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Abstract

This paper presents a numerical method for solving the convection-diffusion equation with a fractional-order
Caputo derivative to model air pollution in urban environments. The developed finite element scheme accounts
for memory effects, offering a more accurate representation of pollutant transport compared to classical models.
Stability and convergence of the method are theoretically proven and supported by numerical experiments. The model
effectively identifies pollutant accumulation zones and can forecast air quality under various weather conditions.
The results have practical value for improving environmental monitoring systems and planning measures to reduce
pollution levels.

Keywords: convection-diffusion equation, fractional-order derivatives, pollutant dispersion, finite element
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Introduction

The quality of atmospheric air in urban environments remains one of the most pressing issues
of modern times, as air pollution has a significant impact on public health and ecological balance
[1-3]. Mathematical modeling of pollutant transport processes is an important tool for predicting
the distribution of harmful substances and taking prompt measures to improve the environmental
situation. Traditional models based on classical convection-diffusion equations are widely used to
describe pollution dynamics [4, 5]. However, as research shows, such models are not always able
to adequately account for nonlocal effects and long-memory processes characteristic of turbulent
phenomena [6, 7].

To overcome these limitations, models incorporating fractional derivatives, particularly the
Caputo derivative, have been increasingly used in recent years, as they allow for the consideration of
anomalous diffusion processes and memory effects in the medium [8—10]. Several studies demonstrate
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that numerical methods based on fractional calculus provide a more accurate description of pollutant
transport dynamics in complex environments [11-13]. Various numerical methods are employed to
solve equations with fractional derivatives [ 14—16]. However, as indicated by the literature review, the
finite element method demonstrates high efficiency and is widely used in scientific and engineering
studies [17-19].

Unlike classical models based on integer-order derivatives, the proposed method using fractional-
order Caputo derivatives accounts for memory effects and anomalous diffusion, making it particularly
relevant for modeling air pollution under complex and unstable flow conditions. Thus, compared
to alternative approaches, the fractional-order model provides a more realistic representation of
pollutant transport dynamics in the atmosphere.

This study proposes a finite element method for solving the convection-diffusion equation with
fractional-order derivatives, which takes into account nonlocal memory effects of the medium. An
analysis of the stability and convergence of the developed scheme has been conducted, and the
results of numerical experiments confirm the expected convergence orders.

Thus, the findings of this study can be used to address the urgent challenge of developing efficient
methods for modeling the dispersion of pollutants in the atmosphere, which is of great importance for
environmental protection and public health.

Materials and Methods

Problem Formulation. Let us consider the following fractional differential convection-diffusion
equation.
Problem 1. In the domain @ = X [0, T], where 2 © R* with a boundary I consider the prob-
lem
.o +iu-Vop—kVi¢p=f, x€e, t>0,
¢(x,t) =0, x €T, t =0,
¢(x,0) =0, x €1,

where # is the wind vector, k = 0 is the atmospheric turbulence coefficient and the fractional-order
derivative in the sense of Caputo is defined as follows:

88,4, 1) L ["2eG0) € (0,1)
0,t¢ " _r(l—ﬂf) 0 [:f—.g')ﬂ’ Il o ] .
Throughout the article, we will adhere to the following assumption:
(A1) Problem 1 has a unique solution with sufficient smoothness for the analysis to be carried
out.
Let us define the weak formulation of Problem 1.

Problem 2. Find ¢ : (0,T] — Hg (1), such that for any v € HE(2):

(05.9,v) + a(@, ¢,v) + k(V,7v) = (f, v), D
where @ € (0,1), and
1
a@¢.v) =3 | 1@ 74y~ @- P)glax.
1
Semi-Discrete Formulation. We divide the time interval [0, T] by points t, = nt, where T > 0,
andn = 0,1,...,N, such that Nt = T. Let " denote the solution of Problem 2 at time t = tn.

