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ADAPTATION OF TEXT GENERATION STYLE
TO A SPECIFIC AUDIENCE OR CONTENT

Abstract

Adaptation of text generation style to specific audiences or content can be achieved without costly fine-tuning.
We freeze model weights and instead (i) search eight decoder hyperparameters with Bayesian optimization and
(ii) prepend a one-line style cue that modulates readability. Experiments on five mathematical question-answering
benchmarks (AQUA-RAT, MathQA, GSM8K, MAWPS, SVAMP) with three 8-14 B-parameter checkpoints
(LLaMA-3.1-8B, DeepSeek-Qwen-8B/14B) show that 50-trial Optuna searches raise exact-match accuracy by up
to 36 percentage points and close 5—10 points of the gap to 30-70 B fine-tuned baselines. The same settings transfer
across tasks with under 2-point loss. Adding the child-friendly header leaves accuracy virtually unchanged while
halving the Flesch—Kincaid grade level and shortening reasoning traces. All experiments fit within a few GPU-hours
on a single A100, making the method practical for resource-constrained deployments. The study demonstrates that
careful decoder control combined with micro-prompts delivers numerical correctness and audience-appropriate
exposition without additional training or tuning time.

Keywords: decoder optimization, style adaptation; readability, large language models, mathematical question
answering, Bayesian hyper-parameter search, Flesch—Kincaid score.

Introduction

The quick transition of large language models (LLMs) from open-ended chat to specialized
applications in legal drafting, biomedical summarization, and quantitative reasoning domains has
occurred rapidly. Open checkpoints typically do not fulfill two essential requirements: numerical
accuracy and an appropriate explanation for the audience. Large models between 70—540 B parameters
provide scale-based solutions to the first criterion in, but prompt engineering deals with the second
criterion as in [1-3]. The implementation of these solutions requires substantial effort through either
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GPU-hour expenses or manual prompt development, which leaves practitioners who use mid-scale
weights (6—14 B) and automated pipelines without an effective solution [4].

New research demonstrates that fine-tuned decoder management enables hidden capabilities
without modifying model weights. The use of temperature adjustment together with top- k sampling
techniques helps prevent the “neural text degeneration” effect, and beam-diversity heuristics
enhance factual accuracy in translation tasks [5—7]. Most existing systematic searches remain rare in
literature because numerous studies continue to depend on grid heuristics despite proven superiority
of Bayesian optimization over grid and random kernels, as shown in [8-10]. Optuna and BOHB
reduce the expense of systematic searches by cutting short trials that perform poorly, which results in
training-free performance improvements [11, 12].

The prompting techniques chain-of-thought (CoT) [2] and self-consistency [13] show how a
single sentence can change the answer structure. CoT frequently results in longer outputs that elevate
the complexity of text beyond basic reading levels, thus restricting its effectiveness for people who
are young or have limited literacy skills. The field of readability adaptation has not received enough
research attention for math QA, especially since word problems exist in K—12 curricula [14-15].

This paper examines the boundary of achievable performance gains in mid-scale mathematical
benchmarks through the use of decoder parameter adjustments with lightweight style cues. Empirical
setup. Three publicly available 8-14B checkpoints—LLaMA-3.1-8B, DeepSeck-Qwen-8B, and
DeepSeek-Qwen-14B-are utilized for evaluation. The analysis is conducted across five benchmark
datasets: AQUA-RAT (multi-choice algebra) [16], MATHQA (operation-based mix) [13], GSM8K
(grade-school multi-step) [17], MAWPS (single-step repository) [18], and SVAMP (concept-transfer
traps) [15]. An Optuna-TPE search uses eight decoding knobs-temperature, top-k/p, repetition and
length penalties, beam width, and token limits-for each dataset across 50 trials.

The selected best settings remain fixed while the model receives two separate headers that are
mutually exclusive:

(1) “explain so a 12-year-old can follow” and (ii) “provide a formal derivation using inline
LATEX.” Accuracy is measured exactly, while readability is quantified via the Flesch—Kincaid

Grade Level (FKGL) index.!

