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EMOTION CLASSIFICATION USING CONVOLUTIONAL
NEURAL NETWORKS WITH DIFFERENT ARCHITECTURES

Abstract

Thermal imaging offers a non-invasive and robust approach to emotion recognition by capturing facial
temperature patterns that correlate with psychophysiological states. This study investigates the application of deep
neural networks to classify six basic human emotions — happiness, sadness, fear, disgust, anger, and surprise —
using facial thermograms. A balanced dataset was collected under controlled experimental conditions, and four de
ep learning architectures were evaluated: Convolutional Neural Network (CNN), Fully Convolutional Network
(FCN), EfficientNet, and MobileNet. The models were trained and tested on a curated set of preprocessed thermal
facial images. Among the evaluated architectures, FCN achieved the highest classification accuracy of 90.04%.
The results demonstrate that deep learning models, particularly FCNs, are well-suited for emotion recognition from
thermal data, with potential applications in psychophysiological monitoring, healthcare, and real-time human-
computer interaction systems.
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Introduction

With the growing interest in developing intelligent systems capable of interpreting human
behavior, object and image recognition technologies are rapidly advancing. These technologies, which
fall under the field of computer vision, are widely applied in areas such as medicine, robotics, smart
homes, autonomous driving, and human-computer interaction. One actively explored application
is emotion recognition, which is being integrated into consumer electronics, hospital monitoring
systems, smart cars, and personal devices [1, 2]. The effectiveness of such systems depends on both
the quality of input data and the choice of recognition algorithms. While traditional approaches rely
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on RGB images and handcrafted features, these are susceptible to visual obstructions such as facial
expressions, lighting changes, and background variations.

To overcome these limitations, thermal imaging (thermography) has emerged as a promising
alternative. Thermograms reflect the temperature distribution across the human face, which
correlates with emotional states due to autonomic nervous system responses [6]. This modality is
difficult to manipulate voluntarily and less affected by environmental noise, making it particularly
valuable for affective computing. In recent years, deep learning, especially convolutional neural
networks (CNN5s), has proven effective in analyzing spatially structured data such as images. CNNs
and their variants offer end-to-end learning capabilities and outperform traditional machine learning
algorithms in most vision-related tasks [3—5]. Their application to thermal data has shown significant
promise in emotion classification [6].

Earlier works have used conventional classifiers—such as SVM, k-NN, logistic regression, and
naive Bayes—combined with feature extraction methods like HOG, Fourier or wavelet transforms
[7-14]. While useful, these methods depend heavily on manual feature engineering and often require
dimensionality reduction techniques (e.g., PCA, LDA) or ensemble classifiers (e.g., Random Forests)
[15-18]. However, they generally underperform compared to deep neural architectures on complex
tasks involving spatial and contextual patterns.

This paper investigates the effectiveness of several deep neural network architectures—CNN,
Fully Convolutional Network (FCN), EfficientNet, and MobileNet—for classifying six basic human
emotions using thermal facial images. The aim is to evaluate the adaptability and classification
performance of these models on a balanced and preprocessed dataset captured under controlled
experimental conditions.

The main contributions of this work are as follows:

A comparative analysis of four deep learning architectures applied to thermal facial images for
emotion recognition.

The construction of a balanced dataset using thermal imaging, capturing six fundamental
emotional states under controlled experimental conditions.

The Research Methods section describes the experimental setup, dataset characteristics,
preprocessing steps, and the neural network architectures employed in this study, including their
configurations and underlying mathematical formulations. The Results and Discussion sections
present and interpret the experimental findings obtained from training on thermal image data, with
an emphasis on classification accuracy, learning dynamics, and model adaptability. Finally, the
Conclusion section summarizes the key outcomes of the work and outlines potential directions for
future research.

Materials and Methods

To develop a robust and high-quality neural network classification model, thermograms of
people were collected while they were watching various videos that evoked six basic emotions. The
videos evoked the following emotions: happiness, sadness, fear, disgust, anger, and surprise. Using
a thermal camera, facial thermograms of the experiment participants were captured 15-20 times,
depending on the manifestation of emotions while watching each video.

