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SIMULATING URBAN CLIMATE AND AIR POLLUTION IN ALMATY:
ANUMERICAL MODELING APPROACH

Abstract

The aim of this study is to analyze the spatial and temporal distribution of temperature and air pollutant
concentration in the urban atmosphere of Almaty using numerical modeling techniques. A two-dimensional
advection-diffusion model was developed to simulate the diurnal dynamics across a territory of approximately 80
square kilometers. The model incorporates key physical processes such as wind-driven transport, turbulent diffusion,
and localized emission sources that are typical of dense urban environments. Simulation results demonstrate a
smoother spatial distribution of temperature, largely driven by solar radiation cycles, in contrast to highly localized
peaks in pollutant concentrations associated with anthropogenic activities such as transportation and industry.
These contrasting behaviors highlight the need for differentiated mitigation strategies. The findings of the study
offer important insights for urban planning and the development of effective air quality management policies. The
proposed model provides a practical tool for understanding environmental dynamics and evaluating the potential
impact of pollution control measures in complex urban terrains.

Keywords: urban air pollution, temperature field, pollution concentration, mathematical modeling, advection-
diffusion model.

Introduction

Urban air pollution remains a critical environmental issue, particularly in rapidly developing
cities such as Almaty, where complex topography and intense anthropogenic activity create
unique challenges for air quality monitoring and modeling. To address this, a number of modeling
approaches have been developed to predict the distribution of air pollutants and temperature in urban
environments.

Machine learning and data-driven techniques have gained attention in recent years for air quality

prediction. Ivanov et al. used random forest algorithms to model PM ;o levels, demonstrating strong
short-term accuracy, while Dzaferovic and Karaduzovic-Hadziabdic applied similar methods in
localized urban regions [1-2]. However, these studies are often limited by the availability of high-
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quality input data and lack the ability to explicitly resolve spatial transport mechanisms, which are
critical for urban-scale environmental assessments.

Deep learning models such as RNN-LSTM and hybrid CNN-LSTM architectures have also
been applied to forecast AQI with improved temporal resolution [3, 10]. While effective in capturing
time-series dynamics, these models depend heavily on historical sensor data and often fail to capture
the spatial influence of topography, built environment, and prevailing wind flows — aspects that are
crucial in cities like Almaty with complex terrain.

Several studies have highlighted the importance of meteorological factors, such as fog and low
cloud cover, in altering pollutant dispersion. Zaurbekov et al. demonstrated that such conditions
significantly increase near-surface pollution concentrations by limiting vertical mixing [4]. Zhang et
al. further noted the role of solar radiation and humidity in triggering secondary pollutant formation
[5]. These findings emphasize the need for models that incorporate detailed physical processes rather
than relying solely on empirical correlations.

Physically based dispersion models have thus been developed to fill this gap. Tessarotto et al.
and Zhou et al. presented numerical frameworks to simulate the advection and diffusion of pollutants
across urban atmospheres [6—7]. However, these models often require extensive computational
resources and high-resolution environmental input data. The current study builds upon this tradition
but aims to optimize computational efficiency while retaining spatial fidelity.

Recent work has also emphasized the need for intelligent systems and data integration for air
quality monitoring. Malhotra et al. and Saheer et al. proposed data-driven frameworks that combine
real-time measurements with predictive algorithms [8-9]. Han et al. and Song and Han explored
mobile sensing and dynamic estimation models, offering flexibility in spatial coverage but introducing
concerns regarding consistency and calibration [10—11]. Our work complements these approaches by
providing a stable simulation platform that can be enhanced with observational data for validation or
real-time adjustments.

Efforts to enhance spatial resolution in urban pollution mapping have also used non-traditional
sources. Suel et al. applied image-based estimation from street-level imagery, and Bravo et al.
compared different exposure assessment methods, suggesting that simulation-based tools offer better
regional coverage when direct observations are sparse [12—13]. This supports the use of physics-
based models in under-monitored areas such as Almaty.

The practical implementation of sensor networks for air quality has been evaluated in several
studies. Cromar et al. and Zarrar & Dyo pointed out the importance of sensor placement and
standardization for effective health research [14—15]. Our model may assist in optimizing such
networks by identifying zones of elevated pollution risk.

