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Abstract
The aim of this study is to analyze the spatial and temporal distribution of temperature and air pollutant 

concentration in the urban atmosphere of Almaty using numerical modeling techniques. A two-dimensional 
advection-diffusion model was developed to simulate the diurnal dynamics across a territory of approximately 80 
square kilometers. The model incorporates key physical processes such as wind-driven transport, turbulent diffusion, 
and localized emission sources that are typical of dense urban environments. Simulation results demonstrate a 
smoother spatial distribution of temperature, largely driven by solar radiation cycles, in contrast to highly localized 
peaks in pollutant concentrations associated with anthropogenic activities such as transportation and industry. 
These contrasting behaviors highlight the need for differentiated mitigation strategies. The findings of the study 
offer important insights for urban planning and the development of effective air quality management policies. The 
proposed model provides a practical tool for understanding environmental dynamics and evaluating the potential 
impact of pollution control measures in complex urban terrains.

Keywords: urban air pollution, temperature field, pollution concentration, mathematical modeling, advection-
diffusion model.

Introduction

Urban air pollution remains a critical environmental issue, particularly in rapidly developing 
cities such as Almaty, where complex topography and intense anthropogenic activity create 
unique challenges for air quality monitoring and modeling. To address this, a number of modeling 
approaches have been developed to predict the distribution of air pollutants and temperature in urban 
environments.

Machine learning and data-driven techniques have gained attention in recent years for air quality 
prediction. Ivanov et al. used random forest algorithms to model PM ₁₀  levels, demonstrating strong 
short-term accuracy, while Dzaferovic and Karaduzovic-Hadziabdic applied similar methods in 
localized urban regions [1–2]. However, these studies are often limited by the availability of high-
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quality input data and lack the ability to explicitly resolve spatial transport mechanisms, which are 
critical for urban-scale environmental assessments.

Deep learning models such as RNN-LSTM and hybrid CNN-LSTM architectures have also 
been applied to forecast AQI with improved temporal resolution [3, 10]. While effective in capturing 
time-series dynamics, these models depend heavily on historical sensor data and often fail to capture 
the spatial influence of topography, built environment, and prevailing wind flows – aspects that are 
crucial in cities like Almaty with complex terrain.

Several studies have highlighted the importance of meteorological factors, such as fog and low 
cloud cover, in altering pollutant dispersion. Zaurbekov et al. demonstrated that such conditions 
significantly increase near-surface pollution concentrations by limiting vertical mixing [4]. Zhang et 
al. further noted the role of solar radiation and humidity in triggering secondary pollutant formation 
[5]. These findings emphasize the need for models that incorporate detailed physical processes rather 
than relying solely on empirical correlations.

Physically based dispersion models have thus been developed to fill this gap. Tessarotto et al. 
and Zhou et al. presented numerical frameworks to simulate the advection and diffusion of pollutants 
across urban atmospheres [6–7]. However, these models often require extensive computational 
resources and high-resolution environmental input data. The current study builds upon this tradition 
but aims to optimize computational efficiency while retaining spatial fidelity.

Recent work has also emphasized the need for intelligent systems and data integration for air 
quality monitoring. Malhotra et al. and Saheer et al. proposed data-driven frameworks that combine 
real-time measurements with predictive algorithms [8–9]. Han et al. and Song and Han explored 
mobile sensing and dynamic estimation models, offering flexibility in spatial coverage but introducing 
concerns regarding consistency and calibration [10–11]. Our work complements these approaches by 
providing a stable simulation platform that can be enhanced with observational data for validation or 
real-time adjustments.

Efforts to enhance spatial resolution in urban pollution mapping have also used non-traditional 
sources. Suel et al. applied image-based estimation from street-level imagery, and Bravo et al. 
compared different exposure assessment methods, suggesting that simulation-based tools offer better 
regional coverage when direct observations are sparse [12–13]. This supports the use of physics-
based models in under-monitored areas such as Almaty.

The practical implementation of sensor networks for air quality has been evaluated in several 
studies. Cromar et al. and Zarrar & Dyo pointed out the importance of sensor placement and 
standardization for effective health research [14–15]. Our model may assist in optimizing such 
networks by identifying zones of elevated pollution risk.