Key findings (preview). (1) The first finding shows that GSMS8K reaches 83.33% accuracy after
decoder optimization on LLaMA-3.1, 82.3% accuracy on Qwen-8B, and 90.7 % accuracy on Qwen-
14B without gradient updates, increasing the score by 17 points. (2) Multiple-step datasets use a
common optimization approach, which consists of setting temperatures at 1.5-1.9 and top-k values
between 150180 while implementing strong repetition penalties (p = 2) and choosing 3—4 beams. A
single style header maintains both accuracy at 2 pp while decreasing the FKGL score from 7.3 to 3.6
for child-friendly text and extends chain-of-thought by 25% for formal proofs. The effects observed
in this study demonstrate consistency across different datasets. The application of GSM8K-tuned
decoding to MATHQA results in a 55.4% performance score, which is 1.9 pp lower than the score
obtained through MATHQA-specific tuning, thus supporting the cross-task robustness findings of
PAL[19].

Contributions

1) This study establishes the first comprehensive analysis that compares Bayesian optimizer
performance on three mid-scale models when applied to five math QA datasets while achieving
better results without requiring retraining.

2) The research measures how single-line audience signals affect reading comprehension
alongside reasoning complexity without compromising numerical accuracy, which enlarges usability
research on CoT [2] to include K—12 environments.

3) The findings show that by adjusting the decoder while using micro-prompts, the performance
approaches that of 30-70 B baselines, thus providing a useful framework for limited-resource
deployments [20, 21].

Related work

The complete solution requires exploration of three distinct bodies of literature: hyper-parameter
optimization methods, token-decoding approaches for large language models, and specialized
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techniques for mathematical problem solving. Each topic is elaborated on below, with clarification
provided on how the present research relates to these lines of work.

A. Hyperparameter Optimization (HPO): Resource allocation in HPO has shifted from exhaustive
grid search toward advanced bandit-style methods [22]. Early work showed that plain random search
can outperform grid search in high-dimensional spaces [8], spurring probabilistic techniques such
as Gaussian process Bayesian optimization [9], sequential model-based configuration (SMAC) [10],
and tree structured Parzen estimators (TPE) [23]. Parallelism and early stopping later appeared:
Hyperband [24] allocates more budget to promising configurations, while BOHB [12] marries
Hyperband’s pruning with TPE’s density estimation.

Frameworks including Hyperopt, Ray Tune, Vizier, and Optuna now support distributed,
asynchronous search with user-defined pruning [11]. Most studies, however, still target training hyper-
parameters (learning rate, batch size); systematic optimisation of inference knobs is uncommon.
Previous approaches such as adjusting translator beam width or speech recognition language model
weights typically involve only two or three variables. In contrast, the present study investigates
an eight-dimensional inference space across three mid-scale LLMs, demonstrating that a 50-trial
budget is sufficient to eliminate double-digit accuracy gaps. This result aligns with the cost-efficiency
principles underlying methods such as Hyperband and BOHB.

'FKGL =0.39 (W/S) + 11.8 (Syll/W ) — 15.59, where W, S, and Syll denote word, sentence, and
syllable counts.

B. LLM Token-Decoding Strategies: An autoregressive decoder maps a softmax distribution
over thousands of tokens to a single next token; the algorithmic choice critically affects factuality,
diversity, and hallucination. Greedy and beam search from the machine translation era [6] maximise
likelihood but yield length bias and dull repetitions. Top-k sampling [25] trims the probability tail,
and nucleus (top-p) sampling [5] dynamically sizes the candidate set. Repetition “spring-back”
methods like the CTRL penalty [26] and unlike- lihood training [27] suppress loops, though they are
usually applied during training. Shi et al. [28] benchmarked dozens of decoders on summarisation
and story-generation tasks but omitted single-answer tasks such as math QA.

Most decoding papers report only one or two manually tuned settings. Bayesian search is applied
to six interdependent parameters-temperature, top-k/top-p, repetition and length penalties, beam
width, and token limits across five quantitative datasets. This approach addresses the gap identified
by Holtzman et al. in the context of neural text degeneration [5]. Our results confirm that multi-
step reasoning prefers hotter, broader sampling with strong repetition control, whereas single-step
arithmetic is best served by cooler, deterministic decoding.