The experimental sessions were conducted ina controlled indoor environment atroom temperature.
Each participant sat comfortably in front of a monitor placed 0.7 meters away, which displayed
audiovisual stimuli. The stimuli were carefully selected to elicit specific emotional responses. Each
clip lasted 4 minutes, followed by a short break to allow emotional state normalization. The thermal
camera (Fluke TiS20+ MAX; IR resolution: 120x90, 8—14 um spectral range, 60 mK sensitivity) was
mounted on a tripod 1 meter away, perpendicular to the face.

The dataset included ten healthy participants aged between 18 and 19 years. A total of 821
original thermal images were collected and labeled based on the elicited emotion. Each image was
preprocessed by cropping around the face and resizing to 4848 pixels to optimize training efficiency.
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Data augmentation was applied using transformations such as rotation (£10°), horizontal flipping
(50% chance), scaling (90—110%), and translation (+3 pixels), producing 821 additional samples.

Thus, the final dataset consisted of 1,642 thermographic facial images, evenly distributed across
six emotion classes (274 per class, except anger with 272 images). The dataset was split into 80%
training and 20% testing sets to ensure model generalizability. Figure 1 presents representative
samples of facial thermograms for each emotion.
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Figure 1 — Thermograms of a human face in different emotions

CNN

Unlike fully connected networks, CNNs have the property of local connectivity and parameter
sharing, which reduce the complexity of the model and allow for efficient handling of spatial depen-
dencies [19].

The basic operation in CNN is convolution. The input to a layer is a tensor X of size HxWxC.
The convolution is performed with a kernel W{*} of size FxFxC. H is the height of the image and W
is the width of the image, C is the number of channels, F is the kernel size, and k is the filter index.
The filter or image is the image obtained at the output after convolution. The output of the convolu-
tion operation is calculated as (1):

x k
.}’iir.} = 11:;1:12«}!;:125: 1(X1'+m,j+n,c * WT?’E,?E,C) + b{k} (1)

where b} is the bias and @ is the activation function (typically ReLU).
The ReLU activation function is defined as:

o(z) =max(0,z) )

The result of the convolution is an output tensor of size H'xW'xK, where K is the number
of filters applied to the layer. After the convolution layer, a pooling layer is often applied, which
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reduces the dimensionality of the data and thus reduces the number of parameters in the model, and
also makes the network more robust to minor shifts in the image. The max pooling operation, which
extracts the maximum value in each window of size pxp (3), reduces the dimensionality of the tensor
by a factor of p along each spatial axis.

Yijhe = MAX =y, pTMAX = 1,...,'.DXi+m,j+n,k 3)

where X is the input tensor, Vi, j,k is the subsampling result.

The Flatten layer transforms the 3D output tensor into a 1D vector. If the input tensor is of shape
HxWxK, then the output is transformed into a vector of length HxWxK. After the convolution
and pooling layers that extract spatial features, the CNN adds fully connected layers that provide
classification (4).

yi=0@Liwi; =%+ D) 4)

where X; is the input vector, W; jis the weight coefficient for neuron j, by is the bias, and ¢ is the ac-
tivation function (usually ReLU or softmax).

For a classification problem, the output layer is typically a layer with n neurons, where n is the
number of classes, and a softmax activation function. Softmax transforms the output values into
probabilities for each class (5).

Softmax(z;) = m (5)
where Z;is the activation of the i-th neuron before softmax.
To train the network for the classification task, the categorical cross-entropy loss function (6) is
used.

L= —Z?;12f=1 Vij* log(¥y;) (6)

where Y1 is the true class label and 7.; is the predicted probability.

Network optimization is performed using stochastic gradient descent (SGD) or its modifications
such as Adam. At each optimization step, the parameters are updated using the gradient of the loss
function for each parameter (7).

dL
WeWw—1*—

dw (7)

where 1] is the learning rate, and g is the gradient of the loss function with respect to weight w.
Thus, the CNN gradually adapts to the input data by changing the weights to minimize the pre-
diction error and improve classification accuracy (Figure 2).
The model includes convolutional layers with ReLU activation, max-pooling layers to reduce
spatial dimensions, a flattening operation, and fully connected layers for classification. The final
softmax layer outputs the predicted probabilities for the six basic emotion classes.
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Figure 2 — Architecture of the Convolutional Neural Network (CNN)
used in this study

Fully Convolution Network

Fully Convolutional Networks (FCNs) [20] are a neural network architecture in which all layers
are convolutional or pooling, allowing the model to be applied to inputs of arbitrary size. Unlike
conventional CNNs, which often terminate in fully connected layers for classification, FCNs consist
exclusively of convolutional layers and are used primarily for tasks requiring dense pixel-level
prediction, such as image segmentation.

