OPUN3INKO-MATEMATUYHECKUWE
TEXHUWHECKWVE HAYKW

YK 004.891
MPHTW 28.23.35

COMPARING BIG DATAANALYTIC TOOLS USING MUSIC DATASET
R.I. BEKTEMIROV, U.T. NURKEY
Suleyman Demirel University

Abstract: A huge repository ofpetabytes ofdata is generated each dayfrom modern information systems and
digital technologies such as scientific data analysis, social media data mining, recommendation systems,
and analysis on web service logs.The data has a huge power to directly guide us to knowledge detection. Big
data in turn requires whole new approach and tools to handle it. Analysing these massive data requires a lot
ofefforts to extract knowledge for decision making. Huge volumes ofdata and its unstructured nature raise
new challenges and issues regarding its management and processing. This paper covers some of the most
popular toolsfor analyzing big data. Hadoop, SparkandPig are major and modern tools in big data analytics.
Thus and so these tools were chosenfor comparison. Results ofthis research show that various tasks require
different tools and there is no all-in-one solution. Any big data problems stand in need developers to use
proper tool to make job done in a way better and quicker.

Keywords: big data, Hadoop, Spark, Pig, comparison ofbig data platforms

YJTKEH AEPEKTEPAI TANOAY LAPANOAPBLIH SHAOEP XXNbIHTbITbIH
LUONMAAHA CAJIBICTbIPY

AugaTna: [depekTepgiy neTabaliTTapbiHbll YNKEH peno3dTOpMili KyH cailblH 3aMaHayu awnapaTThbil,
XYiienepaeH >K3aHe rbiibIMU AEPeKTePAi TanjayfaH, aneymeTTiK Mefna AepeKTepiH BUAEYAEH, YCbIHbIC
XYiieciHeH >3He Be6-LUbI3MET >KypHangapbiHaH Tanjay cysaWTbl UMpbIL, TexHonoruanapaaH »acanajbl.
JepekTep 6iniMmai aHblL Tayra Tikeneil 6arbITTalThiH 30p KyLIKe e. YIKeH AepeKkTep, B3 KeseriHge, >Kala
T3CiIMeH BLAeNyre apHanraH wypangapabl WadkeT eTedi. byn maccTTik gepekTepai Tangan maubi3gbl
[epekTepai Taby >KoHe coraH Caikec wewiMmaep wabbingay KBn Ky >Xymcaygbl Tanan eTegi. depekTepaiy
YNKEH KBMEMi >K3HE OHbIL LIypbIbIMAbIL, €MeC cumaThbl OHbl 6acliapy MeH BUAeyre LWAThICTbl >Kaua
macenenepai Tyabipaabl. Byn mallana ynkeH gepekTepai Tanjayibly el TaHbIMan LypangapbiHbil, KeR6ipiH
wamTungbl. Hadoop, Spark >kaHe Pig gepekTepdi Tangayra 6arbiTTanraH Herisri >XaHe 3amaHaym Liypan
60nbIN Tabblnagbl, COHAbILTAH 6yn Wypangap canbicTbipy YWiH Taugangsl. Ocbl 3epTTeYAiL HITUXKenepi
3pTYpni TanceipManapAbiy, 3pLWwibl Wypangapabl Tanan eTeTiHiH KBpceTe/di >KaHe Gapnbirbl 6ipaei 6ip
nnaTgopmaMeH Lewinveisi. YIkeHaepeKTepmeH baiinaHbICTbl Ke3KenreHMmacenenepbargapnamatiblinapibiy,
cananbl XK3He >KbINgamM >XXYMbIC >Kacaynapbl YILiH TWCTI Wypangbl naiganaHynapbiH WadKeT eTeji.