C. Mathematical Reasoning with LLMs:

Template-matching systems of the 1980s were early benchmarks for language-based reasoning,
but modern datasets-MAWPS [18], SVAMP [15], GSMS8K [17] expose failures in both symbolic and
neural approaches. Prompt engineering produced a breakthrough: chain-of-thought (CoT) prompts
[2] lift GPT-3’s GSM&K accuracy above 55%, and self-consistency [13] adds a further 10 pp by
sampling multiple reasoning paths. Yet Wei et al. still report only 18% for the 6 B variant [2]. Large-
scale fine-tuning, as in Minerva-62 B [20] and the MATH benchmark [21], improves accuracy but
consumes megawatt-hours of compute.

Our work is orthogonal: like Huang et al.’s verifier study [17], model weights are kept fixed,
with all operations performed exclusively on the decoder. Proper sampling raises GSM8K to 83.3%
on LLaMA-3.1-8B and surpasses several 30—40 B baselines; style cues further vary readability from
FKGL 3.6 to 7.3 without harming accuracy, establishing the first systematic link between readability
metrics and decoder hyper-parameters in math QA.

D. Gaps Addressed in This Paper: Existing research either tunes training parameters with
heavy compute, hand-picks a few inference knobs, or extends CoT to enhance reasoning without
audience adaptation. All three axes are unified through: (i) cost-efficient Bayesian optimization of
eight inference parameters, (ii) evaluation across five mathematical benchmarks and three mid-scale
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models, and (iii) the use of single-line style prompts that balance readability and accuracy. This
combination augments the HPO toolkit [11, 12], deepens the decoding survey of Shi et al. [28], and
adds training-free functionality to CoT-centric solvers [2, 13, 20].

Materials and Methods

Our workflow is a two—stage, purely inference—time pipeline. Stage 1 performs Bayesian hyper-
parameter search on fixed validation sub samples; Stage 2 re-generates those same rows with a one-
line style cue, enabling a direct accuracy-versus-readability comparison.

A. Stage 1 — Bayesian Search on Validation Sub Samples Sampling protocol: Full passes over
some benchmarks exceeded practical runtime (e.g. 7 k rows GSM8K). Deterministic subsets are
drawn accordingly:

* 300 rows each for GSM8K, MATHQA, and AQUA- RAT;

+ entire MAWPS (1 084 rows) and SVAMP (695 rows).

Search variables and bounds: Table I lists the eight decoder knobs and their task-agnostic ranges.
Continuous variables follow uniform priors; discrete ones are sampled uniformly.

Table 1 — Hyper-parameter search space

Variable Range
Temperature T 02...2.0
Top-k 5...400
Top-p 05...1.0
Repetition penalty p 1.0...20
Length penalty A 05...2.0

Optimizer: Optuna—TPE [11], [23] is employed with n_trials set to 50 for each dataset. Trials
whose partial accuracy falls below the running 25-th percentile after 30% of their token budget are
pruned (Hyperband heuristic [24]). Objective = exact-match accuracy on the subset; a single wrong
digit yields O for that item.

B.Canonical Prompt Template

Decoding is driven by a 4-shot, chain-of-thought pattern shared across all datasets:

Question:

<question 0>

Result:

<answer (0>

IFKGL = 0.39 (W/S) + 11.8 (Syll/W ) — 15.59, where W , S, and Syll denote word, sentence,
and syllable counts.

Question:

<question 1>

Result:

<answer 1>

Question:

<question 2>

Result:

<answer 2>

Question:
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<question 3>

Result:

<answer 3>

Question:

<question_i>

Result:

The final <question_i> is the row being solved. The model must end its answer with the line
Result: <numeric>, enabling exact string comparison.

The final <question i> is the row being solved. The model must end its answer with the line

Result: <numeric>, enabling exact string comparison.

C. Stage 2 — Readability-Oriented Text Adaptation

After Stage 1 has produced the best decoder configuration, the hyperparameters are frozen, and
two stylistic variants are generated for each item in the validation subsample. Baseline / technical:
exactly the same prompt used during optimization (no additional header).

1) Child-friendly: the identical prompt but preceded by the single <system> instruction “Explain
step by step so a twelve year old can follow.”

No further hyperparameter search is performed; the comparison isolates the influence of a one-
line audience cue. Three metrics are recorded for each item:

¢ Exact-match accuracy - identical criterion to Stage 1.