In FCN, each layer is either a convolutional layer or a pooling layer. By eliminating fully
connected layers, the network preserves spatial structure at each layer, which is important for tasks
that require detailed information about the position and shape of objects. Pixel-wise probability maps
are used for prediction, allowing each pixel to be classified, rather than just the entire image. At
the level of convolutional and pooling layers, FCN is similar to CNN, but unlike CNNs, where
convolutions and pooling can be used to extract features before fully connected layers, FCNs use
progressive convolutions and pooling to gradually reduce spatial resolution, which helps to reveal
hierarchical features.

After the convolution and pooling layer, dense prediction tasks such as segmentation require
restoring the original image resolution. This is done by an upsampling operation, most commonly
implemented by transposed convolution (also called inverse convolution or convolutional
deconvolution) (8). The transposed convolution step increases the dimensionality of the output
tensor, restoring the spatial resolution.

Yijk = an=1Zi=1(Xijjs+m,jjjs+n,k * Wnnx ) (8)

where s is the step of the transposed convolution.

FCN also uses a skip connection mechanism to combine high-level and low-level features. This
allows fine-grained spatial features from earlier layers to be combined with semantic features from
deeper layers. As a result, FCN can reconstruct the resolution with higher accuracy and preserve
spatial details important for segmentation. The final feature map Y is the sum of the early and late
layer feature maps multiplied by weights and represents the feature map after reconstruction (9).

Y = aVi,, + Blugn ©)
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where Yiow is the feature map from the early layer, Yrigr is the feature map from the deeper layer, and
@ and B are the weight coefficients that define the contribution of each layer.

For the semantic segmentation task, FCN generates a class map for each pixel as output, which
allows each pixel of the input image to be classified. The prediction for a pixel can be expressed in
terms of softmax (10).

_ exp(¥ijc)
Pije = TE_ exp(¥ijc) (10)
where Py j.c is the probability of class c for pixel (i, j), and C is the total number of classes.

When solving image segmentation problems, the best results are achieved by using the categorical
cross-entropy loss function at the pixel level (6). FCN is trained similarly to other neural networks
using the gradient descent method, updating the weights to minimize the loss function. After training,
the model can be applied to images of arbitrary size, which is an important advantage of FCN,
since it does not depend on a fixed input image size. Thus, FCN allows for dense prediction at
the pixel level, which makes it particularly suitable for semantic segmentation problems and other
problems that require spatial understanding of data (Figure 3). By performing segmentation and
adding classification accordingly, it is possible to improve the performance of the neural network.
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Figure 3 — Architecture of the Fully Convolutional Network (FCN)
used in this study

The network consists entirely of convolutional and pooling layers and omits fully connected
layers traditionally used in CNNs. For image-level classification, global average pooling is applied
after the final convolutional block, followed by a dense softmax layer that outputs class probabilities.
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This adaptation enables the FCN to perform robust classification while preserving spatial features
and minimizing the number of parameters.

EfficientNet

EfficientNet models are a family of convolutional neural networks that offer an optimized method
for scaling neural networks, allowing them to achieve high classification accuracy with minimal
computational effort [21]. EfficientNet was proposed by the Google Al team and demonstrates
a fundamentally new approach to scaling the depth, width, and resolution of a network, thereby
achieving high performance on a wide range of tasks. One of the key ideas of EfficientNet is the
simultaneous scaling of the width, depth, and resolution of the network (11). Traditional scaling
approaches typically increase only one of these parameters, which can lead to inefficient use of
resources. EfficientNet proposes a method called "joint scaling" (Compound Scaling).

d=a¥*, w=pg% r=y% (11)

where d is the network depth (number of layers); w is the network width (number of channels
in each layer); r is the image resolution; € is a scaling factor that controls the overall computational
power of the model; @, B, ¥ are parameters that control the degree of increase in depth, width, and
resolution, respectively.