In Kazakhstan, Naizabayeva et al. have developed intelligent environmental monitoring systems 
and smart traffic integration frameworks that reduce urban emissions through adaptive routing. 
The integration of such systems with simulation-based forecasts, as pursued in this work, could 
improve responsiveness to pollution events. Kolesnikova et al. and Naizabayeva & Zakirova also 
demonstrated the role of neural networks and pattern recognition in environmental prediction tasks, 
laying the foundation for hybrid frameworks that can enhance physical modeling [16–19].

Transport infrastructure and land use planning are closely tied to pollution distribution. Khrutba 
et al. and Rabosh et al. used system analysis and geoanalytics to evaluate environmental pressure 
along urban roadways [20, 21]. Their findings reinforce the value of spatial modeling to guide 
sustainable urban development and decarbonization strategies.

Considering these insights, this study aims to develop a numerical simulation model for 
analyzing the spatial and temporal dynamics of temperature and pollutant concentration in the urban 
atmosphere of Almaty. By focusing on a two-dimensional advection-diffusion framework tailored to 
the city’s geography, we provide a tool for interpreting pollution behavior, identifying high-risk zones, 
and informing policy decisions. The modeling domain covers an area of approximately 80 square 
kilometers with a horizontal grid resolution of 100 meters. Based on long-term meteorological and 
environmental observations, the baseline air temperature in the peripheral zones of Almaty is around 
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15 °C, increasing to approximately 20 °C in the city center. Similarly, pollutant concentrations range 
from a peripheral baseline of 20 mg/m³ to peak values near 60 mg/m³ in central urban areas. These 
spatial patterns reflect the influence of both natural and anthropogenic processes in the region.

The main objective of the work is to develop and implement a complex mathematical model 
for analyzing the spatial and temporal distribution of temperature and concentration of pollutants in 
the atmosphere of Almaty city considering specific geographical, climatic and urban features of the 
region. Scientific novelty of the work consists in the development of a complex model for Almaty, 
which takes into account the peculiarities of the mountainous relief and allows to simultaneously 
analyze temperature fields and distribution of pollutants considering daily dynamics and mountain-
valley circulation.

1 Materials and Methods

1.1 Mathematical model
A three-dimensional advection-diffusion model was applied to simulate the diurnal dynamics in 

a representative urban zone of Almaty. The model accounts for wind-driven transport, diffusion, and 
localized emissions typical of dense city environments.

The distribution of pollutant concentration and temperature in a three-dimensional domain is 
considered. The contaminant transport equation and the thermal equation are used to describe the 
process dynamics:

   ,   (1)

here  is pollutant concentration, , ,  are wind speed components along the axes , ,   
(  is wind speed),  is turbulent diffusion coefficient,  is source of pollution.

   ,   (2)

here  is air temperature,  is thermal diffusivity,  is heat source.

1.2  Problem Statement
For this study, the average values of environmental and meteorological data of Almaty city for 

the last 10 years were used [22].
Initial condition for pollution concentration

.
From the datasets, a baseline concentration level of 20 mg/m3 is observed at the periph-

ery, and a peak up to 60 mg/m3 is observed at the centre (around  km,  km), thus       
.

Initial condition for temperature

.
The base temperature is 15 °C around the perimeter and up to 20 °C in the centre, then 

.
To simplify the problem and to fit the data on the boundaries, we will use Dirichlet conditions:

,
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,
From the data at the boundary, the concentration is a base concentration of 20 mg/m3 and the 

temperature is 15 °C, so , .

1.3 Solution method
Equations (1)-(2) are solved by the finite difference method. The grid in space has a step , , 

 , and a time step . At each time step :
,

.
Based on the data from the datasets, we use the following numerical parameters for modelling 

from Table 1. The key numerical parameters used in the simulation, including grid resolution, 
boundary conditions, and diffusion coefficients, are summarized in Table 1. These values define the 
computational domain and the physical behavior of the simulated processes.