In Kazakhstan, Naizabayeva et al. have developed intelligent environmental monitoring systems
and smart traffic integration frameworks that reduce urban emissions through adaptive routing.
The integration of such systems with simulation-based forecasts, as pursued in this work, could
improve responsiveness to pollution events. Kolesnikova et al. and Naizabayeva & Zakirova also
demonstrated the role of neural networks and pattern recognition in environmental prediction tasks,
laying the foundation for hybrid frameworks that can enhance physical modeling [16—19].

Transport infrastructure and land use planning are closely tied to pollution distribution. Khrutba
et al. and Rabosh et al. used system analysis and geoanalytics to evaluate environmental pressure
along urban roadways [20, 21]. Their findings reinforce the value of spatial modeling to guide
sustainable urban development and decarbonization strategies.

Considering these insights, this study aims to develop a numerical simulation model for
analyzing the spatial and temporal dynamics of temperature and pollutant concentration in the urban
atmosphere of Almaty. By focusing on a two-dimensional advection-diffusion framework tailored to
the city’s geography, we provide a tool for interpreting pollution behavior, identifying high-risk zones,
and informing policy decisions. The modeling domain covers an area of approximately 80 square
kilometers with a horizontal grid resolution of 100 meters. Based on long-term meteorological and
environmental observations, the baseline air temperature in the peripheral zones of Almaty is around
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15 °C, increasing to approximately 20 °C in the city center. Similarly, pollutant concentrations range
from a peripheral baseline of 20 mg/m?* to peak values near 60 mg/m? in central urban areas. These
spatial patterns reflect the influence of both natural and anthropogenic processes in the region.

The main objective of the work is to develop and implement a complex mathematical model
for analyzing the spatial and temporal distribution of temperature and concentration of pollutants in
the atmosphere of Almaty city considering specific geographical, climatic and urban features of the
region. Scientific novelty of the work consists in the development of a complex model for Almaty,
which takes into account the peculiarities of the mountainous relief and allows to simultaneously
analyze temperature fields and distribution of pollutants considering daily dynamics and mountain-
valley circulation.

1 Materials and Methods

1.1 Mathematical model

A three-dimensional advection-diffusion model was applied to simulate the diurnal dynamics in
a representative urban zone of Almaty. The model accounts for wind-driven transport, diffusion, and
localized emissions typical of dense city environments.

The distribution of pollutant concentration and temperature in a three-dimensional domain is
considered. The contaminant transport equation and the thermal equation are used to describe the
process dynamics:

ac ac ac ac atc #*c @*c
D(—+—+—)+S€ (1)

axz 3y az?

here (C is pollutant concentration, u, v, w are wind speed components along the axes x, ¥, Z
(V =Vu? +v? + w?is wind speed), D is turbulent diffusion coefficient, S, is source of pollution.

ar ar ar ar a*r 8%t @ r
—tu—+tv—t+tw—=a|l—S+-—+-—)+5; 2)
at ax ay az ax*  dy? 8z? >

ST is heat source.

here T is air temperature, @ is thermal diffusivity,

1.2 Problem Statement

For this study, the average values of environmental and meteorological data of Almaty city for
the last 10 years were used [22].

Initial condition for pollution concentration

Clx,y,2,0) = C(x,y,2),

From the datasets, a baseline concentration level of 20 mg/m’® is observed at the periph-

ery, and a peak up to 60 mg/m’is observed at the centre (around x = 5 km, y = 4 km), thus
lr—xoen ) +(y—¥ cone)®

Co(x,y,2) =20 + 40e 20

Initial condition for temperature

T{:x, }’; Z, O) = TO {:xl }’; Z)

The base temperature is 15 °C around the perimeter and up to 20 °C in the centre, then
_(r—xpene)*+(¥—¥eene)?

T,(x,y,z) =15+ be 207 .
To simplify the problem and to fit the data on the boundaries, we will use Dirichlet conditions:

C[:x, Y.z, t) = Cb {:xl ¥, z, t),
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T(x,y,z,t) = Ty(x,y,2,1),
From the data at the boundary, the concentration is a base concentration of 20 mg/m* and the
temperature is 15 °C, so € = 20, T, = 15.