The parameters @, 8 HY¥ are selected empirically to maintain a balance between them when
changing computing resources.

EfficientNet-BO0 is the base architecture of EfficientNet, on which other models (B1, B2, etc.) are
scaled. The base model is built on an improved version of MobileNetV2, and is based on Depthwise
Convolution and Pointwise Convolution blocks. An important feature of the architecture is also the
use of swish activation (12):

swish(x)=x+*0(x) = Ppp—— (12)
where (%) is the sigmoid. The swish function helps improve the learning ability of the model by
smoothing the activation.

An important component of EfficientNet is the MBConv (Mobile Inverted Bottleneck
Convolution) block, which was borrowed from MobileNetV2 and adapted. MBConv includes
a pointwise convolution (1x1) to increase the number of channels (13), a depthwise convolution
(Depthwise Convolution) to process each channel separately (14), a pointwise convolution to reduce
the number of channels back to the original (15).

JC'r = W(lj*x (13)
x'" = W(zj * X (14)
L— 3 E !

where W) are the point convolution weights; * is the convolution operation; W (2 are the depthwise
convolution weights applied to each channel independently; W) are the weights of the last point
convolution to restore the number of channels to the original value.

MBConv also uses a dilation factor t, which determines how many times the number of channels
is increased before applying depthwise convolution. The MBConv block also uses a skip connections
mechanism, which allows the model to preserve useful features at each layer. EfficientNet offers a set
of models from B0 to B7, which are scaled by the parameter €. As ¢, the depth, width, and resolution
are increased according to pre-fitted values @, B, Y. This allows EfficientNet-B7 to achieve high
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accuracy on a variety of tasks, outperforming standard CNNs with less computational cost. Training
is done using the Adam or RMSprop algorithm with adaptive learning rate scaling, which helps in
efficient training on large datasets. EfficientNet is optimized for images of arbitrary resolution and
is suitable for a variety of computer vision tasks, including classification, segmentation, and object
detection. Thanks to its scaling approach, EfficientNet-B7, for example, demonstrates better accuracy
than many classical architectures such as ResNet and Inception, while requiring significantly less
computational resources. EfficientNet offers a cost-effective and flexible solution for computer vision
tasks, providing efficient architectural scaling and high performance with minimal computational

costs (Figure 4).
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Figure 4 — Architecture of the EfficientNetB0-based
neural network used in this study

The network uses a preconfigured EfficientNetB0 backbone to extract high-level spatial features
from 48x48x3 input images. The output feature map (2x2x1280) is flattened and passed through
three fully connected layers (768, 128, and 6 neurons). The final layer uses softmax activation to
output the probabilities for six emotion classes. This architecture combines EfficientNet’s optimized
compound scaling with a custom classification head for emotion recognition.

MobileNet

MobileNet is a class of convolutional neural network architectures designed for computationally
constrained devices such as mobile devices and embedded systems [22]. The basic idea of MobileNet
is to use Depthwise Convolution and Pointwise Convolution to reduce the computational complexity
and model size. MobileNet introduces the concept of Depthwise Separable Convolution, which
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decomposes the standard convolution into a depthwise convolution and a pointwise convolution.
Depthwise convolution is performed separately for each channel, which significantly reduces the
number of operations. Pointwise convolution combines the results from each channel using a regular
Ix1 convolution to mix the channels. This approach reduces the number of computations compared
to traditional convolution while maintaining good classification accuracy.