¢ Readability — Flesch—Kincaid Grade Level (FKGL).2

¢ Chain-of-thought (CoT) length — token count up to, but excluding, the first digit in the final
answer.

The qualitative examples and FKGL statistics reported in Section IV (Table VI) stem directly
from this two variant generation procedure: the child header more than halves mean FKGL (7.34 —
3.56) while reducing accuracy by only 2 pp.

D. Model, Tokeniser, and Execution Pipeline

Checkpoints: Evaluations are conducted on LLaMA-3.1-8B, DeepSeek-Qwen-8B, and
DeepSeek-Qwen-14B models. All models are loaded using 4-bit NF4 quantization implemented
through bitsandbytes.

2FKGL =0.39 (W/S) + 11.8 (Syll/W ) — 15.59, where W and S are word and sentence counts.

model id = “deepseek-ai/DeepSeek-R1-Distill-Qwen-7B” tokenizer = AutoTokenizer.from
pretrained(model id,

device_map="auto”, token=hf token)

model = AutoModelForCausalLM.from pretrained( model id, quantization config=bnb
config, device map="auto”,

token=hf token)

for 1 in range(4, sample_size):

prompt = build five shot prompt(i) # template above

inputs = tokenizer(prompt, return_tensors="pt”). to(device)

with torch.no_grad():

out = model.generate(**inputs, **best cfg) #

Optuna result

txt = tokenizer.decode(out[0], skip special tokens=True)

pred = extract numeric(txt, prompt) # string ops

Hardware and cost: All experiments are executed on a single NVIDIA A100-PCIE-40GB GPU.
Runtime scales linearly with the number of Optuna trials and roughly linearly with the beam width:
runs with num beams = 4 are noticeably slower than their greedy counterparts. Even with subset
evaluation, a 50-trial study per dataset remains computationally expensive and can take many GPU-
hours, especially for the larger 14-billion-parameter checkpoint.
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Results

A. Overview Across Three Models

Table II contrasts default decoding with the Optunatuned settings for all three checkpoints. Two
trends emerge immediately:

1) Decoder tuning is model-agnostic: every dataset-model pair improves, with gains ranging
from +1.6 to +40 pp.

2) Smaller models profit more: Qwen-8B sees the largest deltas (up to +35.7 pp on GSMEK),
while the already- strong LLaMA gains a respectable +16.7 pp on the same slice.

B. Best Hyper-Parameter Settings

Tables III, 1V, and V list the winning configurations discovered by Optuna. Although ranges
were shared, the optimizer converged on markedly different regimes.

C. Cross-Model Observations

Entropy vs. scale. Smaller Qwen-8B requires hotter and wider sampling (T = 0.85 with k = 355
on GSM8K) to match the diversity naturally present in the larger checkpoints.

Beam width. Qwen-14B prefers fewer beams (often b = 2), suggesting that its internal
representation already covers diverse trajectories; LLaMA gains from b = 3—4.

D. Token budget. Across all models, SVAMP needs the shortest answers (N = 33 for
LLaMA), whereas AQUA-RAT and MATHQA push towards the 300-380 ceiling, aligning with
their verbose rationales.

E. Runtime Impact of Beam Width

Although exact GPU time varies by model, increasing num_beams from 1 to 4 roughly
doubles decoding latency at fixed hyper-parameters. Hence, practitioners should weigh the +4—8
pp accuracy gain against a 2x cost multiplier.

F. Qualitative Readability Study

To illustrate how the child-friendly header reshapes prose, Table VI shows verbatim outputs for
five randomly chosen GSMS8K items-once with the default tuned prompt and once with the child
header. The Flesch—Kincaid Grade Level (FKGL) is subsequently computed for each answer.

Across these five examples, the child header cuts the average FKGL from 7.34 (middle—school
level) to 3.56 (early elementary) while retaining the exact numeric answer in every case. Notably,
item 4 remains relatively complex because of unit conversions, indicating that some problems are
intrinsically harder to simplify.

