural settings. These models must integrate multiple factors, including ambient temperature,
humidity, clothing insulation, metabolic rate, and personal preferences, to provide precise thermal
comfort assessments.
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Developing reliable predictive models requires collaboration across multiple disciplines,
including architecture, engineering, psychology, and data science. By combining insights from
environmental science, human physiology, and behavioral psychology, researchers can create more
effective models. Advances in sensor technology, data analytics, and machine learning have made
it possible to generate real-time insights into thermal comfort, allowing building managers and
occupants to adjust indoor environments dynamically. This not only improves occupant well-being
but also contributes to energy efficiency and sustainability.

To understand the real-world impact of thermal comfort, consider a simple scenario. Suppose a
student is studying in a closed room during a hot summer day. The student shuts the door to minimize
noise and closes the window to block out the heat. However, this leads to a buildup of carbon dioxide,
reducing oxygen levels and increasing the temperature inside the room. As a result, the student
experiences discomfort, distraction, and fatigue. The simple act of opening the door to improve
ventilation can significantly enhance comfort. This example highlights the importance of managing
thermal comfort effectively to maintain productivity and overall well-being.

Predicting thermal comfort involves analyzing multiple factors, including air temperature,
humidity, air velocity, and clothing insulation. Traditional methods rely on human comfort models,
such as the Predicted Mean Vote (PMV), but these approaches can be subjective and time-consuming.
Recent advancements in machine learning have provided new opportunities to develop more accurate
predictive models. The goal of this study investigates the use of Support Vector Machines (SVM) and
Random Forest (RF) algorithms for thermal comfort prediction, comparing their performance across
various conditions.

By following this structured approach, we aim to validate these goals and assess the effectiveness
of SVM and RF in predicting thermal comfort. These findings could offer valuable insights for
building designers and facility managers to optimize indoor environments. Both SVM and RF are
supervised learning algorithms that can be trained on datasets containing thermal comfort parameters
alongside human feedback, allowing them to predict thermal comfort levels in new conditions.

The Internet of Things (IoT) is transforming building management systems (BMS), with
projections indicating that the number of connected devices will reach 125 billion by 2030. Despite
these advancements, current BMS solutions remain limited in flexibility, particularly in feedback
control mechanisms. To address these limitations, researchers have explored adaptive control
algorithms and modular architecture. One proposed solution, the “Semantically-Enhanced IoT-enabled
Intelligent Control System” (SEMIoTICS), leverages redundancy in control system capabilities
and dynamically adjust configurations based on quality-of-service criteria [1]. Additionally, Model
Predictive Control (MPC) has gained popularity in optimizing HVAC systems for energy efficiency
and occupant comfort. However, the computational complexity of nonlinear MPC models has
driven researchers to investigate linear controllers using Jacobian linearization. A bilinear model
for nonlinear MPC was proposed to minimize energy costs while maintaining comfort, but its high
computational demands present challenges for real-time implementation [2].

To further optimize HVAC systems, reinforcement learning (RL)-based approaches have
been developed. One study implemented Deep Deterministic Policy Gradients (DDPG) within the
Transactive Energy Simulation Platform (TESP) to achieve intelligent and granular HVAC control. The
approach optimizes a cost function that balances electricity expenses with occupant dissatisfaction,
incorporating a market price prediction model using Artificial Neural Networks (ANN) and a DDPG-
based RL control algorithm [3]. Another study presented a simulation model integrating both high-
and low-level controllers for a vehicle’s air conditioning system, focusing on occupant thermal
comfort while ensuring system efficiency. The study also introduced an Eco-Cooling Strategy using
MPC to optimize cooling performance while minimizing energy consumption [4].

Fuzzylogic-based models have also been explored for variable-speed air conditioning load control,
allowing for energy-efficient HVAC operation while improving thermal comfort. These controllers,
implemented in microcontrollers, VLSI chips, and EDA tools, precisely regulate temperature and
humidity levels. By integrating fuzzy logic with other control methods, system performance and
energy efficiency can be significantly improved [5]. Another study examined classical HVAC
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control strategies, such as PID controllers, and more advanced approaches like MPC. The research
introduced the LAMDA controller, designed to enhance real-time responsiveness and dynamically
adjust parameters based on contextual information [6].