To further tune the model complexity, MobileNet introduces a width multiplier and a resolution
multiplier. The width multiplier is used to reduce the number of channels in each layer. If the width
multiplier is less than 1, it reduces the number of filters, reducing the computational complexity and
model size. The resolution multiplier reduces the resolution of the input image, which also reduces
the number of computations. Like other CNN architectures, MobileNet uses the categorical cross-
entropy function for the classification task. The use of depthwise sparse convolution reduces the
computational requirements by 8-9 times compared to traditional convolutional networks of similar
size. This makes MobileNet effective for tasks that require low latency, low power consumption,
and compact models, such as tasks on mobile devices. MobileNet achieves a trade-off between
accuracy and performance, especially with low values of the multipliers and r. MobileNet has been
successfully applied to classification, detection, and segmentation tasks where high efficiency is
required. Improved models such as MobileNetV2 and MobileNetV3 have also been developed
based on MobileNet, introducing additional optimizations to improve classification quality while
maintaining efficiency. MobileNet offers a simple and efficient architecture for mobile and embedded
applications, achieving high accuracy with minimal computational overhead, making it one of the
popular models for devices with limited capabilities (Figure 5).
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Figure 5 — Architecture of the MobileNet-based
neural network used in this study
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The model uses a MobileNet backbone for efficient feature extraction from low-resolution input
images (48x48x3), producing a compact feature map of size 2x2x1280. This output is flattened
and passed through three fully connected layers (768, 128, and 6 neurons). A final softmax layer
outputs classification probabilities for the six basic emotions. The architecture is optimized for low
computational cost, making it suitable for deployment on mobile or embedded systems.

Results

The number of training epochs for each neural network is defined as the number of epochs at
which the error stops decreasing within 20 epochs. The batch size was 32. The learning rate was
set to 0.0001 and the Adam optimizer was used for all models. The Adam optimizer was used with

default parameters (,=0.9, B,=0.999, e=1e-8).

Table 1 — Final performance of neural networks after training

Neural network CNN Fully Convolution Efficient Net MobileNet
architecture Network
loss 0.053 0.0502 0.2942 0.0636
accuracy 0.9908 0.9880 09114 0.9991
val loss 0.6715 0.513 1.8307 0.5003
val accuracy 0.8524 0.9004 0.31 0.8413

The Fully Convolution Network (FCN) has the best training results, and a relatively small
error compared to CNN, Efficient Net, and MobileNet. Although FCNs are typically applied in
segmentation tasks, in this study the FCN architecture was adapted for image-level classification
by applying global average pooling followed by a softmax-activated dense layer. This allowed for
aggregating spatial features into class-level predictions. FCN demonstrates the best balance between
accuracy and loss function on the validation set. MobileNet achieves high accuracy on training,
but its performance on validation is lower than that of FCN. EfficientNet requires improvement or
adaptation, since its low performance on validation indicates a strong discrepancy between training
and testing. CNN maintains stable results, which makes it suitable for problems where a trade-off
between accuracy and model complexity is required. Such results emphasize the importance of
choosing architecture depending on the specifics of the problem and available resources. Figures 6-9
present the dynamics of neural networks training.
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Figure 6 — Training and validation loss and accuracy curves
for the Fully Convolutional Network (FCN)
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The FCN demonstrates a steady decrease in training loss and consistent improvement in validation
accuracy. While the validation loss exhibits moderate oscillations throughout training, the model
maintains high generalization performance, ultimately achieving the best validation accuracy among
all tested architectures. This suggests that the FCN structure, adapted for image-level classification,
effectively captures relevant thermal features despite dataset limitations.
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Figure 7 — Training and validation loss
and accuracy curves for EfficientNetB0

The model achieves progressively lower training loss and high training accuracy, indicating
effective fitting on the training data. However, the validation loss remains high and unstable, while
validation accuracy fluctuates with low values, showing a clear overfitting trend. The large gap be-
tween training and validation metrics suggests insufficient generalization, possibly due to the model's
complexity relative to the dataset size.
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Figure 8 — Training and validation loss and accuracy curves
for the Convolutional Neural Network (CNN)
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The CNN exhibits steady improvement in both training and validation accuracy. Training loss
decreases consistently, while validation loss shows moderate oscillations, especially in the later ep-
ochs. This behavior suggests that the model generalizes reasonably well but may be sensitive to the
learning rate or the absence of regularization techniques. Overall, CNN demonstrates robust perfor-
mance with a good balance between accuracy and model complexity.
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Figure 9 — Training and validation loss and accuracy
curves for the MobileNet architecture

MobileNet demonstrates fast and stable convergence, with both training and validation loss
decreasing smoothly. The validation accuracy increases steadily and reaches over 80%, although a
performance gap between training and validation persists, indicating a degree of overfitting. Compared
to other models, MobileNet shows the most stable learning dynamics with minimal oscillations,
highlighting its efficiency and suitability for small-scale datasets and low-resource applications.