1.3 Solution method
Equations (1)-(2) are solved by the finite difference method. The grid in space has a step Ax, Ay,
Az and a time step At. At each time step t™ — t"*1:

cgj.;l = i’}k — At - (convective terms) + At - (dif fusion terms) + S¢»
Tt =T — At - (convective terms) + At - (dif fusion terms) + S,

Based on the data from the datasets, we use the following numerical parameters for modelling
from Table 1. The key numerical parameters used in the simulation, including grid resolution,
boundary conditions, and diffusion coefficients, are summarized in Table 1. These values define the
computational domain and the physical behavior of the simulated processes.

Table 1 — Modeling parameters

Parameter Value Dimension
1 2 3

Size of the calculated area by x, L, 10 km
Size of the calculated area by ¥, L, 8 km
Size of the calculated area by Z, L, 6 km
Number of grid nodes by x, N, 101
Number of grid nodes by ¥, Ny 81
Number of grid nodes by z, N, 61
Grid step by x, Ax = L,. /N, 100 m
Grid step by ¥, Ay = L, /N, 100 m
Grid step by z, Az = L_ /N, m
Time interval 0<t<24 hours
Time step, At 3 hours
Number of time nodes, N¢ 8
Initial concentration of pollutants, Cg 20 mg/m’
Daily concentration amplitude, A¢ 10 mg/m’
Maximum concentration value, AC,,, 60 mg/m?
Initial temperature, Ty 15 °C
Daily temperature amplitude, Ar 5 °C
Maximum temperature value, AT o 5 °C
Impurity diffusion coefficient, D 0.3 m?/s
Coefficient of thermal diffusivity of heat, & 0.5 m’/s
Wind velocity, ¥ 0-5 m/s
Diffusion coefficient for concentration, 0 L5
Propagation coefficient for temperature, &, 2.0
Coordinates of the centre of the region, (X ont., Veont.) 4,5) (km, km)
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The chosen parameters ensure realistic representation of urban-scale physical processes. A grid
resolution of 100 m provides sufficient spatial detail to capture local variations in temperature and
pollutant concentration, especially in dense city zones. The selected time step (3 hours) balances
computational efficiency with temporal resolution. The diffusion coefficients and boundary values
are consistent with climatological data for Almaty, which enhances the physical relevance of the
model. Overall, the parameter set establishes a stable numerical framework for simulating daily

dynamics in an urban environment.

2 Results and Discussion

Figure 1 presents the three-dimensional distributions of pollutant concentration and temperature
across the study area. These visualizations allow us to observe spatial peaks and gradients, highlighting
the contrast between the smooth thermal field and the localized pollution zones.

Figure 1 (a) shows the three-dimensional distribution of 20 mg/m? pollutant concentration at the
periphery, reaching a maximum of 60 mg/m? in the centre of the area. The clearly defined pollution
peak indicates the presence of a source or cluster of pollution sources in the centre of the area. This
suggests that the central area of the city is subjected to more intense anthropogenic impacts. Figure
1 (b) shows the 3D temperature distribution from 15 °C at the periphery to 20 °C at the centre of the
area in the study area. The temperature peak is located at the centre of the coordinates (5 km, 4 km).
The smooth temperature distribution indicates a relatively uniform thermal field. The thermal peak at
the centre can be interpreted as the result of a local heat source or an accumulation of urban built-up
areas. A sharper gradient is noticeable in the concentration change compared to the temperature field.

& &8 49 3
Temperature (°C)

w
&

Concentration (ug/m?)

N W
a &

Figure 1 — 3D distribution of a) pollutant concentration and b) temperature

The 3D plots clearly demonstrate the different behaviors of the two physical fields. Pollutant
concentration forms a distinct localized peak in the city center, suggesting the influence of point or
clustered sources such as traffic or industrial activity. In contrast, the temperature field varies smoothly
and forms a dome-like distribution typical of urban heat islands. This supports the hypothesis that
pollutant accumulation is driven more by localized emission sources, while temperature variation
is influenced by broader radiative and thermal properties of the surface and built environment. The
spatial correlation between high temperature and high pollution zones also suggests possible synergy

between heat retention and pollutant trapping.
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To further analyze horizontal variations, Figure 2 shows the two-dimensional contour maps of
pollutant concentration and temperature. These contours provide a clearer representation of how
values change with distance from the urban center and demonstrate spatial symmetry or asymmetry
in each field.

Figure 2 (a) shows the contour of pollutant concentration, where a sharper change in concentration
with distance from the centre can be seen. The sharp change in concentration with distance from the
centre indicates the significant role of traffic flows and dispersion processes in the urban environment.