Increasing energy consumption in commercial buildings, particularly HVAC systems, has
driven research into energy optimization. Although HVAC technologies have improved Demand
Response (DR) programs, challenges remain in implementing model predictive control strategies.
Machine learning techniques such as Reinforcement Learning and Supervised Learning have been
investigated for their potential in improving HVAC efficiency [7]. Research on DR in Building
Energy Management (BEM) has primarily focused on optimizing HVAC operations through various
methods, including dynamic demand response controllers, mixed-integer nonlinear optimization
models, and occupancy-based controllers. Additional strategies, such as event-based control, mutual
information frameworks, and MPC, have also been explored [8]. A recent study proposed a three-
layered model for optimizing energy consumption in smart homes, incorporating data collection,
prediction, and optimization stages. The model uses an Alpha Beta filter for noise reduction, DELM
for dynamic parameter prediction, and fuzzy controllers for refined control decisions, ultimately
improving both energy efficiency and occupant comfort [9].

In the field of thermal comfort assessment, a novel model has been introduced that excludes
demographic factors such as gender and age. Instead, it considers six key thermal variables: air
temperature, mean radiant temperature, relative humidity, air speed, clothing insulation, and metabolic
rate. This model was developed using supervised machine learning and applied in a commercial
building setting [ 10]. Another study conducted in Bilbao, Spain, utilized the KUBIK energy efficiency
research facility to analyze human thermal perception in response to external temperatures, aiming
to enhance indoor comfort while reducing energy consumption [11]. Additional research has applied
the Fanger method and ASHRAE Standard 55 to evaluate indoor thermal comfort under real-world
conditions, with a focus on improving well-being, productivity, and energy conservation [12].

A separate study introduced a model that predicts group thermal comfort by integrating individual
preferences with environmental parameters. The model segments occupants based on Body Mass
Index (BMI), predict their individual comfort zones, and makes adjustments to maximize group
satisfaction [13]. In general, optimizing thermal comfort in buildings is essential for occupant well-
being, productivity, and energy efficiency. Standard assessment models take into account factors
such as air temperature, humidity, radiant temperature, and air velocity, with ASHRAE 55 standards
providing guidelines for acceptable conditions. Alternative predictive models, including ANN, hybrid
ANN-fuzzy models, SVM, decision trees, fuzzy logic, and Bayesian networks, have demonstrated
improved flexibility and accuracy in thermal comfort prediction [14].

Thermal comfort models are typically categorized into static, adaptive, and data-driven models.
Static models, such as the Predicted Mean Vote (PMV), integrate environmental and personal factors
but lack adaptability to individual responses. Adaptive models consider psychological and behavioral
influences, making them more responsive to changes in occupant preferences. Data-driven models
leverage real-time sensor data for dynamic and adaptive thermal comfort assessments [15]. One
study developed a building thermal model utilizing low-resolution data from smart thermostats,
significantly improving model accuracy across different seasons. This data-driven approach replaces
traditional empirical models with surrogate features that approximate internal heat gains. The model
can be deployed on edge devices or cloud infrastructure, enhancing its scalability for real-world
applications [16].

Research on innovative cooling technologies has also expanded, with studies exploring
Thermoelectric Air Duct systems. Neural networks have demonstrated high accuracy in predicting
comfort parameters within dynamic environments, highlighting the complex relationships between
climatic variables, occupant comfort, and HVAC system performance [17]. More broadly, predicting
thermal comfort and optimizing energy use in buildings is essential for ensuring occupant satisfaction
and sustainability. Key factors influencing comfort include metabolic rate, clothing insulation, and
air temperature. Deep feedforward neural networks and reinforcement learning models have been
applied to thermal comfort prediction, with promising results in improving energy efficiency and
indoor climate management [18].
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A novel methodology has been introduced to develop predictive models for Combined Heat,
Cooling, and Power (CHCP) systems using machine learning, data mining, and statistical techniques.
This methodology consists of four stages: data preparation, data engineering, model building, and
model evaluation. The first stage involves retrieving failure events, labeling instances, and compiling
a comprehensive dataset. The data engineering stage improves data representation through feature
extraction and selection. Machine learning algorithms are then used for classification and regression
tasks, while the final evaluation step assesses model performance based on time to failure (TTF) and
other relevant metrics [19].

Another study proposed a new approach to analyzing thermal comfort in indoor environments
using Relative Thermal Sensation (RTS). Unlike traditional models, which rely on discrete thermal
sensation scales, RTS represents thermal perception as a continuous function over time, allowing
for a more detailed understanding of human comfort. The researchers introduced a 3-point Relative
Thermal Sensation Scale (RTSS) to collect real-time data, capturing subtle changes in thermal
perception that conventional methods might overlook. Furthermore, the study integrated RTS data
with Absolute Thermal Sensation measurements from a modified version of the ASHRAE 7-point
scale, enhancing the overall predictive power of the thermal comfort model [20].