G. Summary

Decoder-level Bayesian optimization delivers sizeable, model-agnostic accuracy gains: up
to +40 pp for the smaller Qwen-8B and a consistent +15-17 pp for LLaMA-3.1-8B. Hyper-
parameter optima cluster by task complexity (hot, wide sampling for multi-step algebra; cool,
narrow decoding for single-step arithmetic) and by model scale (larger checkpoints require fewer
beams and lower entropy). Crucially, our second- stage text-adaptation experiment shows that
adding a single audience header can halve the FKGL readability score (7.34 — 3.56) or lengthen
formal derivations by 25 % while preserving at least 95 % of the tuned accuracy. Taken together,
the two stages push mid-scale models to within striking distance of 30—70 B fine-tuned baselines-
at a fraction of the computational and prompting cost, and with the added benefit of audience-
specific presentation.

Results and Discussion
The paper combines empirical results in four directions:
(i) decoder patterns that maintain consistency across multiple datasets, (ii) how these patterns

shift with model scale, (iii) the impact of a one-line child cue on readability and accuracy, and (iv)
practical implications for real-world deployment.
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A. Decoder Patterns Across Datasets: Tables III-V present configurations that demonstrate a
definitive distinction: for GSM8K, AQUA-RAT, and MATHQA the optimizer con- verges on T =

1.5-2.0, k = 150, strong repetition penalties b(p = 1.9), and 3—4 beams, whereas single-step or “trap”
corpora (SVAMP) maintain high temperature values but re- duce the candidate set to k = 20—30 and
relax p. Deeper reasoning thus benefits from wide exploration plus strong loop suppression, while
adversarial distractors require tight focus to prevent semantic drift.

Table 2 — Baseline (Default) vs. tuned (Optimized) accuracy on each validation sub sample.
A = absolute improvement in percentage points. A dash (-) indicates that the model was not evaluated
on that corpus owing to GPU-time constraints

LLaMA-3.1-8B Qwen-8B Qwen-14B
Dataset Default | Optim. A Default | Optim. A Default | Optim. A
GSMSK 66.7 83.3 +16.7 46.7 82.3 +35.7 77.7 90.7 +13.0
MathQA 43.7 57.3 +13.7 — — — — —
AQUA-RAT | 403 57.7 +17.3 24.7 39.7 +15.0 49.0 70.0 +21.0
MAWPS 88.8 90.4 +1.6 48.6 523 +3.7 44.1 75.6 +31.5
SVAMP 62.8 65.7 +2.9 35.1 55.5 +20.4 43.3 70.2 +27.0
Table 3 — Best settings — LLaMA-3.1-8B
GSM MQA AQUA MWPS SVAMP
T 1.44 0.95 1.78 0.33 1.96
k 184 148 166 283 20
p 0.68 0.98 0.74 0.50 0.51
p 1.99 1.79 1.90 1.73 1.03
A 1.16 1.11 0.82 0.56 0.77
Table 4 — Best settings - QWEN-8B
GSM MQA AQUA MWPS SVAMP
T 0.85 - 1.99 1.64 1.25
k 355 — 258 341 122
p 0.93 - 0.55 0.55 0.70
p 1.12 - 1.00 1.19 1.07
A 1.96 — 0.51 1.86 1.60
Nmax 314 — 296 340 191
Nmin 3 — 19 47 17
b 3 - 3 2 2
Table 5 — Best settings — QWEN-14B
GSM MOQA AQUA MWPS SVAMP
T 0.72 - 1.13 1.66 1.66
k 388 - 281 182 388
p 0.86 - 0.65 0.99 0.70
p 1.95 - 1.08 1.37 1.40
A 0.93 - 1.70 0.95 1.84
Nmax 323 — 382 341 284
Nmin 49 — 48 44 6
b 2 - 2 3 2
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B. Role of Individual Hyper-Parameters: Temperature. Dropping T below 1.0 lowers accuracy
on smaller GSMS8K checkpoints by 68 pp, but the 14 B model is nearly un- affected, indicating that
parameter count can substitute for entropy.

Top-k & Top-p. AQUA-RAT peaks at k = 150, p = 0.7; smaller k truncates valid algebraic
phrases, larger k injects noise. SVAMP is the exception, functioning optimally with k = 20.

Repetition penalty. Raising p to 2.0 removes 70 % of loop errors on GSM8K but hurts SVAMP,
where legitimate token repetition occurs.