From the temperature contour (see Fig. 2 (b)), a symmetrical distribution with a maximum at
the centre is evident. The uniform distribution confirms that the thermal field in the area is stable
and changes gradually, which may be due to the uniform environment or the weak influence of local
thermal anomalies. The concentration contour shows a more localized distribution compared to the
temperature.
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Figure 2 — 2D distribution of a) pollutant concentration and b) temperature

The contour maps offer a more nuanced view of horizontal distribution. The pollutant concentra-
tion shows a steep gradient, with a rapid decline from the center to the periphery, indicating limited
dispersion and possibly stagnant airflow conditions. The symmetrical shape suggests a relatively
uniform urban emission pattern, or terrain-driven retention. The temperature contours, while also
centered, have smoother transitions, reflecting the influence of solar heating over larger surfaces
rather than isolated sources. These differences reaffirm the need to treat temperature and pollution as
coupled but independently driven phenomena in urban microclimate modeling.

The temperature field changes smoothly with a small change, whereas the concentration of pol-
lutants shows a sharp peak. This suggests that pollution sources have a localized but intense effect.
The wind speed favors moderate transport of heat and pollutants. Nevertheless, the sharpness of the
concentration peak indicates that the dispersion of pollutants is not strong enough to fully level out
the local source. The area considered allows to correctly represent the urban zone, where the distribu-
tion of parameters has a central concentration of values, which is typical for cities with high building
density and intensive automobile or industrial activity in the centre.

To assess the reliability of the numerical modeling, an error analysis of the numerical method
was performed, and the sensitivity of the model to the main parameters was assessed. The numerical
error in the finite-difference scheme used is due to the discretization in space and time. The adopted
values of the step in space (100 m) and time (3 hours) were chosen taking into account stability and
convergence. To assess the accuracy, a check was carried out with a refined grid: the step in space
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was reduced to 50 m, and the time step was reduced to 1.5 hours. Changes in the maximum values
of temperature and concentration were less than 3%, which indicates acceptable convergence of the
solution.

Sensitivity analysis was carried out by varying the key parameters in the permissible ranges,
where the turbulent diffusion coefficient is 0.1-1.5 m?/s, wind speed components changed by + 20%,
the thermal conductivity coefficient: from 0.2 to 1.0 m?/s. The results showed that concentration
fields are sensitive to the diffusion coefficient and wind speed: maximum values could change up
to 15% when varying the parameters. Temperature fields were less sensitive changes did not exceed
5%. This emphasizes the importance of accurately assessing the parameters of pollutant transport
when building predictive models.

The results revealed clear patterns in the distribution of temperature and pollutant concentrations.
Temperature dynamics were primarily influenced by solar radiation and followed smooth spatial
trends, whereas pollutant levels exhibited sharp localized peaks driven by emission sources.
These differences underscore the need for targeted air quality interventions based on the dominant
influencing factors.

These findings contribute to a better understanding of urban microclimate dynamics and can
inform policymaking aimed at improving air quality in densely populated areas.

Thus, it can be concluded that in the considered model, temperature is generated by a more
uniform distribution of heat fluxes, whereas pollution exhibits localized peaks, which requires the
application of zonal measures to reduce it.

Conclusion

As aresult of the study of spatial and temporal dynamics of temperature regime and concentration
of pollutants in the atmosphere of Almaty city, the model showed that the baseline temperature in
the periphery of the study area is 15°C, and in the central part (at the point x = 5 km, ¥ = 5 km) the
temperature reaches 20°C, which corresponds to the maximum recorded value. The daily temperature
change is equal to 5°C.

The baseline pollution level was defined as 20 mg/m® in the periphery, with peak values up to
60 mg/m? in the city centre. The sharp concentration gradient around the centre indicates an acute
local impact of pollution sources.

The application of an advection-diffusion model with a turbulent diffusion coefficient of 10 m?/s
for pollutants and a thermal diffusivity of 0.1 m?s allowed the observed spatial and temporal
variability of the parameters to be faithfully reproduced. The influence of the prevailing wind regime
with components u = 2 m/s and v = (0.5 m/s was also taken into account, which allowed modelling
the transport of both thermal and pollutant systems.

