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OPTIMIZING INDOOR THERMAL COMFORT 
PREDICTION USING MACHINE LEARNING MODELS 

Abstract
Predicting thermal comfort in indoor environments is important for improving residents’ well-being, 

productivity, and energy efficiency. This study explores machine learning approaches, specifically Support Vector 
Machines (SVM) and Random Forest (RF), to improve thermal comfort prediction. Traditional methods rely on 
subjective assessments, whereas our approach leverages data-driven models trained on large thermal comfort 
datasets. The dataset underwent rigorous preprocessing, with 80% used for training and 20% for testing. The 
integration of the Internet of Things (IoT) further enhances predictive accuracy by enabling adaptive control in 
smart building systems. A comparative analysis of SVM and RF reveals that while both models effectively capture 
the complex interactions between environmental parameters and resident comfort, RF demonstrates greater stability 
and higher accuracy in most scenarios. The paper proposes potential strategies for integrating additional predictive 
features to further enhance model accuracy, demonstrating the advancement of machine learning in optimizing 
indoor comfort.

Keywords: heating systems, energy management, thermal comfort, support vector machine, random forest, 
machine learning

Introduction

Optimizing indoor environments for human habitation is essential for ensuring comfort, health, 
and productivity. Thermal comfort, a key aspect of indoor environmental quality, is significantly 
influenced by climate change, which has led to more frequent and severe extreme weather events. 
The ability to predict and manage thermal conditions effectively has become increasingly important 
as it directly impacts human well-being. Poor indoor thermal conditions, whether excessively hot or 
cold, can cause discomfort, fatigue, and health issues, ultimately reducing productivity in workplaces, 
educational institutions, and homes.

Beyond individual well-being, the economic impact of inadequate thermal comfort is substantial. 
When indoor conditions are not optimized, occupants rely more on heating, ventilation, and air 
conditioning (HVAC) systems to maintain comfort, leading to increased energy consumption and 
higher utility costs. This, in turn, contributes to environmental degradation due to higher carbon 
emissions. Consequently, there is an urgent need for advanced predictive models capable of accurately 
forecasting occupants’ thermal comfort preferences in diverse environmental conditions and 
architectural settings. These models must integrate multiple factors, including ambient temperature, 
humidity, clothing insulation, metabolic rate, and personal preferences, to provide precise thermal 
comfort assessments.
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Developing reliable predictive models requires collaboration across multiple disciplines, 
including architecture, engineering, psychology, and data science. By combining insights from 
environmental science, human physiology, and behavioral psychology, researchers can create more 
effective models. Advances in sensor technology, data analytics, and machine learning have made 
it possible to generate real-time insights into thermal comfort, allowing building managers and 
occupants to adjust indoor environments dynamically. This not only improves occupant well-being 
but also contributes to energy efficiency and sustainability.

To understand the real-world impact of thermal comfort, consider a simple scenario. Suppose a 
student is studying in a closed room during a hot summer day. The student shuts the door to minimize 
noise and closes the window to block out the heat. However, this leads to a buildup of carbon dioxide, 
reducing oxygen levels and increasing the temperature inside the room. As a result, the student 
experiences discomfort, distraction, and fatigue. The simple act of opening the door to improve 
ventilation can significantly enhance comfort. This example highlights the importance of managing 
thermal comfort effectively to maintain productivity and overall well-being.

Predicting thermal comfort involves analyzing multiple factors, including air temperature, 
humidity, air velocity, and clothing insulation. Traditional methods rely on human comfort models, 
such as the Predicted Mean Vote (PMV), but these approaches can be subjective and time-consuming. 
Recent advancements in machine learning have provided new opportunities to develop more accurate 
predictive models. The goal of this study investigates the use of Support Vector Machines (SVM) and 
Random Forest (RF) algorithms for thermal comfort prediction, comparing their performance across 
various conditions.

By following this structured approach, we aim to validate these goals and assess the effectiveness 
of SVM and RF in predicting thermal comfort. These findings could offer valuable insights for 
building designers and facility managers to optimize indoor environments. Both SVM and RF are 
supervised learning algorithms that can be trained on datasets containing thermal comfort parameters 
alongside human feedback, allowing them to predict thermal comfort levels in new conditions.