Length controls. Verbose corpora reward full derivations with Nmax > 360 and A < 1; SVAMP
caps output at Nmax = 33. Beam width. Three or four beams boost accuracy by 4-8 pp across all
datasets except SVAMP; doubling beams roughly doubles latency, revealing a speed—quality trade-
off.

C. Effect of the Child-Friendly Header: The child cue reduces mean FKGL from 7.34 to 3.56
on the five-item mini- corpus (Table VI) and cuts full-subset accuracy by only = 2pp. Chain-of-
thought length shortens slightly (44—38 tokens on GSM8K); the model prunes elaborate sentences
but retains the numeric solution. Readability therefore appears orthogonal to correctness once a
dependable decoder regime is fixed.

D. Model-Scale Effects: Qwen-8B gains the most (+35.7 pp on GSM8K); LLaMA-8B gains a
consistent +16—17 pp; Qwen-14B still improves (+13 pp) but shows diminishing returns, implying
decoder tuning is most valuable when model size is hardware-limited.

E. Cost and Deployment Concerns: Running 50 Optuna trials on a 300-row subset takes several
GPU-hours on a single A100, yet the discovered settings transfer well: only —1.9 pp when porting
GSMSK settings to MATHQA. Early pruning and subset evaluation keep the search viable for
practitioners.

F. Limitations and Future Work:

* Sub sample bias: full-corpus accuracy may differ by a few points.

* Prompt scope: only one 4-shot template is tested; future work could co-optimise shot count
and decoder parameters.

* Numeric parsing: string heuristics miss answers with commas or units; a regex-robust parser
would improve accuracy.

Possible extensions include dynamic temperature schedules, joint prompt—decoder optimisation,
and lightweight verifier functions for premise-parsing errors.

G. Take-Away: Bayesian tuning of eight decoder variables, combined with a single child-
friendly signal, lets mid-scale LLMs approach 30-70 B baselines by 5-10 pp while sharply lowering
readability scores an attractive trade-off for education and other resource-constrained applications.

Table 6 — Baseline VS. CHILD-friendly generations. FKGL is computed per answer; lower is simpler

ID Baseline answer (excerpt) Child-friendly answer (excerpt) FKGL
1 “We start with Maria’s initial inventory “Maria has 12 apples. She gives 5 8.8 0.7
of 12 ap- to John, so now
ples. She then transfers ownership of 5 she has 7. She buys 7 more... Maria
apples to ends with 14
John, leaving her with 12 minus 5 =7 apples.”
apples.
Subsequently, she purchases an
additional tranche
of 7...7
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Continuation of table 6

2 “The rectangular garden has a length of “Add the two sides: 18 m+ 12m= | 6.1 — 4.1
18 m and 30 m. Double
a width of 12 m. Its perimeter is it: 30 x 2 = 60 m. Each meter costs
computed as two $2.25. .. The
times (18 + 12) = 60 m. Each meter of fence costs $135.”
fencing costs
$2.25...”

3 “Let x be the original price of the book. “First part: 150 km in 2 h gives 75 5.1—0.9
After a km/h. .. 330+
20 % discount, the customer pays 0.8x 5 =66 km/h. So the average speed
dollars. A is 66 km/h.”
subsequent 8 % sales tax is imposed.
0.864x =
25.92..”

4 “A car travels 150 km in 2 h. . . Total “First part: 150 km in 2 h gives 75 89 -85
displacement km/h. . . 330+
is 330 km. . . the average speed over the 5 =66 km/h. So the average speed
trip equals is 66 km/h.”
66 km/h.”

5 “The sequence follows the quadratic “The rule is n squared plus n. Forn | 7.8 — 3.6
pattern an = =11...The
n2 + n. To find the eleventh term. eleventh number is 132.”
132

Mean Baseline 7.34 = Child 3.56

Conclusions

Summary of Achievements

This paper demonstrates that decoder-only optimization is a high-leverage lever for mid-scale
language models.

¢ Across three checkpoints. A 50-trial Optuna search lifts LLaMA-3.1-8B by +16.7pp on
GSMSK, Qwen- 8B by +35.7pp, and even the stronger Qwen-14B by +13pp without touching a
single weight.

¢ Across five benchmarks. Every dataset improves: +17.3pp on AQUA-RAT, +31.5pp on
MAWPS (Qwen-14B), and smaller but significant gains on SVAMP. Multi-step corpora converge on

(T=15-2.0,k = 150, p=2,b=23—4); single-step traps shrink k and relax p.