TYMH(di cB3gep: ynkeH fepekTep, Hadoop, Spark, Pig, ynkeH gepekTepai Tanjay wypanjapbiH canbiCThbIpy

97

BECTHUK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, Ne4 (51), 2019

CPABHEHVE AHATTMTUYECKUNX MHCTPYMEHTOB ANA 6OAbWNX JAHHBIX C
NCIMOJ1Ib3BOBAHVMEM HABOPA TEKCTA TTECEH

AHHOTaumMa: OrpoMHOE XpaHuaulie pasmepamy B neTabaiThl AaHHbIX FeHepUpPYeTCA KadKAbli AeHb U3
COBPEMEHHbIX MH(OPMALMOHHbIX CUCTEM U LUGPOBLIX TEXHONOMMA, TaKWX Kak aHaan3 HayYHbIX AaHHbIX,
aHann3 AaHHbIX B COLMaNbHbIX CETHAX, CUCTEMbl PEKOMEHAAUMA 1 aHannM3 >KypHanoB Beb-cny>k6. [aHHble
06nafalT OrpOMHON CUAOIR, YTOObLI HANPSIMYIO HaNPaBnATh HAC K 06HAPY>KEHWIO 3HaHWiA. Bonblune gaHHble,
B CBOI Ouepefb, TPebyT COBEPLUEHHO HOBOrO NOAX0AA U MHCTPYMEHTOB A5 MX 06paboTKU. AHaNU3 3TUX
MacCCHBHbIX AaHHbIX TpebyeT MHOro yCMAWiA Ha pasHblX YPOBHAX AN U3BNEYEHWUS 3HAHWA W fanbHeiLuero
MPUHAT KA peLeHnit. OrpoMHble 06BbEMbI JaHHbIX U UX HECTPYKTYPUPOBaHHbIN XapakTep NOPO>KAal0 T HOBbIE
npo6nemMbl 1 BOMPOCHI, CB3aHHbIE C UX yNpaBneHueM W 06paboTKoi. B 3Toi cTaTbe paccmMaTpuBalTCA
HEKOTOPbIE M3 CaMbIX NOMYNAPHbLIX MHCTPYMEHTOB AN aHanusa 6onblwnx gaHHbix - Hadoop, Spark u Pig
ABMAIOTCSA OCHOBHLIMU 1 COBPEMEHHBIMW MHCTPYMEHTaMU Ans aHanm3a 60MbWINX JaHHbIX, B CBA3M C YeM 3TW
WHCTPYMEHTbI OblIM BbIOpaHbl 418 CpaBHEHUs. PesyabTaTbl 3TOr0 UCCNeA0BaHUA MOKasblBalT, 4YTO AN
pa3nnyHbIX 3a4a4 TPebylTCApasHble MHCTPYMEHTbI U HET egMHOropeLleHns. JTtobble npobnembl ¢ 60/1bLIMMK
JOaHHBIMU HY>KAlTCA B TOM, YTO0Obl pa3paboTumMKM WCMOMb30BaNM COOTBETCTBYHOLWMA UHCTPYMEHT,

YyTOObI cAenaTh PpaboTy 6onee KayeCTBEHHON U GbICTPOIA.

Kntouesble cnosa: 6onbwve gaHHble, Hadoop, Spark, Pig, cpaBHeHne nnaTdopm and 600bLLNX AaHHbIX

1. Introduction

Crucial changes in traditional data analyz-
ing platforms are being made by Big data in
information era. 4V’s of Big data (Volume, Ve-
locity, Variety, Variability) is increased to 5V:
value is added. Since we have general knowl-
edge about big data’s other characteristics, Val-
ue is the main point which we need to consider
when any kind of data is analyzed. Thus, to play
out any sort of analysis on such voluminous and
complex information, scaling up the hardware
stages winds up fast approaching and picking the
correct tool turns into a significant choice if the
client’s prerequisites should be fulfilled in a sen-
sible measure of time. There are a few major big
data analysing platforms accessible with various
attributes and picking the correct tool requires
an inside and out learning about the abilities of
each [1]. Choosing the right platform that can
handle expanding amount of data and analyse
them by satisfying client’s demand is the main
aim of this paper. In this paper we will focus on
Apache Hadoop, Pig and Spark; will be provided
some characteristics on each tool, highlighting
advantages and disadvantages of each, followed
by practical experiments with music dataset by
comparing mentioned tools on:

- lterative task support;

- Computing time, how fast results will be
computed;

98

- Data access by 1/O performance;

- Real time processing and fault tolerance

Song lyrics dataset for experiment will be
used from [2], which consists from 57650 items
ofsong and were gained from LyricsFreak. Data-
set consists from only 4 columns: artist name,
song name, URL reference as a link and unmod-
ified lyrics of this song.