In contrast, the temperature field demonstrates a smoother spatial gradient, centered in the same
region. This reflects the cumulative effect of solar heating, heat retention by urban surfaces, and
reduced cooling at night-phenomena commonly referred to as the urban heat island effect [5, 7].
Our results reinforce the idea that pollutant accumulation and thermal behavior, although spatially
correlated, are governed by distinct physical processes.

Importantly, our simulation agrees qualitatively with satellite observations and prior data-driven
analyses of Almaty, which report elevated pollution and temperature values in the city core [16, 18].
Unlike deep learning models that often struggle with generalizability and spatial interpretability,
our physics-based approach provides direct insights into field behavior under defined physical
assumptions [3, 10].

The study demonstrates that urban temperature fields are predominantly influenced by solar
radiation and exhibit smooth spatial gradients, whereas air pollution fields are characterized by sharp
localized peaks resulting from anthropogenic sources. These contrasting mechanisms highlight the
necessity of developing differentiated strategies for urban environmental management.
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In the context of Almaty, a city situated in a mountain basin with limited natural ventilation
and frequent atmospheric stagnation, the insights from this model are particularly relevant. The
identification of pollution accumulation zones provides urban planners and environmental agencies
with a scientific basis for implementing targeted emission reduction policies. For example, the results
can inform decisions on traffic flow optimization, zoning regulations, and the placement of green
infrastructure to enhance air circulation.

Moreover, the model can support real-time monitoring systems by serving as a predictive
layer integrated with sensor networks. Overall, the findings contribute not only to a theoretical
understanding of urban microclimate dynamics, but also to the practical design of sustainable
development strategies aimed at improving air quality and public health in Almaty.
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AJIMATbBI KAJTACBIHJAAFbI KAJIA KINMATbBIH
KOHE AYA JTACTAHYbBIH CUMVYJIALUAJIAY:
CAHJABIK MOAEJIBAEY TOCILJII

Angarna

By 3eprreymiH MakcaThl — CaHJIBIK MOJENBICY 9JICTEPiH KOJJaHa OTBIPHIN, AJMaThl KaJachIHBIH arMocC-
(bepacbIHIaFbl ayaHbl JacTaylIbl 3aTTapAbIH KOHIICHTPALMACH! MEH TEMIIEPaTypaHbIH KEHICTIKTIK KaHE YaKBITTBIK
TapanyblH Tanaay. [llamamen 80 mrapiibl KAJIOMETp ayMaKTa TOYJIKTIK JUHAMUKAHBI YKCaTy YIUiH €Ki emremIi
anBexms-nuddys3ust Mozmeni o3ipieHai. Moxens jkelMeH 0acKapbhUIaTBIH KOk, TypOymeHTTI mudQy3us xKoHe
TBIFBI3 KQJIAIBIK OpTajapra TOH JIOKATM3AIMSUTAHFAH AMUCCHS KO3Aepi CUAKTHI HETi3r (PU3MKAIBIK MPOIeCTepi
KaMTUbl. Moienbey HOTIKeIepl KOJIiK XKoHE OHEPKICII CUSKThI aHTPOIIOTeH/IiK 9peKeTTepMeH OailylaHbICThI J1ac-
TayIIbl 3aTTap/IbIH [IOFBIPIaHybIH/IA JKOFAPhI JOKATU3alMsUIaHFaH IIbIHAAp OaiiKanaThlHBIH, ajl TeMIIepaTypaHblH
KEHICTIKTe OIpKEeJKi Tapaiybl HeTi3iHeH KYH paJMalusChIHbIH IIMKIIapbIMEH aHbIKTAJIAaThIHBIH KopceTTi. by exi
TYPJi MiHE3-KYJIbIK CapallaHFaH KYMCApTy CTpaTerHsulapbIHbIH KaXXETTUTINH alKbIHIaWAbL. 3epTTey HOTIKeNIepi
KaJla KYPBUTBICHIH JKOCTIapIiay JKOHE aya CaltachblH 0acKapyIblH THIM/IL CasiCaThIH 93ipiey YIIiH MaHBI3IBI TYCIHIKTEP
Oepeni. ¥CBIHBUIFAaH MOJENb Kyplell KajajblK penbed skarmaillapblHAa KOPLIaFraH OPTAaHBIH JUHAMHKACHIH
TYCIHyre JXoHE JacTaHy/bl OaKplidy LIapalapblHbIH BIKTUMaJ 9CEpiH Oarajiayra apHaJFaH MPaKTHKAJIbIK Kypall
peTiHe KbI3MET eTet.