Interpretable thermal comfort systems are also being explored to improve both energy
efficiency and occupant satisfaction in smart buildings. Traditional models, such as PMV, often lack
interpretability, making it difficult for building operators to understand the key drivers of thermal
comfort. To address this issue, researchers have proposed interpretable machine learning models
using techniques such as Partial Dependence Plots (PDP) and SHAP values. These methods provide
insight into how environmental conditions affect human comfort and help operators identify the most
influential features under different scenarios. Additionally, interpretable machine learning algorithms
are being developed to create surrogate models that replicate and potentially improve upon existing
comfort models, making them more accessible for building management applications [21].

This paper focuses on the use of Support Vector Machines (SVM) and Random Forest (RF)
algorithms for predicting thermal comfort in buildings. The study aims to evaluate their strengths
and weaknesses and compare their performance under different experimental conditions. The
ultimate goal is to provide a comprehensive understanding of how machine learning can contribute to
optimizing indoor environments and improving occupant comfort. To guide the research, we propose
the following hypotheses:

1. Data Preparation: Removing NaN values and setting a threshold for feature selection based
on data availability will improve model accuracy.

2. Feature Encoding: Comparing different encoding strategies (OneHotEncoder, LabelEncoder,
and Word2Vec) will help determine the most effective method for handling categorical variables.

3. Feature Selection: Applying the SelectKBest model will identify the most relevant features
for predicting thermal comfort, streamlining the modeling process.

4. Feature Variants: Testing different feature combinations after filtering will improve
temperature prediction accuracy.

Through these hypotheses, we aim to validate the potential of SVM and RF models in thermal
comfort prediction, as shown in Fig.1. The findings will contribute to a better understanding of how
machine learning can support smart building management, leading to enhanced indoor comfort and
energy efficiency.

> Data >> Filtering >>Encoding>>Feature selection>> ML >> Done >

Figure 1 — Overview of the methodology
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Materials and methods

The dataset, sourced from the ASHRAE and available on Kaggle [22], comprises 70 columns
and 107,583 rows, containing data collected globally from 1995 to 2015. Initially, an examination of
the dataset description led to a filtering process. This revealed that some columns contained sparse
data. Consequently, a threshold was set at 60,000 rows; data points below this limit were discarded.
Additionally, it was necessary to address missing values. Despite starting with 107,583 rows, the
removal of rows with NaN values was essential to ensure data integrity. Another analytical approach
considered was the use of the Interquartile Range (IQR) method to identify and eliminate outliers,
further refining the dataset’s quality (See Fig.2).

Filtering
Less than
60000 x
DATASET |
Null data x
60000 and - Word
above J
Not null J —
Number

Figure 2 — Data filtering scheme

Regarding the conversion of text data to numeric form, as shown in Fig.3, two encoding options
were evaluated: LabelEncoder and OneHotEncoder. The decision to proceed with OneHotEncoder
was based on its superior performance in preliminary results, effectively transforming categorical
text data into a usable format for machine learning models.

Encoding

Word :> [ , " ENCODING ]:> Number

Number

Number

Number

Figure 3 — Encoding scheme for the conversion of text data to numeric form
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In the feature selection process, as shown in Fig.4, two methods were considered: using the
SelectBest library or selecting based on correlation with a predefined threshold. The chosen method
was to use correlations, specifically setting a boundary above 50% to determine relevant features.
The final set of features selected includes Age, Clothing insulation (Clo), Sex, Metabolic rate (Met),
Thermal preference, Year, Season, Koppen climate classification, Cooling strategy at the building
level, City, Predicted Percentage of Dissatisfied (PPD), Air temperature (C), Outdoor monthly
air temperature (C), Relative humidity (%), and Air velocity (m/s). This selection represents the
culmination of extensive testing with various combinations of features, all of which will be detailed
in the Experiments section of our study.

Feature selection

ML Module

—

Correlation = 0.5 and SVM

VOUF guess [:|j>
FEATURE Rand Forest

. -~

Number ::>' r SELECTION
'
————
Correlation > 0.5 x

Figure 4 — Feature selection

These features were instrumental in enhancing the predictive accuracy of our models. For the
experimental setup, the dataset was divided into 80% for training and 20% for testing. Typically,
thermal comfort ratings in the dataset ranged from 1 to 6. Another hypothesis tested was the conversion
of these label values into integers. By reducing the range of thermal comfort ratings from six to three
distinct categories, we observed a significant improvement in model accuracy. This transformation
simplifies the model’s classification task, enabling more precise predictions.