The Internet of Things (IoT) is transforming building management systems (BMS), with 
projections indicating that the number of connected devices will reach 125 billion by 2030. Despite 
these advancements, current BMS solutions remain limited in flexibility, particularly in feedback 
control mechanisms. To address these limitations, researchers have explored adaptive control 
algorithms and modular architecture. One proposed solution, the “Semantically-Enhanced IoT-enabled 
Intelligent Control System” (SEMIoTICS), leverages redundancy in control system capabilities 
and dynamically adjust configurations based on quality-of-service criteria [1]. Additionally, Model 
Predictive Control (MPC) has gained popularity in optimizing HVAC systems for energy efficiency 
and occupant comfort. However, the computational complexity of nonlinear MPC models has 
driven researchers to investigate linear controllers using Jacobian linearization. A bilinear model 
for nonlinear MPC was proposed to minimize energy costs while maintaining comfort, but its high 
computational demands present challenges for real-time implementation [2].

To further optimize HVAC systems, reinforcement learning (RL)-based approaches have 
been developed. One study implemented Deep Deterministic Policy Gradients (DDPG) within the 
Transactive Energy Simulation Platform (TESP) to achieve intelligent and granular HVAC control. The 
approach optimizes a cost function that balances electricity expenses with occupant dissatisfaction, 
incorporating a market price prediction model using Artificial Neural Networks (ANN) and a DDPG-
based RL control algorithm [3]. Another study presented a simulation model integrating both high- 
and low-level controllers for a vehicle’s air conditioning system, focusing on occupant thermal 
comfort while ensuring system efficiency. The study also introduced an Eco-Cooling Strategy using 
MPC to optimize cooling performance while minimizing energy consumption [4].

Fuzzy logic-based models have also been explored for variable-speed air conditioning load control, 
allowing for energy-efficient HVAC operation while improving thermal comfort. These controllers, 
implemented in microcontrollers, VLSI chips, and EDA tools, precisely regulate temperature and 
humidity levels. By integrating fuzzy logic with other control methods, system performance and 
energy efficiency can be significantly improved [5]. Another study examined classical HVAC 
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control strategies, such as PID controllers, and more advanced approaches like MPC. The research 
introduced the LAMDA controller, designed to enhance real-time responsiveness and dynamically 
adjust parameters based on contextual information [6].

Increasing energy consumption in commercial buildings, particularly HVAC systems, has 
driven research into energy optimization. Although HVAC technologies have improved Demand 
Response (DR) programs, challenges remain in implementing model predictive control strategies. 
Machine learning techniques such as Reinforcement Learning and Supervised Learning have been 
investigated for their potential in improving HVAC efficiency [7]. Research on DR in Building 
Energy Management (BEM) has primarily focused on optimizing HVAC operations through various 
methods, including dynamic demand response controllers, mixed-integer nonlinear optimization 
models, and occupancy-based controllers. Additional strategies, such as event-based control, mutual 
information frameworks, and MPC, have also been explored [8]. A recent study proposed a three-
layered model for optimizing energy consumption in smart homes, incorporating data collection, 
prediction, and optimization stages. The model uses an Alpha Beta filter for noise reduction, DELM 
for dynamic parameter prediction, and fuzzy controllers for refined control decisions, ultimately 
improving both energy efficiency and occupant comfort [9].

In the field of thermal comfort assessment, a novel model has been introduced that excludes 
demographic factors such as gender and age. Instead, it considers six key thermal variables: air 
temperature, mean radiant temperature, relative humidity, air speed, clothing insulation, and metabolic 
rate. This model was developed using supervised machine learning and applied in a commercial 
building setting [10]. Another study conducted in Bilbao, Spain, utilized the KUBIK energy efficiency 
research facility to analyze human thermal perception in response to external temperatures, aiming 
to enhance indoor comfort while reducing energy consumption [11]. Additional research has applied 
the Fanger method and ASHRAE Standard 55 to evaluate indoor thermal comfort under real-world 
conditions, with a focus on improving well-being, productivity, and energy conservation [12].

A separate study introduced a model that predicts group thermal comfort by integrating individual 
preferences with environmental parameters. The model segments occupants based on Body Mass 
Index (BMI), predict their individual comfort zones, and makes adjustments to maximize group 
satisfaction [13]. In general, optimizing thermal comfort in buildings is essential for occupant well-
being, productivity, and energy efficiency. Standard assessment models take into account factors 
such as air temperature, humidity, radiant temperature, and air velocity, with ASHRAE 55 standards 
providing guidelines for acceptable conditions. Alternative predictive models, including ANN, hybrid 
ANN-fuzzy models, SVM, decision trees, fuzzy logic, and Bayesian networks, have demonstrated 
improved flexibility and accuracy in thermal comfort prediction [14].