In this paper, we will compare mentioned
tools by analysing results for each of the fol-
lowing tasks that will be done on Hadoop Ma-
preduce, Pig and Spark:

1. Finding the most popular word for each
artist; (multiple transformations)

2. Finding similar songs, consists of 2 sub-
tasks:

1) Shingling documents by
words (iteration)

2) Reducing with Jaccard Similarity (com-

length of 5

putation)

2. Literature Review

A. Apache Hadoop

Apache Hadoop is an open-source software
framework for parallel processing huge sets of
data on large clusters (consisting from thousands
of nodes) , built from reliable commodity hard-
ware, by using simple programming model called
MapReduce. Hadoop divides files into indepen-

PUNSNKO-MATEMATUYHECKNME N TEXHUNYECKWME HAYKWN

dent blocks, then distributes them to nodes, where
they are summarized separately. Data is stored in
HDFS, which is a distributed file system, where
all files are neighboring set of bytes. Hadoop first
implements map operations to each block of data
from HDFS by sorting and redistributing results
depending on key values, then second part (re-
ducer) consists from collecting data items with
same keys. Reducers can aggregate the interme-
diate results from mapper to generate final result
and write them again to HDFS. Thousands of map
and reduce tasks run across different nodes in each
cluster parallelly. YARN is one more component
of Hadoop which is responsible for coordinating
applications runtime. Survey about parallel data
processing with MapReduce is accessible in [3].

There are diverse coding approaches be-
sides Hadoop MapReduce, like Pig script and
Hive interface, but both works on top of Hadoop
Mapreduce.

B. Apache Pig

Apache Pig is a platform that was built on
top of MapReduce by Yahoo Company, provid-
ing developers better control on MapReduce. As
java has jvm, pig uses pig runtime as an execu-
tion environment. Fact says that 10 lines of code
in pig will do the same as MapReduce with 200
lines java code. However, compiler converts pig
latin into MapReduce, creating consecutive set
of jobs. Developers can write functions in Py-
thon, Java, JavaScript and Ruby, also in Groovy
to extend Pig latin code, if needed. Storing, ma-
nipulating and executing data is allowed in Pig.

C. Apache Spark

Apaches product, which also parallelly pro-
cess data across clusters, was invented in 2012 at
the AMPLab. Spark uses system memory, which
makes it a way faster than Hadoop MapReduce,
which reads and writes data to HDFS. Process
of writing data to RAM is completed by using
RDD (Resilient Distributed dataset). Spark Core
plays significant role in coordinating scheduling,
applying abstraction of RDD, optimizing and
connecting Spark to proper file system. Howev-
er, data transfer (1/0) between nodes still creates
some network congestion.

D. Apache Hive

Hive was created by Facebook for program-
mers who are fluent with SQL to work in Hadoop
environment. It can process structured data in ta-
bles. Hive uses HiveQL, which is SQL-like que-
ry language, that supports basic operations like
select, join, project, aggregate and union all. Us-
ers can load data from external sources and insert
data operators (DML), respectively.

According to paper by Dr. Urmila R. Pol,
author explains working principles of Hadoop
Mapreduce, Pig and Hive by comparing them be-
tween each other. Author mentions that writing
Mapreduce code with Javawould require writing
several lines of code, and would take more time
if user is not good familiar with Java. In this case,
using another approach to write Mapreduce tasks
like by writing them in Pig Latin or Hive SQL
language would reduce development and testing
time overall. As stated in the paper, even if Pig
or Hive do not run as fast as MapReduce’s native
Java, using them boosted data analysts produc-
tivity. It is because writing Pig script takes only
5 percent of that time which is needed to write in
Java, however decreasing runtime performance.
Thus, Hive and Pig are considered performance
boosting tools for data analysts, according to this
paper [4]. Writing join functionality in java will
be very complicated while using Hive SQL with
several levels of nested FROM clauses.

Some cases where pure Hadoop MapReduce
is preferable than Pig or Hive is discussed in ar-
ticle [5], like:

* job where complicated form of distribut-
ed cache is required;

e Job where optimization is needed in map-
per or reducer level ;

e Job where is needed some form of parti-
tioning;

e Performance of Hadoop is much better
than other two, even if they enhancing their func-
tionality kit and etc.