Inter Quartile Range (IQR). The Interquartile Range (IQR) is a measure of statistical dispersion
that is calculated as the difference between the third quartile (Q3) and the first quartile (Q1) of a
dataset. Mathematically, it is defined as:

IQR=Q3 -QlI (D

where Q1 is the median of the lower half of the dataset and Q3 is the median of the upper half of the
dataset. It is particularly useful in identifying and dealing with outliers, which are data points that
significantly differ from the rest of the dataset. Here’s how the IQR is calculated and how it can be
used to remove outliers:

1) Calculation of IQR:

¢ Firstly, you need to arrange your dataset in ascending order.

¢ Then, find the median of the dataset, which is the middle value when the data is sorted. If the
dataset has an odd number of observations, the median is the middle value. If it has an even number
of observations, the median is the average of the two middle values.

+ Divide the dataset into two halves at the median. The lower half contains all the values less
than or equal to the median, and the upper half contains all the values greater than or equal to the
median.

¢ Find the median of each half. This gives you the first quartile (Q1) and the third quartile (Q3)
of the dataset, respectively.

The IQR is then calculated as the difference between Q3 and Q1: IQR = Q3 - Q1.

2) Identifying outliers using IQR:

¢ Qutliers can be detected using the IQR method by considering values that lie below Q1 — 1.5 x
IQR or above Q3 + 1.5 x IQR. These values are considered to be significantly different from the rest
of the dataset.
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¢ Values below Q1 — 1.5 x IQR or above Q3 + 1.5 x IQR are commonly referred to as lower
and upper bounds, respectively.

¢ Any data points falling outside these bounds can be considered outliers.

3) Removing outliers using IQR:

¢ Once outliers are identified using the IQR method, you can choose to remove them from the
dataset to improve the robustness of your analysis or model.

¢ QOutliers can be removed by filtering the dataset to exclude any observations that fall outside
the lower and upper bounds defined by Q1 — 1.5 x IQR and Q3 + 1.5 x IQR, respectively.

+ After removing outliers, the dataset may be more representative of the underlying distribution
and less influenced by extreme values.

4) Considerations:

* While the IQR method is effective in identifying and removing outliers, it’s important to
exercise caution and consider the context of the data.

¢ Outliers may sometimes carry valuable information or be indicative of rare but important
events. Therefore, the decision to remove outliers should be made judiciously based on the specific
goals of the analysis or model.

+ Additionally, the choice of the multiplier (1.5 in the conventional method) used to define the
bounds can be adjusted depending on the desired level of sensitivity to outliers.

In summary, the IQR is a useful statistical measure for assessing the spread of a dataset and
identifying outliers. By calculating the IQR and defining bounds based on it, outliers can be effectively
detected and removed, leading to a more robust analysis or model.

Applied methods. SVM is a supervised machine learning algorithm well-suited for both
classification and regression tasks. In thermal comfort prediction, SVM is employed to delineate
the complex interrelationships between various environmental factors—like temperature, humidity,
and air velocity—and human thermal comfort responses. The algorithm focuses on maximizing the
margin between classes in classification tasks or minimizing errors in regression, all while effectively
controlling for overfitting, as shown in Fig. 5. By training on labeled datasets that encapsulate
corresponding thermal comfort ratings, SVM learns to accurately predict thermal comfort levels
based on specific environmental inputs.
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Figure 5 — Support Vector Machine (SVM)
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Random Forest is a machine learning algorithm capable of handling classification and regression
tasks. It follows an ensemble learning approach, using multiple decision trees to improve accuracy
and robustness, as shown in Fig. 6. The process involves data cleaning, handling missing values,
and applying transformations. Random sampling selects subsets for training, recursive partitioning
creates decision trees, and a voting mechanism aggregates predictions. This method effectively
models nonlinear relationships and interactions between environmental variables, making it suitable
for predicting thermal comfort.

| Dataset |
Decision Tree-1 Decision Tree-2 Decision Tree-N
L ¥
Result-1 Result-2 Resullt-hl
| l
—————! Majority Voting / Averaging

!

Final Result

Figure 6 — Multiple decision trees of the Random Forest

Both SVM and Random Forest capture complex relationships between environmental factors
and thermal responses, ensuring reliable predictions across different conditions. While SVM provides
clear decision boundaries for easier interpretation, Random Forest highlights feature importance
through its ensemble structure, despite being less interpretable at the individual tree level. Their
flexibility allows integration with various environmental sensors and monitoring systems. A novel
approach involves using the ‘Thermal preference’ column as a predictive variable instead of the
traditional ‘Thermal comfort’ scale. By simplifying comfort classification from six levels to three,
the prediction process becomes more streamlined, potentially enhancing model accuracy.