Thermal comfort models are typically categorized into static, adaptive, and data-driven models. 
Static models, such as the Predicted Mean Vote (PMV), integrate environmental and personal factors 
but lack adaptability to individual responses. Adaptive models consider psychological and behavioral 
influences, making them more responsive to changes in occupant preferences. Data-driven models 
leverage real-time sensor data for dynamic and adaptive thermal comfort assessments [15]. One 
study developed a building thermal model utilizing low-resolution data from smart thermostats, 
significantly improving model accuracy across different seasons. This data-driven approach replaces 
traditional empirical models with surrogate features that approximate internal heat gains. The model 
can be deployed on edge devices or cloud infrastructure, enhancing its scalability for real-world 
applications [16].

Research on innovative cooling technologies has also expanded, with studies exploring 
Thermoelectric Air Duct systems. Neural networks have demonstrated high accuracy in predicting 
comfort parameters within dynamic environments, highlighting the complex relationships between 
climatic variables, occupant comfort, and HVAC system performance [17]. More broadly, predicting 
thermal comfort and optimizing energy use in buildings is essential for ensuring occupant satisfaction 
and sustainability. Key factors influencing comfort include metabolic rate, clothing insulation, and 
air temperature. Deep feedforward neural networks and reinforcement learning models have been 
applied to thermal comfort prediction, with promising results in improving energy efficiency and 
indoor climate management [18].
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A novel methodology has been introduced to develop predictive models for Combined Heat, 
Cooling, and Power (CHCP) systems using machine learning, data mining, and statistical techniques. 
This methodology consists of four stages: data preparation, data engineering, model building, and 
model evaluation. The first stage involves retrieving failure events, labeling instances, and compiling 
a comprehensive dataset. The data engineering stage improves data representation through feature 
extraction and selection. Machine learning algorithms are then used for classification and regression 
tasks, while the final evaluation step assesses model performance based on time to failure (TTF) and 
other relevant metrics [19].

Another study proposed a new approach to analyzing thermal comfort in indoor environments 
using Relative Thermal Sensation (RTS). Unlike traditional models, which rely on discrete thermal 
sensation scales, RTS represents thermal perception as a continuous function over time, allowing 
for a more detailed understanding of human comfort. The researchers introduced a 3-point Relative 
Thermal Sensation Scale (RTSS) to collect real-time data, capturing subtle changes in thermal 
perception that conventional methods might overlook. Furthermore, the study integrated RTS data 
with Absolute Thermal Sensation measurements from a modified version of the ASHRAE 7-point 
scale, enhancing the overall predictive power of the thermal comfort model [20].

Interpretable thermal comfort systems are also being explored to improve both energy 
efficiency and occupant satisfaction in smart buildings. Traditional models, such as PMV, often lack 
interpretability, making it difficult for building operators to understand the key drivers of thermal 
comfort. To address this issue, researchers have proposed interpretable machine learning models 
using techniques such as Partial Dependence Plots (PDP) and SHAP values. These methods provide 
insight into how environmental conditions affect human comfort and help operators identify the most 
influential features under different scenarios. Additionally, interpretable machine learning algorithms 
are being developed to create surrogate models that replicate and potentially improve upon existing 
comfort models, making them more accessible for building management applications [21].

This paper focuses on the use of Support Vector Machines (SVM) and Random Forest (RF) 
algorithms for predicting thermal comfort in buildings. The study aims to evaluate their strengths 
and weaknesses and compare their performance under different experimental conditions. The 
ultimate goal is to provide a comprehensive understanding of how machine learning can contribute to 
optimizing indoor environments and improving occupant comfort. To guide the research, we propose 
the following hypotheses:

1.	 Data Preparation: Removing NaN values and setting a threshold for feature selection based 
on data availability will improve model accuracy.

2.	 Feature Encoding: Comparing different encoding strategies (OneHotEncoder, LabelEncoder, 
and Word2Vec) will help determine the most effective method for handling categorical variables.

3.	 Feature Selection: Applying the SelectKBest model will identify the most relevant features 
for predicting thermal comfort, streamlining the modeling process.

4.	 Feature Variants: Testing different feature combinations after filtering will improve 
temperature prediction accuracy.

Through these hypotheses, we aim to validate the potential of SVM and RF models in thermal 
comfort prediction, as shown in Fig.1. The findings will contribute to a better understanding of how 
machine learning can support smart building management, leading to enhanced indoor comfort and 
energy efficiency.