Table 1 – Modeling parameters

Parameter Value Dimension
1 2 3

Size of the calculated area by , 10 km

Size of the calculated area by , 8 km

Size of the calculated area by , 6 km

Number of grid nodes by , 101

Number of grid nodes by , 81

Number of grid nodes by , 61

Grid step by , 100 m

Grid step by , 100 m

Grid step by , m

Time interval  hours

Time step, 3 hours

Number of time nodes, 8

Initial concentration of pollutants, 20 mg/m3

Daily concentration amplitude, 10 mg/m3

Maximum concentration value, 60 mg/m3

Initial temperature, 15 °C

Daily temperature amplitude, 5 °C

Maximum temperature value, 5 °C

Impurity diffusion coefficient, 0.3 m2/s

Coefficient of thermal diffusivity of heat, 0.5 m2/s

Wind velocity, 0-5 m/s

Diffusion coefficient for concentration, 1.5

Propagation coefficient for temperature, 2.0

Coordinates of the centre of the region, (4, 5) (km, km)
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The chosen parameters ensure realistic representation of urban-scale physical processes. A grid 
resolution of 100 m provides sufficient spatial detail to capture local variations in temperature and 
pollutant concentration, especially in dense city zones. The selected time step (3 hours) balances 
computational efficiency with temporal resolution. The diffusion coefficients and boundary values 
are consistent with climatological data for Almaty, which enhances the physical relevance of the 
model. Overall, the parameter set establishes a stable numerical framework for simulating daily 
dynamics in an urban environment.

2 Results and Discussion

Figure 1 presents the three-dimensional distributions of pollutant concentration and temperature 
across the study area. These visualizations allow us to observe spatial peaks and gradients, highlighting 
the contrast between the smooth thermal field and the localized pollution zones. 

Figure 1 (a) shows the three-dimensional distribution of 20 mg/m3 pollutant concentration at the 
periphery, reaching a maximum of 60 mg/m3 in the centre of the area. The clearly defined pollution 
peak indicates the presence of a source or cluster of pollution sources in the centre of the area. This 
suggests that the central area of the city is subjected to more intense anthropogenic impacts. Figure 
1 (b) shows the 3D temperature distribution from 15 °C at the periphery to 20 °C at the centre of the 
area in the study area. The temperature peak is located at the centre of the coordinates (5 km, 4 km). 
The smooth temperature distribution indicates a relatively uniform thermal field. The thermal peak at 
the centre can be interpreted as the result of a local heat source or an accumulation of urban built-up 
areas. A sharper gradient is noticeable in the concentration change compared to the temperature field.

a b

Figure 1 – 3D distribution of a) pollutant concentration and b) temperature

The 3D plots clearly demonstrate the different behaviors of the two physical fields. Pollutant 
concentration forms a distinct localized peak in the city center, suggesting the influence of point or 
clustered sources such as traffic or industrial activity. In contrast, the temperature field varies smoothly 
and forms a dome-like distribution typical of urban heat islands. This supports the hypothesis that 
pollutant accumulation is driven more by localized emission sources, while temperature variation 
is influenced by broader radiative and thermal properties of the surface and built environment. The 
spatial correlation between high temperature and high pollution zones also suggests possible synergy 
between heat retention and pollutant trapping.
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To further analyze horizontal variations, Figure 2 shows the two-dimensional contour maps of 
pollutant concentration and temperature. These contours provide a clearer representation of how 
values change with distance from the urban center and demonstrate spatial symmetry or asymmetry 
in each field.

Figure 2 (a) shows the contour of pollutant concentration, where a sharper change in concentration 
with distance from the centre can be seen. The sharp change in concentration with distance from the 
centre indicates the significant role of traffic flows and dispersion processes in the urban environment.

From the temperature contour (see Fig. 2 (b)), a symmetrical distribution with a maximum at 
the centre is evident. The uniform distribution confirms that the thermal field in the area is stable 
and changes gradually, which may be due to the uniform environment or the weak influence of local 
thermal anomalies. The concentration contour shows a more localized distribution compared to the 
temperature.

a b

Figure 2 – 2D distribution of a) pollutant concentration and b) temperature

The contour maps offer a more nuanced view of horizontal distribution. The pollutant concentra-
tion shows a steep gradient, with a rapid decline from the center to the periphery, indicating limited 
dispersion and possibly stagnant airflow conditions. The symmetrical shape suggests a relatively 
uniform urban emission pattern, or terrain-driven retention. The temperature contours, while also 
centered, have smoother transitions, reflecting the influence of solar heating over larger surfaces 
rather than isolated sources. These differences reaffirm the need to treat temperature and pollution as 
coupled but independently driven phenomena in urban microclimate modeling.