Integration with [oT. The IoT component of the system is integral to enhancing building
management by deploying a comprehensive network of sensors throughout the facility. These sensors
are designed to monitor a variety of environmental conditions in real-time, including temperature,
humidity, CO2 levels, and occupancy rates. The data collected by these [oT sensors is then transmitted
to a central server, where it is stored and analyzed. For efficient and reliable data transfer, wireless
communication protocols such as Wi-Fi, Bluetooth, or LoORaWAN are utilized.

The Al models within the system leverage this real-time data to continuously refine their
predictions and immediately adjust the building’s HVAC system to achieve optimal thermal comfort.
A key feature of this setup is its feedback loop mechanism, which plays a critical role in maintaining
desired thermal conditions. The Al actively processes the incoming data from the IoT sensors and
either make recommendations or directly control the HVAC system’s operations, as shown in Fig. 7.
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IRiIﬁ[Illl.'rl'}' Fi LoRa

Figure 7 — General design of the IoT

The device, powered by a rechargeable battery (referred to as the “sensor node” in our model),
collects data from sensors and transmits it to the central device. In this setup, temperature and
humidity sensors monitor environmental conditions to support specific tasks. The only requirement
for this topology is that all sensor nodes must be within 100 meters of the central device.

This model’s topology ensures that each sensor node communicates only with the central device,
preventing unreliable direct communication between nodes. The central device, in turn, connects to
the global network, structuring and forwarding the data to a database. If deviations from comfort
levels are detected, the system dynamically adjusts temperature, humidity, or airflow, ensuring
continuous thermal comfort by responding to environmental changes and occupancy patterns.

A Raspberry Pi with a LoRa module functions as the central device, while sensor nodes consist
of'a microcontroller, LoRa module, and sensors, all powered by a rechargeable battery. An integrated
analog-to-digital converter facilitates sensor data collection, and a fully charged battery can sustain
operation for up to 30 days.

Results

After an initial filtering process, our dataset was reduced from 70 to 21 columns. We continued
to refine our feature selection by using correlations and deliberately avoided incorporating Fanger’s
features. Further filtration using both correlation analysis and the SelectKbest model, which assists
in identifying the most impactful features, led us to define three distinct sets of features:

* First Set (17 features): Age, Sex, Metabolic rate (Met), Thermal preference, Thermal sensation,
Clothing insulation (Clo), Subject’s height (cm), Subject’s weight (kg), Year, Season, K&ppen
climate classification, Building type, Cooling strategy at building level, Air temperature (C), Outdoor
monthly air temperature (C), Relative humidity (%), and Air velocity (m/s).

¢ Second Set (9 features): Age, Sex, Met, Clo, Year, Season, Air temperature (C), Relative
humidity (%), Air velocity (m/s).

¢ Third Set (15 features): Age, Clo, Sex, Met, Thermal preference, Year, Season, Kdppen climate
classification, Cooling strategy at building level, City, Predicted Percentage of Dissatisfied (PPD),
Air temperature (C), Outdoor monthly air temperature (C), Relative humidity (%), Air velocity (m/s).

Following feature selection, our dataset contained 17 columns and 6,765 rows. Initially, using
all 17 features yielded unsatisfactory results. Testing with 9 and then 15 features also failed to
significantly improve accuracy. These iterations helped validate our hypotheses; notably, the IQR
method improved accuracy by 3—4%, while reducing label values increased accuracy by 20-23%.
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Parameter tuning further enhanced model performance. The optimal settings for the SVM model were
an RBF kernel with gamma = 0.001 and C = 3. For the Random Forest model, the best configuration
included 300 estimators and a maximum depth of 15. These settings provided the highest accuracy.

A comparison between LabelEncoder and OneHotEncoder revealed a performance difference
of 2-4%, leading us to favor OneHotEncoder. Data standardization, using StandardScaler and
MinMaxScaler, had minimal impact on accuracy. Tables 1, 2, and 3 present the initial prediction
results, illustrating performance across different feature sets and modeling approaches.