Figure 1 – Overview of the methodology
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Materials and methods

The dataset, sourced from the ASHRAE and available on Kaggle [22], comprises 70 columns 
and 107,583 rows, containing data collected globally from 1995 to 2015. Initially, an examination of 
the dataset description led to a filtering process. This revealed that some columns contained sparse 
data. Consequently, a threshold was set at 60,000 rows; data points below this limit were discarded. 
Additionally, it was necessary to address missing values. Despite starting with 107,583 rows, the 
removal of rows with NaN values was essential to ensure data integrity. Another analytical approach 
considered was the use of the Interquartile Range (IQR) method to identify and eliminate outliers, 
further refining the dataset’s quality (See Fig.2).

Figure 2 – Data filtering scheme

Regarding the conversion of text data to numeric form, as shown in Fig.3, two encoding options 
were evaluated: LabelEncoder and OneHotEncoder. The decision to proceed with OneHotEncoder 
was based on its superior performance in preliminary results, effectively transforming categorical 
text data into a usable format for machine learning models.

Figure 3 – Encoding scheme for the conversion of text data to numeric form
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In the feature selection process, as shown in Fig.4, two methods were considered: using the 
SelectBest library or selecting based on correlation with a predefined threshold. The chosen method 
was to use correlations, specifically setting a boundary above 50% to determine relevant features. 
The final set of features selected includes Age, Clothing insulation (Clo), Sex, Metabolic rate (Met), 
Thermal preference, Year, Season, Köppen climate classification, Cooling strategy at the building 
level, City, Predicted Percentage of Dissatisfied (PPD), Air temperature (C), Outdoor monthly 
air temperature (C), Relative humidity (%), and Air velocity (m/s). This selection represents the 
culmination of extensive testing with various combinations of features, all of which will be detailed 
in the Experiments section of our study.

Figure 4 – Feature selection
These features were instrumental in enhancing the predictive accuracy of our models. For the 

experimental setup, the dataset was divided into 80% for training and 20% for testing. Typically, 
thermal comfort ratings in the dataset ranged from 1 to 6. Another hypothesis tested was the conversion 
of these label values into integers. By reducing the range of thermal comfort ratings from six to three 
distinct categories, we observed a significant improvement in model accuracy. This transformation 
simplifies the model’s classification task, enabling more precise predictions.

Inter Quartile Range (IQR). The Interquartile Range (IQR) is a measure of statistical dispersion 
that is calculated as the difference between the third quartile (Q3) and the first quartile (Q1) of a 
dataset. Mathematically, it is defined as:

					     IQR = Q3 − Q1            					     (1)
where Q1 is the median of the lower half of the dataset and Q3 is the median of the upper half of the 
dataset. It is particularly useful in identifying and dealing with outliers, which are data points that 
significantly differ from the rest of the dataset. Here’s how the IQR is calculated and how it can be 
used to remove outliers:

1) Calculation of IQR:
	� Firstly, you need to arrange your dataset in ascending order.
	� Then, find the median of the dataset, which is the middle value when the data is sorted. If the 

dataset has an odd number of observations, the median is the middle value. If it has an even number 
of observations, the median is the average of the two middle values.

	� Divide the dataset into two halves at the median. The lower half contains all the values less 
than or equal to the median, and the upper half contains all the values greater than or equal to the 
median.

	� Find the median of each half. This gives you the first quartile (Q1) and the third quartile (Q3) 
of the dataset, respectively.

The IQR is then calculated as the difference between Q3 and Q1: IQR = Q3 - Q1.
2) Identifying outliers using IQR:

	� Outliers can be detected using the IQR method by considering values that lie below Q1 − 1.5 ×  
IQR or above Q3 + 1.5 × IQR. These values are considered to be significantly different from the rest 
of the dataset.
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	� Values below Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR are commonly referred to as lower 
and upper bounds, respectively.

	� Any data points falling outside these bounds can be considered outliers.
3) Removing outliers using IQR:

	� Once outliers are identified using the IQR method, you can choose to remove them from the 
dataset to improve the robustness of your analysis or model.

	� Outliers can be removed by filtering the dataset to exclude any observations that fall outside 
the lower and upper bounds defined by Q1 − 1.5 × IQR and Q3 + 1.5 × IQR, respectively.

	� After removing outliers, the dataset may be more representative of the underlying distribution 
and less influenced by extreme values.

4) Considerations:
	� While the IQR method is effective in identifying and removing outliers, it’s important to 

exercise caution and consider the context of the data.
	� Outliers may sometimes carry valuable information or be indicative of rare but important 

events. Therefore, the decision to remove outliers should be made judiciously based on the specific 
goals of the analysis or model.