To define the semi-discrete formulation of Problem 1, we use the following approximation
formula for the Caputo fractional derivative.
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Lemma 1. The discrete analogue A%d™ of the Caputo fractional derivative 85®(t,) of order
0 < a < 1 can be expressed as [20]

n

a3gr = > 89 (¢ - ¢*), @
where ) =
5 — —r(;— Sl =5+ 1)1 — (=)

For the error term Tﬂ('ﬂ = 0§, ¢(t,) — A ¢ (t,,), the following estimate holds:

5—a
(a) 2 Z—a
T, = —— max |0; (L) [T
| = g g dmax 1089 @)
We now present some elementary properties of the coefficients “n.s .

5(0’]

Lemma 2. The coefficients “n.s , presented in Lemma 1, satisfy the following properties [18]:

a) Positivity: 5;&“3 >0,s=12,...,n;
b) Monotonicity: STE“S] <89 s=12,..n-1;

( iﬂLs+1’( )
¢) Recursive Relation: 8¢ = Gny.c 1:
. Cyn @ _ nm”
d) Summation Property: &s=1 %.s = 75 .

Let (--) and lIIl denote the dot product and norm in I* (2) for brevity. Let us define the semi-
discrete formulation of Problem 1:

Problem 3. Let the solutions $* € H3(2) be known for k = 0,1,...,n— 1. Find ¢™ € H}(2)
such that for all v € H3(2):

(459" ,v) + al, ", v) + k(V§™, ) = (", ), )
where @ € (0,1),
Fully Discrete Formulation. Let X, be a quasiuniform partition of {). Define the discrete space
Vi, € H}(Q). Introduce the projection operator ITy, : Hi (Q) — V,, satisfying
(V1,9 — ¢),Vs) = 0V € Hy (1), ¢r EVs.
The projection operator has the following properties:

¢ — 1@l + hll¢ — Pl o) = CREIPllazn) Vo € Hy () N H? (). (4)

We now define the following problem.
Problem 4. Let the solutions ¢f € Vj, beknown fork = 0,1,...,n — 1, inparticular, ¢p = IT,¢,.
Find @5, € Vj, satisfying the following identity for any v, € V; :

(ﬂg(ﬁiﬂ, T'?h) + a(ﬁ, ¢’E; vh) + k(';"'i‘;:; th) = I:fnl vh): (5)
where @ € (0,1).
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Results and Discussion

Stability of the Numerical Scheme. Let us proceed to investigate the stability of the method.
First, we will provide an auxiliarv lemém that will be necessary for the proof of the main theorem.
Lemma 3. For any function ¢ € L*(1) the following inequality holds [18]:

1
5¢7,¢™) = 0 — 07 — =5 119°I12,
1

n—1 2 n.,1
where @.,Eaj =221 5,2'15] llp™ II>.
Now, let us prove the main results of this section.
Theorem 1. The discrete scheme (5) is unconditionally stable with respect to the right-hand side,
and the following estimate holds:

n n
IGEI +2% ) 17 ey < €2 > lIF™I12,
m=1 m=1

1
where & € (0,1) and € = ;.

oL,

Proof. Choose Vi = @ in (5):

(4347, 1) +a (@ &7, 81) + K (VL T41) = (£, o). ©

Estimate each term in (6). Using Lemma 3, we obtain:

@ AT n i ':G']_ (a) _E (a) o2
427, o) = = (0 — 0, — 251 14°11). -

Further, it is obvious that a(i, ¢}, @5 ) = 0. The right-hand side is estimated as follows:

(F o) < ZIF I + 2V 22 - ()

Taking into account these estimates, we obtain from (6) that

k 1
0,7 = 05 + S IR < CIF™I + 58,7 I

2 n,1

Sum the last inequality over n from 1 to n and consider that 8§“j = 0 to obtain

() kt® N m || 2 @ N m]|2
0 + = X gL Iy < €% ) NI,
m=1 m=1

which yields the statement of the theorem.
Convergence of the Scheme. Let us proceed to investigate the convergence of the method.