Table 1 — Iteration of 17 features

Model Accuracy Precision Recall F1 score
SVM 0.509 0.451 0.509 0.436
RF 0.543 0.505 0.543 0.5
Table 2 — Iteration of 9 features
Model Accuracy Precision Recall F1 score
SVM 0.507 0.461 0.507 0.438
RF 0.526 0.513 0.526 0.49
Table 3 — Iteration of 15 features
Model Accuracy Precision Recall F1 score
SVM 0.533 0.448 0.533 0.433
RF 0.54 0.475 0.539 0.482

Based on the initial results, we further pursued enhancing model accuracy by employing the
hypotheses formulated earlier in our study. The implementation of the IQR method was a particular
focus, aimed at refining the data by removing outliers, which are often a source of prediction error.
Tables 4, 5, and 6 below display the outcomes of applying the IQR method. These tables illustrate
the effect of this technique on the overall performance of the models:

Table 4 — Iteration of 17 features with IQR

Model Accuracy Precision Recall F1 score
SVM 0.522 0.44 0.522 0.441
RF 0.548 0.517 0.548 0.504
Table 5 — Iteration of 9 features with IQR
Model Accuracy Precision Recall F1 score
SVM 0.507 0.44 0.383 0.424
RF 0.52 0.501 0.52 0.479
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Table 6 — Iteration of 15 features with IQR
Model Accuracy Precision Recall F1 score
SVM 0.563 0.539 0.563 0.425
RF 0.57 0.494 0.57 0.5

Building on the improvements, which enhanced model accuracy by approximately 2—5%, our
next step involves reducing label values to further increase the accuracy. This simplifies the output
space of the model, potentially making it easier for the algorithms to distinguish between different
states of thermal comfort. Tables 7-9 show the result of this approach:

Table 7 — Iteration of 17 features with reducing labels

Model Accuracy Precision Recall F1 score
SVM 0.715 0.644 0.715 0.614
RF 0.744 0.708 0.744 0.704
Table 8 — Iteration of 9 features with reducing labels
Model Accuracy Precision Recall F1 score
SVM 0.688 0.598 0.688 0.569
RF 0.699 0.657 0.699 0.645
Table 9 — Iteration of 15 features with reducing labels
Model Accuracy Precision Recall F1 score
SVM 0.78 0.608 0.78 0.683
RF 0.78 0.719 0.78 0.727

We utilized Random sampling to select subsets of the dataset for training individual decision

trees within our Random Forest model. By integrating strategies such as feature reduction, IQR,
and Random sampling, we have enhanced the construction and performance of our decision trees.
The process is further refined through selective feature selection, which concentrates on the most
impactful variables. This allows the model to focus on the data elements that are most predictive
of the outcomes, significantly enhancing the overall performance of the model. These integrations
contribute to a more efficient predictive tool, suitable for complex scenarios in smart building
environments. After incorporating the feature-reduced model, further simplifying the feature space,
we observed the following results, as in Tables 10-12:

Table 10 — Iteration of 17 feature-reduced labels and IQR

Model Accuracy Precision Recall F1 score
SVM 0.726 0.598 0.726 0.621
RF 0.733 0.678 0.733 0.688
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Table 11 — Iteration of 9 feature-reduced labels and IQR

Model Accuracy Precision Recall F1 score
SVM 0.706 0.498 0.706 0.584
RF 0.717 0.668 0.717 0.653
Table 12 — Iteration of 15 feature-reduced labels and IQR
Model Accuracy Precision Recall F1 score
SVM 0.835 0.697 0.835 0.76
RF 0.821 0.738 0.821 0.766

The implications of these findings are significant, especially in the context of predictive
accuracy in environmental modeling for predicting thermal comfort levels in smart building
systems. The Receiver Operating Characteristic (ROC) curves graph, presented in Fig. 8, provides
a visual comparison of the performance of two machine learning models: SVM and Random Forest
(RF). These curves are essential tools in evaluating the models by plotting the True Positive Rate
(sensitivity) against the False Positive Rate (1-specificity) at various threshold settings. The area
under the curve (AUC) serves as a summary measure of the model’s ability to discriminate between
positive and negative classes.

In this analysis, the SVM model demonstrates an AUC of 0.72, while the RF model exhibits a
slightly superior AUC of 0.84. This suggests that the RF model has a better overall performance in
distinguishing between the classes under study, likely due to its ensemble nature, which typically
provides a more robust prediction by averaging multiple decision processes.
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Figure 8 — ROC comparison for the SVM and RF
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Discussion

This research evaluates the effectiveness of Random Forest and SVM models in predicting
thermal comfort and thermal preference across different feature sets. Our study introduced eight new
features while retaining seven features used in prior research. Comparing predictions for Thermal
Comfort and Thermal Preference, we found only a 1-3% performance gap, with Random Forest
demonstrating greater stability.

Initial tests using feature sets with 9 and 15 variables showed alternative models leading in
performance. However, a major shift occurred when we simplified the prediction scale from six to
three Thermal Comfort levels. This refinement improved the model’s ability to differentiate comfort
levels more effectively. While this simplification enhanced classification accuracy, some researchers
argue that reducing the scale may obscure subtle nuances in human comfort perception. A more
granular scale could potentially provide richer insights into individual experiences.