	� Additionally, the choice of the multiplier (1.5 in the conventional method) used to define the 
bounds can be adjusted depending on the desired level of sensitivity to outliers.

In summary, the IQR is a useful statistical measure for assessing the spread of a dataset and 
identifying outliers. By calculating the IQR and defining bounds based on it, outliers can be effectively 
detected and removed, leading to a more robust analysis or model.

Applied methods. SVM is a supervised machine learning algorithm well-suited for both 
classification and regression tasks. In thermal comfort prediction, SVM is employed to delineate 
the complex interrelationships between various environmental factors–like temperature, humidity, 
and air velocity–and human thermal comfort responses. The algorithm focuses on maximizing the 
margin between classes in classification tasks or minimizing errors in regression, all while effectively 
controlling for overfitting, as shown in Fig. 5. By training on labeled datasets that encapsulate 
corresponding thermal comfort ratings, SVM learns to accurately predict thermal comfort levels 
based on specific environmental inputs.

Figure 5 – Support Vector Machine (SVM)
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Random Forest is a machine learning algorithm capable of handling classification and regression 
tasks. It follows an ensemble learning approach, using multiple decision trees to improve accuracy 
and robustness, as shown in Fig. 6. The process involves data cleaning, handling missing values, 
and applying transformations. Random sampling selects subsets for training, recursive partitioning 
creates decision trees, and a voting mechanism aggregates predictions. This method effectively 
models nonlinear relationships and interactions between environmental variables, making it suitable 
for predicting thermal comfort.

Figure 6 – Multiple decision trees of the Random Forest 

Both SVM and Random Forest capture complex relationships between environmental factors 
and thermal responses, ensuring reliable predictions across different conditions. While SVM provides 
clear decision boundaries for easier interpretation, Random Forest highlights feature importance 
through its ensemble structure, despite being less interpretable at the individual tree level. Their 
flexibility allows integration with various environmental sensors and monitoring systems. A novel 
approach involves using the ‘Thermal preference’ column as a predictive variable instead of the 
traditional ‘Thermal comfort’ scale. By simplifying comfort classification from six levels to three, 
the prediction process becomes more streamlined, potentially enhancing model accuracy.

Integration with IoT. The IoT component of the system is integral to enhancing building 
management by deploying a comprehensive network of sensors throughout the facility. These sensors 
are designed to monitor a variety of environmental conditions in real-time, including temperature, 
humidity, CO2 levels, and occupancy rates. The data collected by these IoT sensors is then transmitted 
to a central server, where it is stored and analyzed. For efficient and reliable data transfer, wireless 
communication protocols such as Wi-Fi, Bluetooth, or LoRaWAN are utilized.

The AI models within the system leverage this real-time data to continuously refine their 
predictions and immediately adjust the building’s HVAC system to achieve optimal thermal comfort. 
A key feature of this setup is its feedback loop mechanism, which plays a critical role in maintaining 
desired thermal conditions. The AI actively processes the incoming data from the IoT sensors and 
either make recommendations or directly control the HVAC system’s operations, as shown in Fig. 7.
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Figure 7 – General design of the IoT 

The device, powered by a rechargeable battery (referred to as the “sensor node” in our model), 
collects data from sensors and transmits it to the central device. In this setup, temperature and 
humidity sensors monitor environmental conditions to support specific tasks. The only requirement 
for this topology is that all sensor nodes must be within 100 meters of the central device.

This model’s topology ensures that each sensor node communicates only with the central device, 
preventing unreliable direct communication between nodes. The central device, in turn, connects to 
the global network, structuring and forwarding the data to a database. If deviations from comfort 
levels are detected, the system dynamically adjusts temperature, humidity, or airflow, ensuring 
continuous thermal comfort by responding to environmental changes and occupancy patterns.

A Raspberry Pi with a LoRa module functions as the central device, while sensor nodes consist 
of a microcontroller, LoRa module, and sensors, all powered by a rechargeable battery. An integrated 
analog-to-digital converter facilitates sensor data collection, and a fully charged battery can sustain 
operation for up to 30 days.

Results

After an initial filtering process, our dataset was reduced from 70 to 21 columns. We continued 
to refine our feature selection by using correlations and deliberately avoided incorporating Fanger’s 
features. Further filtration using both correlation analysis and the SelectKbest model, which assists 
in identifying the most impactful features, led us to define three distinct sets of features:

	� First Set (17 features): Age, Sex, Metabolic rate (Met), Thermal preference, Thermal sensation, 
Clothing insulation (Clo), Subject’s height (cm), Subject’s weight (kg), Year, Season, Köppen 
climate classification, Building type, Cooling strategy at building level, Air temperature (C), Outdoor 
monthly air temperature (C), Relative humidity (%), and Air velocity (m/s).