The temperature field changes smoothly with a small change, whereas the concentration of pol-
lutants shows a sharp peak. This suggests that pollution sources have a localized but intense effect. 
The wind speed favors moderate transport of heat and pollutants. Nevertheless, the sharpness of the 
concentration peak indicates that the dispersion of pollutants is not strong enough to fully level out 
the local source. The area considered allows to correctly represent the urban zone, where the distribu-
tion of parameters has a central concentration of values, which is typical for cities with high building 
density and intensive automobile or industrial activity in the centre.

To assess the reliability of the numerical modeling, an error analysis of the numerical method 
was performed, and the sensitivity of the model to the main parameters was assessed. The numerical 
error in the finite-difference scheme used is due to the discretization in space and time. The adopted 
values of the step in space (100 m) and time (3 hours) were chosen taking into account stability and 
convergence. To assess the accuracy, a check was carried out with a refined grid: the step in space 
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was reduced to 50 m, and the time step was reduced to 1.5 hours. Changes in the maximum values 
of temperature and concentration were less than 3%, which indicates acceptable convergence of the 
solution.

Sensitivity analysis was carried out by varying the key parameters in the permissible ranges, 
where the turbulent diffusion coefficient is 0.1–1.5 m²/s, wind speed components changed by ± 20%, 
the thermal conductivity coefficient: from 0.2 to 1.0 m²/s. The results showed that concentration 
fields are sensitive to the diffusion coefficient and wind speed: maximum values could change up 
to 15% when varying the parameters. Temperature fields were less sensitive changes did not exceed 
5%. This emphasizes the importance of accurately assessing the parameters of pollutant transport 
when building predictive models.

The results revealed clear patterns in the distribution of temperature and pollutant concentrations. 
Temperature dynamics were primarily influenced by solar radiation and followed smooth spatial 
trends, whereas pollutant levels exhibited sharp localized peaks driven by emission sources. 
These differences underscore the need for targeted air quality interventions based on the dominant 
influencing factors.

These findings contribute to a better understanding of urban microclimate dynamics and can 
inform policymaking aimed at improving air quality in densely populated areas.

Thus, it can be concluded that in the considered model, temperature is generated by a more 
uniform distribution of heat fluxes, whereas pollution exhibits localized peaks, which requires the 
application of zonal measures to reduce it.

Conclusion

As a result of the study of spatial and temporal dynamics of temperature regime and concentration 
of pollutants in the atmosphere of Almaty city, the model showed that the baseline temperature in 
the periphery of the study area is 15°C, and in the central part (at the point  km,  km) the 
temperature reaches 20°C, which corresponds to the maximum recorded value. The daily temperature 
change is equal to 5°C.

The baseline pollution level was defined as 20 mg/m3 in the periphery, with peak values up to 
60 mg/m3 in the city centre. The sharp concentration gradient around the centre indicates an acute 
local impact of pollution sources.

The application of an advection-diffusion model with a turbulent diffusion coefficient of 10 m2/s 
for pollutants and a thermal diffusivity of 0.1 m2/s allowed the observed spatial and temporal 
variability of the parameters to be faithfully reproduced. The influence of the prevailing wind regime 
with components  m/s and  m/s was also taken into account, which allowed modelling 
the transport of both thermal and pollutant systems.

In contrast, the temperature field demonstrates a smoother spatial gradient, centered in the same 
region. This reflects the cumulative effect of solar heating, heat retention by urban surfaces, and 
reduced cooling at night–phenomena commonly referred to as the urban heat island effect [5, 7]. 
Our results reinforce the idea that pollutant accumulation and thermal behavior, although spatially 
correlated, are governed by distinct physical processes.

Importantly, our simulation agrees qualitatively with satellite observations and prior data-driven 
analyses of Almaty, which report elevated pollution and temperature values in the city core [16, 18]. 
Unlike deep learning models that often struggle with generalizability and spatial interpretability, 
our physics-based approach provides direct insights into field behavior under defined physical 
assumptions [3, 10].

The study demonstrates that urban temperature fields are predominantly influenced by solar 
radiation and exhibit smooth spatial gradients, whereas air pollution fields are characterized by sharp 
localized peaks resulting from anthropogenic sources. These contrasting mechanisms highlight the 
necessity of developing differentiated strategies for urban environmental management.
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In the context of Almaty, a city situated in a mountain basin with limited natural ventilation 
and frequent atmospheric stagnation, the insights from this model are particularly relevant. The 
identification of pollution accumulation zones provides urban planners and environmental agencies 
with a scientific basis for implementing targeted emission reduction policies. For example, the results 
can inform decisions on traffic flow optimization, zoning regulations, and the placement of green 
infrastructure to enhance air circulation.