Other technologies (Hadoop, Spark, Graph-
ics Processing Unit (GPU) , High Performance
Computing Clusters (HPC), Multicore proces-
sors and Field Programmable

Gate Arrays (FPGA)) that can handle big

99

BECTHUK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, Ne4 (51), 2019

data is reviewed in paper [6], where authors first
explained vertical and horizontal scaling, types of
platforms/technologies along with their strength
and weaknesses. Practical applications with gen-
eral idea when scaling up and scaling out should
be preferred is given along with explanation of
improving systems by selecting appropriate plat-
form. Authors claim that cases where expandable
platform, which can support huge amount of data,
Hadoop MapReduce and Spark is perfect, espe-
cially if there is no need for real-time responses;
whereas cases where queries are processed in re-
al-time - vertical scaling is needed. We can add
that if application needs to be processed not in
real-time with high velocity, Spark is the best op-
tion; but if volume matters, Hadoop can handle
far more than that of Spark, since it stores data in
disk memory. Which of them should be used in
exact situation is given in [7], highlighting each’s
dignity.

Performance comparison between Hadoop
and Spark was observed in article [8], which

states that Spark runs in-memory 100 times faster
and 10 times on disk; for 100TB of data Spark has
been recorded 3 times quicker than MapReduce;
also for k-means and Naive Bayes algorithms
has been found to be faster. Advantage of Spark
by its cyclic connection is also mentioned along
with prices of each tool: Hadoop is less costly
than Spark. In terms of security and fault toler-
ance, Hadoop is recommended to be more secure
and reliable.

3. Proposed Method

Comparing tools should be built on platform
dependent and algorithm dependent, giving gen-
eral view about strengths and weaknesses of big
data systems based on tendency of each. How-
ever, it also should be counted that application
based comparing strongly depends on problem
that needs to be solved.

Table below represents theoretical compar-
ison of each big data analyzing tool by its char-
acteristics.

Data access/

Abstraction Development Code data fault real-time iterative task
Language . 1/0 .
level effort efficiency tolerance processing support
performance

MapReduce Compiled Low Challenging High External 5 2 3
memory

Spark Compiled Medium Hard High In-memory 5 5 5
cache
- I . External

Pig scripting High Fasy Less memory 5 2 3

Hive SQL-like High Easier than Less External 5 2 3
Puy memory

Table 1 Theoretical comparison of Big data tools

Table 1 shows more qualitative relation be-
tween tools than quantitative, comparing charac-
teristics like 1/O performance for iterative pro-
cessing, real-timeprocessing, language, abstrac-
tion level, code efficiency and development effort.
MapReduce, Pig and Hive are not basically used
for real-time processing tasks, because they are
slow in transferring data Input/output between
nodes. Therefore they receive only 2 out of 5.

All of the frameworks can be scaled up to
tens of thousands of nodes and fault tolerant.

MapReduce, Pig and Hive are not designed
for iterative processing, because data has to be

100

written onto disk after each iteration, which cre-
ates a huge bottleneck while disk 1/0. Howev-
er MapReduce has developed tools and frame-
works, one of it is improved by Hadoop devel-
opment, which is for improving iterative tasks,
therefore they received 3 out of 5. Decision be-
tween Hadoop and Spark lays between whether
user needs a off-the-shelfinstruments or he needs
optimization of cluster performance.

Data has been processed in Amazon EMR
cloud cluster, which provides managed frame-
works like Hadoop, Spark, Presto and HBase

PUN3NKO-MATEMATUNYECKUE NN TEXHUNYECKNME HAYKIN

with Jupiter based notebook. Amazon EMR is
used due to its reliability, easiness, flexibility and
elasticity, also to set same conditions for com-
pared platforms. Instances that where applied for
master- m4.large, has 4 cores with 16 GB RAM
, and for workers-c4.xlarge with 4 cores and 8
GB RAM each. Furthermore no tuning was done
on MapReduce, Spark and Pig, so that they have
default settings. However, since Spark is not us-
ing all available cores that were given, it needs
to be set manually to use them; therefore some
additional improvements on clusters were done.