The implementation of the IQR method improved model accuracy by approximately 3-4%,
primarily by filtering out extreme values. However, this approach may also remove valid outliers,
limiting insights into environmental conditions’ full impact on thermal comfort. The more substantial
improvement came from reducing label values, which increased accuracy by 20-23%. While this
demonstrates the impact of statistical methods on predictive performance, it also raises concerns
about whether reducing labels compromises data depth and nuance.

The system architecture, designed for efficient data transmission, relies on sensor nodes
communicating with a central device, typically a Raspberry Pi, over distances up to 100 meters [23].
While this setup ensures reliable data management, some experts question its scalability in large
buildings. Additionally, concerns exist over Raspberry Pi’s processing power, which may be
insufficient for high-demand real-time processing. Balancing user control with automated efficiency
remains a critical consideration. While direct user interaction with building systems enhances
customization, excessive manual adjustments may reduce energy efficiency. This study contributes
to the future of smart building management by integrating advanced computational techniques with
IoT applications.

Conclusion

This study has demonstrated the effectiveness of Random Forest and SVM algorithms in
predicting thermal comfort and thermal preference, leveraging a refined feature set that combines
both newly introduced variables and established factors from prior research. The results indicate
that the difference in predictive performance between thermal comfort and thermal preference is
minimal, typically within 1-3%, with Random Forest consistently exhibiting superior stability across
various feature sets. A key finding is that reducing the thermal comfort scale from six to three levels
significantly enhanced the models’ discriminative capabilities, simplifying the classification process
while maintaining high predictive accuracy.

Despite these improvements, some challenges remain. The reduction of the thermal comfort
scale, while beneficial for prediction accuracy, raises concerns about oversimplifying human thermal
perception, potentially overlooking subtle variations in comfort levels. Similarly, the IQR method
improved model accuracy by removing outliers, but its tendency to exclude extreme yet valid data
points may limit insights into the full range of environmental influences on comfort. The substantial
increase in accuracy from label reduction further highlights the significance of statistical techniques
in predictive modeling, though questions remain about their impact on data granularity.

Future research will explore additional predictive variables, such as Heart Rate Variability (HRV),
to assess physiological responses to thermal conditions. Furthermore, deep learning approaches,
including CNNs, LSTM networks, and DBNs, will be investigated to enhance the predictive power
of thermal comfort models. By integrating these advanced techniques, this research aims to further
refine smart building management systems, ensuring they continue to evolve to meet both current
and future demands.
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MAUIMHAJIBIK OKBITY MOJEJBAEPIH HARJATAHY
APKBLIBI KEHICTIKTEPAETT JKBLTYJIBIK-JKAMJIBLIBIKTBI
BOJIKAYJIbI OHTAWJIAHIBIPY

Anjgarna

KeHiCTiKTep}IeFi HKBLITYITBIK- -KaMJIBUIBIKTBI OOJDKAy — aJaMIapblH OJ-ayKaThlH, OHIMALUIITIH JKOHE JHEpPrus
TUIMJIUIITIH apTThIpy YLHlH MaHpI3/IbL. Byt 3epTTey/Ie TePMUAIBIK KAMIBUTBIKTHI OoInKay/Ibl KETUIIIPY MaKcaTbIHa
MaIIMHAJIBIK OKBITY TICUIIEpi, aTan alTKaH/a, TipeK BEeKTOpJbIK MamuHaitap (SVM) men kesneiicok opman (RF)
onicTepi KapacTeIpsutaznpl. JlacTypii amicrep kebiHece cyObeKTHBTI Oaramnayiapra cyiieHce, YCHIHBUIBII OThIpFaH
TOCUT — ayKbIMIBI JKBUTYJIBIK-KaWIBUIBIK IEPEKTEpP >KMHAKTAPBIHAA OKBITBUIFAH MAJIIMETTEpre HETi3[eNTreH MOo-
JenbIepAl KoNJaHyFa OarbITTanFaH. JlepekTep KUHAFbl MYKHUAT abiH ana exzjemin, 80%-b1 okpiTyFa, ain 20%-b1
tectizeyre nainananpuibl. Mareprer 3arrapeinbiy (IoT) nHTErpanumscel Gomkay JA9JIITIH OfaH 9pi apTThIPHIIL,
aKpUIIBl KYPBUIBIC KyiHenepinae OedimieneTin 6acKapyFa xon amanasl. SVM Men RF monenbiepiHin canbic-
THIPMAJIbI TAJI/aybl KOpIIaFaH OpTa napaMeTpnepl MEH JKOJIayIIIbLIap JKaWJIBUIBIFBl apachbIHIaFbl KYpAETl e3apa
epeKeTTecy)n THiMI OeifHeneiTiniH KepceTTi, anaiina RF Moneni kentreren cueHapuiinepae *orapbl TYPAKTHUIBIK
TIeH JQNJIK KepceTTi. byl Makanama MozxenbAepaiH AIITiH apTThIpy YIIiH KOChIMIIA OoDKay aifHBIMAIbUIAPBIH
EHTI3Y/IiH BIKTHMAaJI CTPATErusIaphbl YCHIHBUIABI KOHE Y 1MIiH/IET] AKaWIBIIBIKTH OHTaHIaHABIPYIaFbl MAITHHAIIBIK
OKBITY/IBIH QJICYCTI KOPCETLIC/I.