Tipek ce3nep: Kaja ayachIHBIH JIaCTaHYbl, TEMIIEPATypaIbIK Opic, JIACTAYIIBI 3aTTAPABIH KOHIIEHTPAIHSCHI,
MaTeMaTHKAJIBIK MOACIB/CY, a/[BEKIIHSIBIK.
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MOAEJUPOBAHUE IN'OPOACKOI'O KIIMMATA
N 3ATPA3HEHUS BO31YXA B AJIMATDI:
YUCJIEHHbBIA MOAXOA MOAEJIUPOBAHUA

AHHOTALUA

Lenpro JTaHHOTO UCCIIEAOBAHUS SBISICTCSl @HAIN3 ITPOCTPAHCTBEHHOTO U BPEMEHHOT'O PaclpeeIeHusl TeMIIe-
parypbl ¥ KOHIEHTPAIMH 3aTrPSI3HSAIOLIMX BEIIECTB B BO3AYXE B TOPOJCKOH arMocdepe I. AJMaThl C HCIIOIb30BaHHEM
METOJIOB YHCIICHHOTO MOJICITUPOBaHMs. J[BymMepHas Mozens anBekiunu-auddysnn Obina paspaborana st MOJCIIH-
POBaHMS CYyTOYHON TUHAMUKH HA TEPPUTOPHH ILIOIIABI0 OKOJIO 80 KBaJpaTHBIX KHJIOMETPOB. MoJeib BKIIIOYaeT
B ce0s KITIoueBbIe (PU3WIECKHE MPOIECCH, TAKHE KaK BETPOBOM TPAHCIIOPT, TypOyneHTHas TU(PPY3Us U JIOKATH30-
BAaHHBIC UCTOYHUKHU BBI6pOCOB, KOTOPBIC TUIINYHBI IJIsA TUIOTHOM FOpO}ICKOI\/’I Cp€anl. PeSyJ'H)TaTBI MOJCIIUPOBaHUA
JIEMOHCTPUPYIOT 00Jiee IIaBHOE MPOCTPAHCTBEHHOE PaclpeaeIeHie TeMIIEpaTypbl, B 3HAYUTEIILHOM CTEIeHH 00-
YCIIOBJIEHHOE IMKJIAMH COJTHEYHOW pajManiy, B OTIIMYME OT BBICOKO JIOKAJIIM30BAHHBIX MTUKOB KOHIIEHTpAIMH 3a-
TPSAZHSIONINX BEIIECTB, CBI3aHHBIX C aHTPOIIOTEHHOH JICSITENbHOCTBIO, TAKOW KaK TPAHCIIOPT U IPOMBIIUICHHOCTb.
OTH KOHTPACTHBIC TOBEACHHS MOAYCPKUBAIOT HEOOXOAUMOCTh AU PepeHIUPOBAHHBIX CTPATEIUil CMATYCHHS 110~
clieNCTBUI. Pe3ynbrarsl HCCIeI0BaHMS MIPEIUIAraloT BaKHbIE HACH I TOPOACKOrO IUIAHUPOBAHUS U Pa3paboTKH
2 PEKTUBHOM NONMTHKH YIPaBICHNsI Ka4€CTBOM Bo3ayxa. [Ipearaemast Mojienb peCcTaBisieT co0oil mpakTuye-
CKMI MHCTPYMEHT JUIsl IOHUMAaHUS JUHAMUKU OKPYXKAIOUIEH Cpelbl U OLEHKH IOTEHIIMAIILHOTO BO3ACHCTBUS MEP
10 KOHTPOJIIO 3arpsI3HEHHMS] Ha CIIOKHBIX TOPOJICKUX TEPPUTOPHSIX.

KaroueBble cjioBa: 3arps3HEHHE TOPOACKOTO BO3AyXa, TEMIIEpPaTypHOE IOJIe, KOHIEHTPALUS 3arpsI3HeHHH,
MaTeMaTHYEeCKOE MOJICTUPOBAHNE, aABEKTHBHO-IN((Y3HOHHAS MOJIEIb.

Article submission date: 21.04.2025

278