REGISTER bigdata.jar;

all_data = LOAD 'songdata_tabbed.csv' USING PigStorage('\t') as (singer:cbararray,

tokenized = FOREACH all_data GENERATE singer,
flat = foreach tokenized generate singer, flatten (tokens);
grp = group flat by ($0, $1);

cnt = foreach grp generate flatten(group) as (singer, word),

g = group cnt by singer;

result = foreach g {
prods = order cnt by $2 desc;
top_prods = lim it prods 1;
generate flatten(top_prods);

¥

--sorted = order result by $0;

dump result;

Pic.1 Popular word among singers with Pig

As second task checking lyrics for plagia-
rism was chosen. That is necessity is to find pairs
of song that have similar lyrics. Main concern of
this problem is how to compare two documents
efficiently, as direct comparison is not an option,
due to possible small changes in the song. There
are some approaches to solve this issue, such
as MinHash[11], SimHash[12], Word2Vec[13].
However purpose of this research is to compare
tools and implementation of such advanced al-
gorithms might interfere with results. This is the
reason why simple approach with Jaccard Simi-
larity was chosen.

Jaccard similarity [10] is equal to division of
the size of the intersection of A and B sets to the
size of their union:

\An B\

1A\ +\B\ - 1A nB\

Before starting comparison mentioned tools,
lyric dataset was preprocessed by:

- deleting new lines in each row of song, so
that each song takes one row;

- All stop words and common words were
deleted, like chorus, bridge, etc.

First task is to find the most repeated (be-
loved) word for each singer, was done by simple
word count example in Picture 1 with Pig Latin
language:

song:chararray, lyrics:cbararray)

kz.sdu.bdt.pig.Tokenizer(lyrics) as tokens;

COUNT($1);

where elements ofthe set are words in songs.

Despite that Jaccard similarity works per-
fect for most of the time, this approach cannot be
used alone while comparing text, because it does
not take into consideration position of words in
songs. For example: sentences “Alex loves Beth”
and “Beth loves Alex” are considered exactly
similar by plain Jaccard similarity algorithm, but
are not. To address this issue Shingling of lyr-
ics is used[9]. Song is divided in shingles of 5
consecutive words. However it is easy to see that
final size of shingled song is much bigger, so to
slightly reduce memory usage all sentences are
hashed to some Integer. For purposes of this re-
search simple java String.hashCode() is used.

Thereby second task is spitted into two dif-
ferent subtasks: Shingling of lyrics and finding
Jaccard similarity of song regarding all other
songs in dataset.

101

BECTHUK KA3SAXCTAHCKO-BPUTAHCKOIO TEXHUYECKOIO YHUBEPCUTETA, Ne4 (51), 2019

Shingling songs

Algorithm for shingling is simple:

First, lyrics converted to lowercase. Then
all non-letter characters are removed. Third,

REGISTER bigdata.jar;

all data = LOAD 'songdata_tabbed.csv' USING PxgStorage(’'\t') as
min hashed — FOREACH all data GENERATE CONCAT(singer, ’|*, song),

dump min hashed;

Pic. 2 Hashing shingles

Jaccard similarity

To calculate jaccard similarity, Cartesian
product was used for all hashed shingles injoin-
er, and only those lyrics that got jaccard similar-
ity higher than 0.7 have been taken into account

REGISTER bigdata.jar;

all_data = LOAD “song_hashes™ USING PigStorage("™\t*) as (song:chararray,

(singer:chararrayf song:chararray,

sub-sentences of 5 words are created. Finally,
these sentences are hashed and outputted.

Code below is in Pig script, which allows
hashing shingles despite its amount.

lyrics:chararray)
kz.sdu.bdt.pig.MinHasher(lyrics) as hashes;

as the most similar pairs. Pig and Spark has pre-
defined function for finding Cartesian product,
whereas in MapReduce it needs to be imple-
mented from scratch.

hashes:chararray);

all_data2 = FOREACH all_data GENERATE song as song2, hashes as hashes2;

crossed = CROSS all_data, all_data2;
jac_sim = FOREACH crossed GENERATE song, song2,

kz.sdu.bdt.pig.JaccardSimilarity(hashes,

hashes2) as jaccard_similarity:double;

result = FILTER jac_sim BY song != song2 AND jaccard_similarity > 0.7;

dump result;

Pic. 3 Jaccard similarities with Pig

4. Experimental results

A. Popular word among singers with Pig

Fig. 1 shows time distribution in seconds.
As it can be seen launching distributed jobs on
small dataset provides no advantages over local
mode. This might happen due to overhead of run-
ning task on distributed systems. Very likely that
situation changes drastically on huge datasets.