Theorem 2. Let {ﬂf’}a}izo, where ¢}, € H3 (2) be the solution to Problem 4. Then, under the as-
sumption (A1) and for @ € (0,1), the following inequality holds for ¢}, € Hg (12):

et — @Rl +72 D IV(A(En) — ST lliziay < CT2(R! + 7779,

m=1
where C is a positive constant independent of mesh parameters.
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Proof. We introduce the decomposition:
(t) — OF = ($(t,) — Mo™) + (T,¢™ — ¢F) = Y™ + ™ )

where @™ is the projection error and & is the discretization error. Consider the difference of identi-
ties (3) and (5), take into account (9) and choose v, = {™ to obtain
(A3&™, &™) + a(id, ¢(t,), &™) — aid, @i, &™) + k(VE™,VET) =
— @a 1 n (ﬂ'j n
- [:ﬂ*:w Jf )+ (Tn Jf ) (10)
Estimate the terms in (10) as follows:
a(d, ¢(t,), &™) — a(id, ¢f, &™) < C"ﬁ"izmj "'?wﬂ"izm] +
+(e, + Ez)llvfn"izqﬂj + C"ﬁ"izmj ™ 117,

aL N Fn 2 n 2
[(AFy™, E)| < CﬂiﬁllatwuLm{ts_rts:bzmj) +&,4lVE "quﬂj-

Then it follows from (10) that

n
k
6 — 6{® + EZ IVE™ 172 <
m=1
n n
S C ) A I7Y™ gy +C D s 19717 +
m=1 m=1

n n
ac Z "Tmllz 1 Z h2I+2,
m=1 m=1

which yields the assertion of the theorem.

Computational Experiments. In this section, we present numerical experiments to verify the
theoretical estimate. To validate the theoretical convergence estimate established in Theorem 2, a
series of computational experiments were conducted using a model problem.

Example 1. Consider the equation:

p d¢ d¢ %¢ ¢
6‘0Jt¢=+ula+u25—k(¥+ayz)=f, t>0, (1)
where
207 (x = x*)(y —¥7)
,t) = -t (142002 =)+ (1 +2y)(x* —

with initial and boundary conditions:
¢y, t)=0, (y €Tl t>0 (12)
oy, t)=0, (xyE€En (13)

where @ € (0,1). The exact solution is (¢, t) = xy(1 —x)(1 — y)t?.

The goal of this computational experiment is to determine the actual order of convergence with
respect to the fractional derivative order @. Several combinations of fractional derivative orders from
the set {0.1,0.5,0.9} were considered in the experiment.
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To analyze the dependence of the error order on the spatial step, the time step was fixedas T = h,
while the spatial step h varied from h = i toh = ﬁ, decreasing by a factor of two at each stage.

The errors were evaluated using the L,-norm for the solution ¢. Table 1 presents the error values
for different fractional derivative orders @ and corresponding parameters h and 7. Figure 1 shows
the convergence plot of the finite element method in a log-log scale. The results exhibit a straight
line, indicating a clear algebraic convergence. The slope of the line corresponds to an empirical
convergence rate, consistent with the theoretical prediction for the method and problem considered.

Table 1 — L,-errors and convergence orders for Example 1 for cases &« = 0.1,& = 0.5 and @ = 0.9

a=0.1 a=0.5 a=09
L?-error Order L?-error Order L?-error Order

— 1.0297 - 1072 - 8.2755-1073 - 7.2457 - 1073 -

— 5.1843-1073 | 0.99 (= 1.05) | 3.6021-1073 | 1.20(= 1.25) | 2.7266-1073 1.41 (= 1.45

— 2.5922-1073 1.00 (= 1.05) | 1.5571-1073 1.21(=1.25) | 1.0190-1073 1.42 (= 1.45

— 1.2694 - 1073 1.03 (= 1.05) 6.5923 - 107* 1.24 (= 1.25) 3.7817 - 107* 1.43 (= 1.45

— | 6.1308-107* | 1.05(=1.05) | 2.7717-107* | 1.25(=1.25) | 1.3842-107* 1.45 (= 1.45

]D-?U .