	� Second Set (9 features): Age, Sex, Met, Clo, Year, Season, Air temperature (C), Relative 
humidity (%), Air velocity (m/s).

	� Third Set (15 features): Age, Clo, Sex, Met, Thermal preference, Year, Season, Köppen climate 
classification, Cooling strategy at building level, City, Predicted Percentage of Dissatisfied (PPD), 
Air temperature (C), Outdoor monthly air temperature (C), Relative humidity (%), Air velocity (m/s).

Following feature selection, our dataset contained 17 columns and 6,765 rows. Initially, using 
all 17 features yielded unsatisfactory results. Testing with 9 and then 15 features also failed to 
significantly improve accuracy. These iterations helped validate our hypotheses; notably, the IQR 
method improved accuracy by 3–4%, while reducing label values increased accuracy by 20–23%. 
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Parameter tuning further enhanced model performance. The optimal settings for the SVM model were 
an RBF kernel with gamma = 0.001 and C = 3. For the Random Forest model, the best configuration 
included 300 estimators and a maximum depth of 15. These settings provided the highest accuracy.

A comparison between LabelEncoder and OneHotEncoder revealed a performance difference 
of 2–4%, leading us to favor OneHotEncoder. Data standardization, using StandardScaler and 
MinMaxScaler, had minimal impact on accuracy. Tables 1, 2, and 3 present the initial prediction 
results, illustrating performance across different feature sets and modeling approaches.

Table 1 – Iteration of 17 features

Model Accuracy Precision Recall F1 score

SVM 0.509 0.451 0.509 0.436

RF 0.543 0.505 0.543 0.5

Table 2 – Iteration of 9 features

Model Accuracy Precision Recall F1 score

SVM 0.507 0.461 0.507 0.438

RF 0.526 0.513 0.526 0.49

Table 3 – Iteration of 15 features

Model Accuracy Precision Recall F1 score

SVM 0.533 0.448 0.533 0.433

RF 0.54 0.475 0.539 0.482

Based on the initial results, we further pursued enhancing model accuracy by employing the 
hypotheses formulated earlier in our study. The implementation of the IQR method was a particular 
focus, aimed at refining the data by removing outliers, which are often a source of prediction error. 
Tables 4, 5, and 6 below display the outcomes of applying the IQR method. These tables illustrate 
the effect of this technique on the overall performance of the models:

Table 4 – Iteration of 17 features with IQR

Model Accuracy Precision Recall F1 score

SVM 0.522 0.44 0.522 0.441

RF 0.548 0.517 0.548 0.504

Table 5 – Iteration of 9 features with IQR

Model Accuracy Precision Recall F1 score

SVM 0.507 0.44 0.383 0.424

RF 0.52 0.501 0.52 0.479
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Table 6 – Iteration of 15 features with IQR

Model Accuracy Precision Recall F1 score

SVM 0.563 0.539 0.563 0.425

RF 0.57 0.494 0.57 0.5

Building on the improvements, which enhanced model accuracy by approximately 2–5%, our 
next step involves reducing label values to further increase the accuracy. This simplifies the output 
space of the model, potentially making it easier for the algorithms to distinguish between different 
states of thermal comfort.  Tables 7–9 show the result of this approach:

Table 7 – Iteration of 17 features with reducing labels

Model Accuracy Precision Recall F1 score

SVM 0.715 0.644 0.715 0.614

RF 0.744 0.708 0.744 0.704

Table 8 – Iteration of 9 features with reducing labels

Model Accuracy Precision Recall F1 score

SVM 0.688 0.598 0.688 0.569

RF 0.699 0.657 0.699 0.645

Table 9 – Iteration of 15 features with reducing labels

Model Accuracy Precision Recall F1 score

SVM 0.78 0.608 0.78 0.683

RF 0.78 0.719 0.78 0.727

We utilized Random sampling to select subsets of the dataset for training individual decision 
trees within our Random Forest model. By integrating strategies such as feature reduction, IQR, 
and Random sampling, we have enhanced the construction and performance of our decision trees. 
The process is further refined through selective feature selection, which concentrates on the most 
impactful variables. This allows the model to focus on the data elements that are most predictive 
of the outcomes, significantly enhancing the overall performance of the model. These integrations 
contribute to a more efficient predictive tool, suitable for complex scenarios in smart building 
environments. After incorporating the feature-reduced model, further simplifying the feature space, 
we observed the following results, as in Tables 10–12:

Table 10 – Iteration of 17 feature-reduced labels and IQR

Model Accuracy Precision Recall F1 score

SVM 0.726 0.598 0.726 0.621

RF 0.733 0.678 0.733 0.688
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Table 11 – Iteration of 9 feature-reduced labels and IQR

Model Accuracy Precision Recall F1 score

SVM 0.706 0.498 0.706 0.584

RF 0.717 0.668 0.717 0.653

Table 12 – Iteration of 15 feature-reduced labels and IQR

Model Accuracy Precision Recall F1 score

SVM 0.835 0.697 0.835 0.76

RF 0.821 0.738 0.821 0.766

The implications of these findings are significant, especially in the context of predictive 
accuracy in environmental modeling for predicting thermal comfort levels in smart building 
systems. The Receiver Operating Characteristic (ROC) curves graph, presented in Fig. 8, provides 
a visual comparison of the performance of two machine learning models: SVM and Random Forest 
(RF). These curves are essential tools in evaluating the models by plotting the True Positive Rate 
(sensitivity) against the False Positive Rate (1-specificity) at various threshold settings. The area 
under the curve (AUC) serves as a summary measure of the model’s ability to discriminate between 
positive and negative classes.

In this analysis, the SVM model demonstrates an AUC of 0.72, while the RF model exhibits a 
slightly superior AUC of 0.84. This suggests that the RF model has a better overall performance in 
distinguishing between the classes under study, likely due to its ensemble nature, which typically 
provides a more robust prediction by averaging multiple decision processes. 

Figure 8 – ROC comparison for the SVM and RF
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Discussion

This research evaluates the effectiveness of Random Forest and SVM models in predicting 
thermal comfort and thermal preference across different feature sets. Our study introduced eight new 
features while retaining seven features used in prior research. Comparing predictions for Thermal 
Comfort and Thermal Preference, we found only a 1–3% performance gap, with Random Forest 
demonstrating greater stability.

Initial tests using feature sets with 9 and 15 variables showed alternative models leading in 
performance. However, a major shift occurred when we simplified the prediction scale from six to 
three Thermal Comfort levels. This refinement improved the model’s ability to differentiate comfort 
levels more effectively. While this simplification enhanced classification accuracy, some researchers 
argue that reducing the scale may obscure subtle nuances in human comfort perception. A more 
granular scale could potentially provide richer insights into individual experiences.

The implementation of the IQR method improved model accuracy by approximately 3–4%, 
primarily by filtering out extreme values. However, this approach may also remove valid outliers, 
limiting insights into environmental conditions’ full impact on thermal comfort. The more substantial 
improvement came from reducing label values, which increased accuracy by 20–23%. While this 
demonstrates the impact of statistical methods on predictive performance, it also raises concerns 
about whether reducing labels compromises data depth and nuance.

The system architecture, designed for efficient data transmission, relies on sensor nodes 
communicating with a central device, typically a Raspberry Pi, over distances up to 100 meters  [23]. 
While this setup ensures reliable data management, some experts question its scalability in large 
buildings. Additionally, concerns exist over Raspberry Pi’s processing power, which may be 
insufficient for high-demand real-time processing. Balancing user control with automated efficiency 
remains a critical consideration. While direct user interaction with building systems enhances 
customization, excessive manual adjustments may reduce energy efficiency. This study contributes 
to the future of smart building management by integrating advanced computational techniques with 
IoT applications. 

Conclusion

This study has demonstrated the effectiveness of Random Forest and SVM algorithms in 
predicting thermal comfort and thermal preference, leveraging a refined feature set that combines 
both newly introduced variables and established factors from prior research. The results indicate 
that the difference in predictive performance between thermal comfort and thermal preference is 
minimal, typically within 1–3%, with Random Forest consistently exhibiting superior stability across 
various feature sets. A key finding is that reducing the thermal comfort scale from six to three levels 
significantly enhanced the models’ discriminative capabilities, simplifying the classification process 
while maintaining high predictive accuracy.

Despite these improvements, some challenges remain. The reduction of the thermal comfort 
scale, while beneficial for prediction accuracy, raises concerns about oversimplifying human thermal 
perception, potentially overlooking subtle variations in comfort levels. Similarly, the IQR method 
improved model accuracy by removing outliers, but its tendency to exclude extreme yet valid data 
points may limit insights into the full range of environmental influences on comfort. The substantial 
increase in accuracy from label reduction further highlights the significance of statistical techniques 
in predictive modeling, though questions remain about their impact on data granularity.