Table 2 shows the sample of the result of
running first task, which lists the most repeated
word in all songs for every singer. There are to-
tally 643 singers in the dataset.

n Sync love(298)
ABBA love(189)
Ace Of Base love(112)
Adam Sandler like(74)

Adele love(161)
Aerosmith yeah(401)
Air Supply love(514)
Aiza Seguerra love(60)

Alabama love(367)
Alan Parsons Project know(78)

Table 2. Result of “Popular word among singer”
task

102

Fig. 1 Timefor ‘Popular word among singer” task

B. Shingling songs

Figure 2 shows that due to overhead of run-
ningjobs on distributed systems all tools perform
better on local mode. However it can be seen that
with increase of worker cores processing time
decreases for all tools except Pig.

W hile previous two tasks took seconds for cal-
culation, finding Jaccard similarity takes hours be-
cause each job needs to compare each hashed shin-
gled sets with others, by applying [10] formula.

PUNBNKO-MATEMATUHECKUE NN TEXHNUECKWME HAYKIN

Fig. 2 Timefor Shingling task
C. Jaccard similarity

It means that this task requires a lot of calcu-
lations. This is where power of distributed systems
shines. Fig. 3 shows that distributed systems per-
form more that 2 times better for MapReduce and
Spark. More processing power added, less time
required to process task. First surprise here is that
MapReduce performs better on 10 workers than
Spark, but Spark outperforms MapReduce on less-
er workers. Reason might be that Spark limits pro-
cessing power to some percent of available cores,
whereas MapReduce takes all flee processors.

Second interesting outcome is that Pig takes
same time to process the task regardless cluster
size. Problem is in default configuration where
Pig launches only two reducers to complete job.
This nullifies all advantages of distributed pro-
cessing. Therefore Pig requires additional con-
figuration to run smoothly.

Jaccard Similiarity

12:00:00 12:00:00 12:00:00

Local mode 5workers(20 cores) 10 workers(40 cores)

Fig. 3 Timefor Jaccard Similarity

Sample of results of finding plagiarism be-
tween singers is given in Table 4.

ABBA -We Wish You A
Merry Christmas

Kenny Chesney - Pretty
Paper

James Taylor - | Didn’t
Know What Time It Was
Robbie Williams - Do
Nothing Till You Hear
From Me

Rihanna - Golden Girl
Lady Gaga - Nature Boy
Lady Gaga - White
Christmas

Lady Gaga - Winter
Wonderland

Johnny Cash - Cindy
Avril Lavigne - Imagine
Backstreet Boys -
Cinderella

James Taylor - Santa

Harry Belafonte - We Wish You A
Merry Christmas

Randy Travis - Pretty Paper

Ella Fitzgerald - | Didn’t Know
What Time It Was

Ella Fitzgerald - Do Nothing’ Till
You Hear From Me

Chris Brown - Golden Girl
Natalie Cole - Nature Boy

Vince Gill - White Christmas

Faith Hill - Winter Wonderland

Nick Cave - Cindy
The Beatles - Imagine

Lionel Richie - Cinderella

Harry Connick, Jr. - Santa Claus Is

Claus Is Coming To Town Coming To Town
Rihanna - We Found Love Coldplay - We Found Love

Table 4. Result of running Jaccard similarity

task

All three tasks with amount of workers with

time consumed are written in table below. Green
labels indicate the fastest tool for each task. So
in first’s simple word count task Spark calculates
faster than other two. In constructing hashes from
shingles Spark works faster while using 5-10 cores
due to its iterative processing ability. In the last task
where computing is needed Spark performed better
in local mode and with 20 processing cores, where-
as with 40 cores Hadoop MapReduce processed
data 2 times faster than Spark. Red labels indicate
the worst tool in each situation.

Popularword Min Jaccard
among singer hash similarity
Local mode
MapReduce 20s 7s 7.7h
Pig 38s 18s 12h
Spark 14s 9s 3.2h
5 workers (20 cores)
MapReduce 84s 52s 1.8h
Pig 82s 36s 12h
Spark 42s 32s 1.6h
10 workers (40 cores)
MapReduce 61s 42s 28m
Pig 81s 36s 12h
Spark 24s 20s 51m

Table 3. Comparison by time taken for
processing on each tool

103

BECTHUK KA3AXCTAHCKO-BPUTAHCKOIO TEXHNYECKOIO YHUBEPCUTETA, Ne4 (51), 2019

Table 4 shows code amount for each men-
tioned tool for every task. MapReduce takes a
lot effort from data analyzer, it requires writing
more than twice of code of Spark and around 18
times more lines of code than it could be written
in Pig for current task. This could be because Pig
is scripting language, and needs minimum num-
ber of code lines.