10 25 |

L*-arror

10 A5

‘:DI?" ml's ml‘“
T

Figure 1 — Convergence plots for Example 1 for cases @ = 0.1,& = 0.5
anda = 0.9

As seen from Table 1, the convergence order strongly depends on the value of @. Higher values of
a = 0.9 yield the best accuracy and convergence order. Lower values of & = 0.1 result in a reduced

284



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH XABAPIIBICHI Ne 2(73) 2025

convergence order, confirming the sensitivity of the method to the fractional derivative order. Overall,
the experiment confirms the theoretical conclusions regarding the convergence of the method and
its dependence on &. The computational experiments verified the theoretical convergence estimates
established in Theorem 2. The results demonstrate that the method exhibits the expected convergence
rate for higher values of o o and a decrease in accuracy for lower fractional derivative orders.

Example 2. Let us consider a more realistic example. In this numerical test, the goal is to predict
the dynamics of the S0z in the atmosphere based on the proposed fractional differential model on the
example of the city of Ust-Kamenogorsk during one day, January 1, 2024.

c¢) Concentration field after 3 hours d) Concentration field after 4 hours

Figure 2 — Simulation results of S0, distribution for @ = 0.9
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Unlike Problem 1, the boundary conditions of the first kind are replaced by boundary conditions
of the second kind, and the right-hand side is selected as the sum of two sources. Computational
experiments were carried out for orders of fractional derivatives & € {0.5,0.6,...,0.9}. The modeling
results for the case of @ = 0.9 are shown in Figure 2.

The results show that SO, spreads more slowly compared to classical diffusion which is suitable
for modeling pollution in urban areas with obstacles and complex wind patterns. Therefore the order
& controls the degree of temporal memory: smaller values of @ correspond to stronger memory ef-
fects and subdiffusive behavior, leading to slower pollutant spread and prolonged atmospheric reten-
tion. This is consistent with observed pollutant dynamics in complex urban environments.

Moreover, the proposed scheme has proven itself to be stable for a wide range of time steps.

Conclusion

This study proposed a numerical solution of the convection-diffusion equation with fractional-
order derivatives for assessing air quality in urban environments. The developed model takes into
account the influence of linear sources of pollutants, transport processes, turbulent mixing, and
the memory effect modeled using the Caputo fractional derivative. This approach enabled a more
accurate description of the dynamics of pollutant dispersion in complex urban conditions.

The theoretical analysis of the stability and convergence of the proposed finite element scheme
confirmed its efficiency and reliability. Numerical experiments demonstrated a high degree of
agreement with theoretical results, validating the correctness of the chosen approach.

The developed model proved its applicability for forecasting atmospheric pollution under
various weather and infrastructural conditions. It effectively identifies pollutant accumulation zones
and helps in planning measures to reduce pollution levels. This makes the model a valuable tool for
environmental monitoring and for developing strategies to improve air quality in urban areas.

The obtained results can be used in future research for more complex modeling scenarios,
including the consideration of nonlinear pollutant sources, as well as integration with real-time
monitoring systems for air quality assessment. Further development of the model will enhance its
accuracy and broaden its application in environmental and engineering tasks.
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AYAHBIH JJACTAHYBIH BOJI’KAY YIIIH BOJIIHWEKTI PETTI
KOHBEKIUA-AU®DPY3UA TEHAEYIHIH CAHABIK HIEIIIMI