Moreover, the model can support real-time monitoring systems by serving as a predictive 
layer integrated with sensor networks. Overall, the findings contribute not only to a theoretical 
understanding of urban microclimate dynamics, but also to the practical design of sustainable 
development strategies aimed at improving air quality and public health in Almaty.
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АЛМАТЫ ҚАЛАСЫНДАҒЫ ҚАЛА КЛИМАТЫН 
ЖӘНЕ АУА ЛАСТАНУЫН СИМУЛЯЦИЯЛАУ: 

САНДЫҚ МОДЕЛЬДЕУ ТӘСІЛІ

Аңдатпа
Бұл зерттеудің мақсаты – сандық модельдеу әдістерін қолдана отырып, Алматы қаласының атмос-

ферасындағы ауаны ластаушы заттардың концентрациясы мен температураның кеңістіктік және уақыттық 
таралуын талдау. Шамамен 80 шаршы километр аумақта тәуліктік динамиканы ұқсату үшін екі өлшемді 
адвекция-диффузия моделі әзірленді. Модель желмен басқарылатын көлік, турбулентті диффузия және 
тығыз қалалық орталарға тән локализацияланған эмиссия көздері сияқты негізгі физикалық процестерді 
қамтиды. Модельдеу нәтижелері көлік және өнеркәсіп сияқты антропогендік әрекеттермен байланысты лас-
таушы заттардың шоғырлануында жоғары локализацияланған шыңдар байқалатынын, ал температураның 
кеңістікте біркелкі таралуы негізінен күн радиациясының циклдарымен анықталатынын көрсетті. Бұл екі 
түрлі мінез-құлық сараланған жұмсарту стратегияларының қажеттілігін айқындайды. Зерттеу нәтижелері 
қала құрылысын жоспарлау және ауа сапасын басқарудың тиімді саясатын әзірлеу үшін маңызды түсініктер 
береді. Ұсынылған модель күрделі қалалық рельеф жағдайларында қоршаған ортаның динамикасын 
түсінуге және ластануды бақылау шараларының ықтимал әсерін бағалауға арналған практикалық құрал 
ретінде қызмет етеді. 

Тірек сөздер: қала ауасының ластануы, температуралық өріс, ластаушы заттардың концентрациясы, 
математикалық модельдеу, адвекциялық.
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МОДЕЛИРОВАНИЕ ГОРОДСКОГО КЛИМАТА 
И ЗАГРЯЗНЕНИЯ ВОЗДУХА В АЛМАТЫ: 

ЧИСЛЕННЫЙ ПОДХОД МОДЕЛИРОВАНИЯ

Аннотация
Целью данного исследования является анализ пространственного и временного распределения темпе-

ратуры и концентрации загрязняющих веществ в воздухе в городской атмосфере г. Алматы с использованием 
методов численного моделирования. Двумерная модель адвекции-диффузии была разработана для модели-
рования суточной динамики на территории площадью около 80 квадратных километров. Модель включает 
в себя ключевые физические процессы, такие как ветровой транспорт, турбулентная диффузия и локализо-
ванные источники выбросов, которые типичны для плотной городской среды. Результаты моделирования 
демонстрируют более плавное пространственное распределение температуры, в значительной степени об-
условленное циклами солнечной радиации, в отличие от высоко локализованных пиков концентраций за-
грязняющих веществ, связанных с антропогенной деятельностью, такой как транспорт и промышленность. 
Эти контрастные поведения подчеркивают необходимость дифференцированных стратегий смягчения по-
следствий. Результаты исследования предлагают важные идеи для городского планирования и разработки 
эффективной политики управления качеством воздуха. Предлагаемая модель представляет собой практиче-
ский инструмент для понимания динамики окружающей среды и оценки потенциального воздействия мер 
по контролю загрязнения на сложных городских территориях.

Ключевые слова: загрязнение городского воздуха, температурное поле, концентрация загрязнений, 
математическое моделирование, адвективно-диффузионная модель.
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