Code amount Popular word Min hash Jaccard
among singer similarity

MapReduce 148 88 128

Pig 16 5 7

Spark 56 34 43

Table 4. Amount of code needed for each tool

5. Conclusion and future works

Pig looks as total outsider on these tasks.
The only advantage of Pig over other tool is ab-
straction. Pig latin very concise language and
needs a few lines of code for all tasks. Pig can

be considered only in cases when there is no pro-
grammer available.

Spark is considered best all-around tool to
process big data due to its in-memory caching
capabilities. However results of research show
that in some cases MapReduce can outperform
Spark. Spark provides greater abstraction level
than MapReduce, thus requires much less code
to complete tasks. Even though

Spark showed worse results in some cases,
for most tasks it performed the best. Adding here
abstraction level and amount of languages avail-
able for working with Spark, makes Spark most
preferable tool for processing such tasks out of
compared ones.

However, all
tools without any tuning. Adjusting launching

experiments were done on

parameters can radically change whole picture.
Optimizing settings for tools and comparing
them for performance with new conditions could
be the next future work.

REFERENCES

1. Agneeswaran VS, Tonpay P, Tiwary J (2013) Paradigms for realizing machine learning algo-
rithms. Big Data 1(4):207-214

2. https://www.kaggle.com/mousehead/songlyrics

3. LeeK-H, LeeY-J, Choi H, Chung YD, Moon B (2012) Parallel data processing with MapReduce:
a survey. ACM SIGMOD Record 40(4):11-20

4. Big Data Analysis: Comparison ofHadoop MapReduce, Pig and Hive. Available from: https://
www.researchgate.net/publication/308074477_Big_Data_Analysis_Comparision_of_Hadoop_
MapReduce_Pig_and_Hive

5. MapReduce vs. Pig vs. Hive - Comparison between the key tools of Hadoop, Available article
from: https://www.dezyre.com/article/mapreduce-vs-pig-vs-hive/163

6. Dilpreet Singh and Chandan K. Reddy, “A Survey on Platforms for Big Data Analytics”, Journal
ofBig Data, 1:1, 8, 2014.

7. https:/lwww.scnsoft.com/blog/spark-vs-hadoop-mapreduce

8. https://dzone.com/articles/hadoop-vs-spark-a-head-to-head-comparison

9. https://www.todaysoftmag.com/artide/1553/finding-similar-entities-in-bigdata-models

10. https://neodj.com/docs/graph-algorithms/current/algorithms/similarity-jaccard/

11. Szmit R. (2013) Locality Sensitive Hashing for Similarity Search Using MapReduce on Large
Scale Data. In: Klopotek M.A., Koronacki J., Marciniak M., Mykowiecka A., Wierzchon S.T.
(eds) Language Processing and Intelligent Information Systems. 11S 2013. Lecture Notes in Com-
puter Science, vol 7912. Springer, Berlin, Heidelberg

12. C. Sadowski and G. Levin. Simhash: Hash-based Similarity Detection. Technical report, Techni-
cal report, Google, 2007.

13.

104

Tom Kenter , Maarten de Rijke, Short Text Similarity with Word Embeddings, Proceedings ofthe
24th ACM International on Conference on Information and Knowledge Management, October
18-23, 2015, Melbourne, Australia

https://www.kaggle.com/mousehead/songlyrics
http://www.researchgate.net/publication/308074477_Big_Data_Analysis_Comparision_of_Hadoop_
https://www.dezyre.com/article/mapreduce-vs-pig-vs-hive/163
https://www.scnsoft.com/blog/spark-vs-hadoop-mapreduce
https://dzone.com/articles/hadoop-vs-spark-a-head-to-head-comparison
https://www.todaysoftmag.com/artide/1553/finding-similar-entities-in-bigdata-models
https://neo4j.com/docs/graph-algorithms/current/algorithms/similarity-jaccard/