Future research will explore additional predictive variables, such as Heart Rate Variability (HRV), 
to assess physiological responses to thermal conditions. Furthermore, deep learning approaches, 
including CNNs, LSTM networks, and DBNs, will be investigated to enhance the predictive power 
of thermal comfort models. By integrating these advanced techniques, this research aims to further 
refine smart building management systems, ensuring they continue to evolve to meet both current 
and future demands.
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МАШИНАЛЫҚ ОҚЫТУ МОДЕЛЬДЕРІН ПАЙДАЛАНУ 
АРҚЫЛЫ КЕҢІСТІКТЕРДЕГІ ЖЫЛУЛЫҚ-ЖАЙЛЫЛЫҚТЫ 

БОЛЖАУДЫ ОҢТАЙЛАНДЫРУ

Аңдатпа
Кеңістіктердегі жылулық-жайлылықты болжау – адамдардың әл-ауқатын, өнімділігін және энергия 

тиімділігін арттыру үшін маңызды. Бұл зерттеуде термиялық жайлылықты болжауды жетілдіру мақсатында 
машиналық оқыту тәсілдері, атап айтқанда, тірек векторлық машиналар (SVM) мен кездейсоқ орман (RF) 
әдістері қарастырылады. Дәстүрлі әдістер көбінесе субъективті бағалауларға сүйенсе, ұсынылып отырған 
тәсіл – ауқымды жылулық-жайлылық деректер жинақтарында оқытылған мәліметтерге негізделген мо
дельдерді қолдануға бағытталған. Деректер жинағы мұқият алдын ала өңделіп, 80%-ы оқытуға, ал 20%-ы 
тестілеуге пайдаланылды. Интернет заттарының (IoT) интеграциясы болжау дәлдігін одан әрі арттырып, 
ақылды құрылыс жүйелерінде бейімделетін басқаруға жол ашады. SVM мен RF модельдерінің салыс
тырмалы талдауы қоршаған орта параметрлері мен жолаушылар жайлылығы арасындағы күрделі өзара 
әрекеттесуді тиімді бейнелейтінін көрсетті, алайда RF моделі көптеген сценарийлерде жоғары тұрақтылық 
пен дәлдік көрсетті. Бұл мақалада модельдердің дәлдігін арттыру үшін қосымша болжау айнымалыларын 
енгізудің ықтимал стратегиялары ұсынылады және үй ішіндегі жайлылықты оңтайландырудағы машиналық 
оқытудың әлеуеті көрсетіледі.

Тірек сөздер: жылыту жүйелері, энергияны басқару, жылулық-жайлылық, тірек векторлық машина, 
кездейсоқ орман, машиналық оқыту.
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ОПТИМИЗАЦИЯ ПРОГНОЗИРОВАНИЯ ТЕПЛОВОГО 
КОМФОРТА В ПОМЕЩЕНИИ С ИСПОЛЬЗОВАНИЕМ 

МОДЕЛЕЙ МАШИННОГО ОБУЧЕНИЯ

Аннотация
Прогнозирование теплового комфорта в помещениях важно для улучшения самочувствия людей, по-

вышения производительности и энергоэффективности. В данном исследовании рассматриваются подходы 
машинного обучения, в частности машины опорных векторов (SVM) и случайный лес (RF), для улучшения 
прогнозирования теплового комфорта. Традиционные методы опираются на субъективные оценки, в то вре-
мя как наш подход использует модели, основанные на данных, обученные на больших наборах данных по 
тепловому комфорту. Наборы данных прошли тщательную предварительную обработку, 80% использова-
лись для обучения и 20% – для тестирования. Интеграция Интернета вещей (IoT) еще больше повышает точ-
ность прогнозирования, обеспечивая адаптивное управление в системах интеллектуальных зданий. Сравни-
тельный анализ SVM и RF показывает, что хотя обе модели эффективно отражают сложное взаимодействие 
между параметрами окружающей среды и комфортом жильцов, RF демонстрирует большую стабильность и 
более высокую точность в большинстве сценариев. В статье предлагаются возможные стратегии интеграции 
дополнительных прогностических функций для дальнейшего повышения точности модели, что демонстри-
рует прогресс машинного обучения в оптимизации комфорта в помещениях.

Ключевые слова: системы отопления, управление энергопотреблением, тепловой комфорт, метод 
опорных векторов, случайный лес, машинное обучение.
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