Anjarna
Byt Makanaia KanajblK OpTagarbl ayaHbIH JacTaHYbIH MOJCIbBICY YIIiH KamyTo MaFbIHACKIHAAFB! OOIIICKTI
PeTTi TYBIHABUTAPEI Oap KOHBEKIHS-Ir((y3us TEHICYIH MICITYIiH CAaHIBIK 9/1iCi YCHIHBIIABL. EcenTenren akbIpIibl
AIIEMEHTTEP CYII0ACHI )Ka bl 9CEPiH €CKePe OTHIPHII, JTACTAYIIbI 3aTTapAbIH TapaTyblH AJIipeK CHITaTTayFa MyMKIHIIIK
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Oepei. OiCTIH OPHBIKTHUIBIFBI MEH KUHAKTBUIBIFBI TEOPHUSITBIK TYPFBIIA IOJISIICHII, CAH/IBIK TOKIpHOeep apKbLIbl
pacranpl. ¥ ChIHBUIFAH MOJIEIb TYPIIl METEOPOJIOT USUIBIK, XKaF1aiyiap/ia aya canachln OoypKayFa MYMKIHAIK Oeperi.
3epTTey HOTHKeNepi SKOIOTHUIBIK MOHUTOPHHT JKYHEJIEpiH KETUIIIpyTe jKoHE ayaHbIH JIACTAHYBIH TOMEH/IETYTe
OaFbITTAJFaH [Iapaiapabl )KOCIapiayFa MPaKTHKAJIBIK YJIec Koca anajbl.

Tipek ce3mep: koHBekuuA-1uhGy3us TeHACY1, OOJIIEKTI PETTI TYBIHIBLIAP, JIACTAYIIIBI 3aTTAPIbIH Tapalysbl,
AKBIPJIBI DJICMCHTTEP 941C1, CAHJAbIK MOJCIbACY, ’)KUHAKTBUIBIK, OPHBIKTBIJIBIK
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r. Yerp-Kamenoropcek, Kazaxcran
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YUCJTEHHOE PEHIEHUE YPABHEHUSA KOHBEKIIUU-IUDPDY3IUHU
APOBHOTI'O HOPAAKA JJIA TIPOT'HO3A 3AT'PAZHEHUSA BO3YXA

AHHOTAIUA

B pabote mpencraBieH YMCICHHBIA METOJ PEIICHMS YPABHEHMS KOHBEKIUH-AU(QY3UH C TPOU3BOAHBIMHU
JIpoOHOTO Mopsiika B cMbIciie KaryTo Uit MoJenupoBaHus 3arpsi3HEHHUs! BO3yXa B TOPOACKOi cpene. PazpaboraH-
Has KOHEYHO-DJIEMEHTHAs CXeMa YUHUThIBaeT d(h(eKTsl mamsTH, odecreunBas 0oliee TOYHOE ONMCAHHE MepeHoca
3arpsi3HAIONIMX BEIIECTB 10 CPABHEHMIO C KIACCHYECKUMH MOACIAMU. TeopeTHueckn I0Ka3aHbl YCTOHYUBOCTh U
CXOOAUMOCTb METO/Ia, YTO MOATBEPKACHO YUCICHHBIMU SKCTICPUMCHTAMU. MOI[CJ'II) 3(1)(1)CKTI/IBHO ONpECaACIACT 30HbI
HaKOIUICHUsI 3arpsI3HEHHUI ¥ MO3BOJISIET MTPOTHO3MPOBATH KAUYECTBO BO3/yXa IPH Pa3IMYHBIX METEOyCIoBHsIX. Pe-
3yJIBTaThl HCCIICIOBAHMS UMEIOT MPAKTHYECKOE 3HAYEHHE JIJIsl COBEPIICHCTBOBAHHS CHCTEM 3KOJIOTHYECKOTO MOHH-
TOPUHTA U INIAHUPOBAHUS Mep 110 CHIKCHUIO 3arPSI3HCHHOCTH BO3yXa.

KuroueBble ci10Ba: ypaBHeHHE KOHBEKIHU-IU(D (Y3, TPOU3BOAHBIE IPOOHOTO IOPSIKA, PACIPOCTPaHEHHE
3arpA3HAIOMINX BEIICCTB, METOA KOHCYHBIX 3JIEMECHTOB, YUCJICHHOC MOJACIIUNPOBAHUEC, CXOANMOCTD, yCTOﬁ‘{HBOCTB.
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