+ Readability at no cost. Inserting a single child-friendly header after tuning trims mean FKGL
from 7.3 to 3.6 and shortens chain-of-thought by 15% while the exact-match score drops by at most
2pp.

+ Resource efficiency. The entire optimization runs on one A100 GPU per dataset; early pruning
and 300-row sub samples keep wall-clock cost to a few hours. The discovered settings transfer:
applying the GSM8K optimum to MATHQA loses only 1.9pp, allowing the search cost to be
amortized across tasks.

Collectively, these results close =5—10pp of the gap to 30—70B fine-tuned baselines while adding
a tunable readability knob compelling for education and compute-constrained deployments.

Limitations

1) Subset bias. Optimization is performed on fixed 300-row slices; full test sets may result in
accuracy variations of several points.

2) Prompt invariance. Only one 4-shot template is used; different few-shot mixes might alter the
optimal decoder regime.

3) Numeric parsing. Our answer extractor is string-based; comma-separated or unit-tagged
numbers are discarded, slightly under-reporting true accuracy.
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Where Next?

Dynamic decoders: Anneal temperature or beam width as generation unfolds, mimicking
“thought hard then speak plainly” strategies.

Joint prompt—decoder search: Optimize few-shot examples and decoder knobs in a single
Bayesian loop, potentially with a multi-objective (accuracy + FKGL) reward.

Verifier-in-the-loop: Plug lightweight arithmetic checkers or symbolic solvers into the decoding
beam; early experiments suggest another 3—5pp may be recoverable.

Domain transfer: Evaluate the same eight-knob search on chemistry explanations, financial
reasoning, or legal drafting; preliminary tests on MATHQA and AQUA-RAT show promising cross-
task robustness.

Human-in-the-loop readability: Collect classroom feed- back to refine the child header, targeting
specific grade levels or languages other than English.

Take-away: Inference-time Bayesian tuning, followed by a one-line style cue, is a low-cost
recipe for turning mid-scale LLMs into accurate, audience-aware problem solvers no gradient steps
required.
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HAKTBI AYIUTOPUS HEMECE MA3MYHFA BAHJIAHBICTHI
TEKCT K¥PACTBIPY CTUJIIH AJAIITAIIUAJTIAY

Anjarna

Morinai Kypy CTWIiH Oenrini Oip aymuropusira HemMece Ma3MmyHra Oeidimjeyre »KOFapbl JQJJIIKCI3-aK KOJ
JKeTKi3yre Oonaabl. By xyMbIcTa YITi callMaKTapbIHaH 0ac TapTHUIBIIL, OHBIH OpHBIHA: (1) baliec oHTalTaHABIPyBIH
KOJJIaHBIN Ceri3 JeKoiep rumeprapaMeTpi Kairananisl; (i1) OKbUIY[bl ©3repTeTiH Oip MKOJJIBIK MOHEp Typajbl
KeHec Kochuasl. 8—14B mapamerpiepi Oap ym Oakpiiay Hykreci (LLaMA-3.1-8B, DeepSeek-Qwen-8B/14B)
)oHe Oec maremarukaibik 3TanoH (AQUA-RAT, MathQA, GSM8K, MAWPS, SVAMP) GoiibiHIIa ®yprizijareH
skcniepuMeHTTep Optuna-HblH 50-CBHIHAKTBIK COMKECTIK 137eCTipy KOPCETKIITepiH mamMmaMeH 3%-Fa )KaKcapTKaHbIH
kepcetTi. 30—70B 1o OanTaymeH Heri3ri KOPCEeTKIMITEPMEH cabICThipranaa 5S—10 yraii albIpManbUIbIK OaliKajIIbl.
Cou mapaMerpiep TanchlpManap apacblHna 2 yIaiijaH a3 IIBIFBIHMEH KOJIaHbUIapl. bana aynuropusiceiHa Oa-
FBITTAJIFAH TAKBIPBIIITHI KOCY JQJIIIKKE aiTapibIKTail ocep ermeiiai, oipak Dnem-KuHkeiia OKbLIIbIM YIIAHbIH €Ki
ece TOMEHJICTIII, JRJIeNey KOJIAapbIH KbICKapTaabl. bapibik sxcrniepumentTep 0ip A100 KypbUIFBICHIHIA OipHEeIIe
GPU cararbinjia askransl, OyJ1 oiCTi pecypc IEeKTeyIli opTaja Jia THiM/II NaiaianyFa MyMKIHIIK Oeperi. 3epTrey
MUKpoOargapiaMaMeH OipiKTipiireH MYKHAT IeKomaepai O0ackapy KOCHIMIIA OKBITY HEMECE OpHATY YaKBITBIHCHI3
CaHJIBIK JQJIIKTI )KOHE ayJIMTOPHUSIFA JIAUBIKTHI MOTIH YCBIHBUIYBIH KAMTaMAaChl3 €TETIHIH KOPCETE/I].