Tipek ce3mep: XbUIBITY JKYHenepi, SHEPTUSHBI 0acKapy, JKbUTYJIBIK-KaHIbUIBIK, TIPEK BEKTOPJIBIK MAalIMHa,
Ke37IeCOK OpMaH, MaIlINHAJIBIK OKBITY.
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ONITUMM3ANUA IPOI'HO3UPOBAHUSA TEIIJIOBOT'O
KOM®OPTA B IOMEIEHNH C ACITIOJIb30OBAHUEM
MOAEJIEM MAHIUHHOI'O OBYYEHUA

AHHOTAIUA

[IporHo3upoBaHue TEIUIOBOrO0 KOM(pOpTa B MOMEIICHUSIX BaYKHO ISl YITyUIICHHs CAMOYYBCTBUS JIFOACH, MO-
BBILIEHUSI TIPOU3BOANUTEIHLHOCTH U SHEProdddeKkTHBHOCTH. B maHHOM HcCiie10BaHNH paccMaTpUBAIOTCS OIXObI
MAIIMHHOTO 00Y4eHHsI, B YaCTHOCTH MAIIMHBI OOPHBIX BeKTOpoB (SVM) u ciryuaiinsrit nec (RF), s ymyuimenns
TIPOTHOZUPOBAHUSI TEIIOBOTO KoM(popTa. TpaIunnoHHbIE METOABI ONTUPAIOTCS HA CyOBEKTUBHBIE OLIEHKH, B TO BpE-
Ml KaK Hall TIOJXOJ UCTIONb3YEeT MOJIEIH, OCHOBAaHHbIC HA JAHHBIX, 00yUCHHBIC Ha OOIBIINX HAOOpaX JaHHBIX 110
TerioBoMy KoMmdopty. HaGophl JaHHBIX NMPOLLIM TINATEIBHYIO MTPeABApUTEIbHYI0 00padoTky, 80% ucronb3oBa-
smck 1uis o0yuenus u 20% — nuist recruposanus. Murerpanus Matepuera Bemteii (I10T) eme 6osbiiie moBbIaeT To4-
HOCTB ITPOTHO3UPOBaHMsI, 0OecIIeunBast aJalTHBHOE YIIPABICHUE B CHCTEMaX MHTEIJICKTYaIbHBIX 31aHni. CpaBHH-
tenpHbIA aHaau3 SVM u RF nokasbiBaet, 4to XoTs 06e Mojenu 3p(GeKTHBHO OTPaXkaloT CII0KHOE B3aUMOJICHCTBHE
MEXIy apamMeTpaMu OKpysKaromiei cpeabl 1 KoMmpopToM XuimbiioB, RF geMoHCTpHpyeT G0ibIIyto CTaOMIBHOCTD U
6oree BHICOKYIO TOUHOCTh B OOJIBIIMHCTBE CLICHAPHEB. B cTaThe mpeanaratoTcst BO3MOXKHBIE CTPATETHH HHTErPAlui
JIOTIOJTHUTENbHBIX IPOTHOCTUYECKUX (DYHKIMH JUIsl JAIbHEUIIEro MOBBILICHHUSI TOYUHOCTH MOJIEINH, YTO JAEMOHCTPH-
pyeT mporpecc MallMHHOTO 00yUYeHHUsI B ONITUMHU3AIMH KOM(OPTa B TOMEIICHHUSX.

KaioueBble cjioBa: CHCTEMBbI OTOIUICHUS, YNpPaBJICHUE SHEPronoTpeOIeHreM, TEIUIOBOH KOM(OPT, METox
OTIOPHBIX BEKTOPOB, CITyYaHEIH Jiec, MAIIHHHOE 00yUeHHE.
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