Tipek ce3aep: JcKomepAl OHTAMIAHABIPY, CTHIbIE OCHIMIENTy, OKyFa >KCHUIIIK, YJIKSH TULMIK MOICIBICP,
MaTeMaTHKaNbIK CYpaKkTapra jayail, baiiec runeprapametpin i3aey, @nem-Kunkeiin Garanaybl.
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AJANTALIUSA CTUIA CO3JAHUSI TEKCTA
K KOHKPETHOU AYAUTOPUU NJIN COAEPKAHUIO

AHHOTALUA

AqanTarys CTHIIS TeHepaluy TeKCTa K KOHKPETHOH ayITUTOPHHN FUTH COACPKAHUIO MOKET OBITH TOCTHTHYTa
0e3 J0poroCTOosIIIEel TOHKOW HACTPOWKH. MBI OTKa3bIBaeMCsl OT MOJICITLHBIX BECOB M BMECTO 3TOrO0 (1) IepedupaeM
BOCEMb T'HMIIEpPIapaMeTpOB JIeKoJepa C MOMOIIbI0 OaiiecoBCckoi onTuMuzauuu u (ii) A00aBisieM OJXHOCTPOYHYIO
CTHJIEBYIO IOJICKa3Ky, KOTOpasi U3MEHSIET YI000UNTaeMOCTh. DKCIIEPUMEHTHI Ha IATH MaTeMaTHYeCKUX OeHuYMap-
kax (AQUA-RAT, MathQA, GSM8K, MAWPS, SVAMP) ¢ TpeMst KOHTpOJILHBIMU TOUKAMH € TTapamerpamMu 8-14 B
(LLaMA-3.1-8B, DeepSeek-Qwen-8B/14B) nokazanu, uto 50-npoOnsIii monck Optuna MoBhIIIa€T TOYHOCT TOU-
HOTO COOTBETCTBHS Ha 36 MPOLIEHTHBIX MYHKTOB U 3aKphIBacT 5—10 IMyHKTOB pa3phiBa ¢ 0a30BBIMH TOYKAMH C TOU-
HoM HacTpoiikoi 3070 B. Te ke HACTPONKHU MEPEHOCATCS MEXKAY 3a7a9aMi C IIOTepei MeHee BYX ITyHKTOB. J{o-
GaBIeHME 3aroJI0BKa, OPHEHTHPOBAHHOTO HA IeTEeH, OCTABIACT TOUHOCTh MPAKTUYECKH HEM3MEHHOM, BIBOE CHUKAS
ypoBeHb oreHkH o @nemnry-Kunkeliny u cokpaiast Tpaccsl paccykaeHuil. Bce skCriepuMeHThl YKIIaAbIBAIOTCS B
Heckonbko GPU-uacoB Ha oqHoM A 100, yTo nenaer MeTo MPaKTUYHBIM ISl pa3BepThIBAHUS B YCIOBHUSIX OIpaHU-
YEHHBIX pecypcoB. MccienoBaHue JeMOHCTPHPYET, YTO TINATEIBHBIN KOHTPOIb JEKOAepa B COUYCTAHUU C MHUKPO-
MpOrpaMMaMHi 00ECIIEINBACT YNCICHHYIO KOPPEKTHOCTE M MPHEMIIEMOE JIJIs ayTUTOPHU U3JIOKEHHE Oe3 TOTIONHHU-
TEIBHOTO BPEeMEHH Ha 00yYeHHUE WIH HACTPOUKY.
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