Discussion

The work performed demonstrates the relevance of using thermal images in emotion
classification tasks utilizing neural network architectures. A distinctive feature of this study is the
use of thermograms, which are more resilient to visual variations such as facial expressions, lighting
conditions, and background clutter, compared to RGB images.

Among the evaluated models, the Fully Convolutional Network (FCN) demonstrated the
highest classification accuracy, which is consistent with its architectural strength, namely, the ability
to preserve spatial dependencies and integrate multi-scale feature representations. Its successful
application underscores the adaptability of FCNs for tasks requiring detailed data processing,
including segmentation. The CNN model also yielded stable and acceptable results, making it a
viable option when a trade-off between computational cost and accuracy is needed. However, its
performance was inferior to FCN in terms of spatial representation capacity. EfficientNet, despite
its theoretical advantages in parameter efficiency and scalability, exhibited weak generalization
on the validation set, suggesting a need for hyperparameter tuning or architecture adjustments
tailored to the thermographic input modality. MobileNet showed high training accuracy but weaker
performance on validation, indicating a tendency toward overfitting. These outcomes highlight the
importance of aligning neural network architecture with the characteristics of the data and task-
specific constraints. Additionally, the relatively small size of the dataset (1,642 images) may have
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limited the learning potential of more complex models such as EfficientNet. Future work should
therefore consider expanding the dataset and applying advanced data augmentation techniques to
improve generalization and model robustness.

Furthermore, to better interpret model behavior and identify class-specific strengths and
weaknesses, future research should incorporate complementary performance metrics such as
precision, recall, and confusion matrices. These metrics would provide deeper insight into which
emotions are more prone to misclassification and help guide targeted architectural or preprocessing
improvements.

This study underscores the critical role of neural network architecture selection in thermal image-
based emotion classification. The FCN architecture appears most promising under current conditions.
However, ongoing research should aim to improve the performance of other architectures through
thermogram-specific adaptations and extended evaluation using more comprehensive performance
metrics.

Conclusion

The study examined the capabilities of various neural network architectures for classifying
human emotions using thermograms. The results showed that the Fully Convolution Network (FCN)
demonstrated the best balance between accuracy and robustness on the validation set, achieving a
classification accuracy of 90.04%, making it a promising tool for analyzing thermograms. CNN also
demonstrated stability and acceptable accuracy, which allows us to recommend it for tasks that require
a balanced approach between computational complexity and accuracy. Despite the high potential
of EfficientNet, its low performance at the validation stage indicates the need for improvement,
including tuning hyperparameters and increasing the size of the training set. MobileNet demonstrated
excellent results at the training stage, but its validation accuracy was lower, which may indicate a
tendency to overfitting.

Thus, the work emphasizes the key role of architectural adaptation of neural networks for the
specifics of thermogram processing tasks. The use of thermograms is a promising direction for the
analysis of human emotions due to their resistance to external factors. For further research, it is
advisable to focus on optimizing existing architectures and developing new approaches focused on
the specific features of thermographic data, as well as increasing the volume of data for training and
validation of models.
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OPTYPJII APXUTEKTYPAJIAPBI BAP KOHBOTIOLMSIBIK
HEWPOHBIK )KEJLJIEPII KOJIAHY APKBLIBI
SMOIMAIAPILI KIACCUDPUKALUSIAY

AnjiaTna

Tepmorpadust — agaMHBIH ICUXO(QHU3HONOTHUSUIIBIK KYHIMEH OalIaHBICTBI OCTTETi TeMIepaTypablK e3repic-
TepIi TIPKEWTIH, IMOISUIAPABI TaHyFa apHAJFaH WHBA3MUBTI eMec opi ceHimai oamic. by 3eprreyae anamHbIH OeT
TepMOrpaMMmalapblH HalAadaHblll, ajlThl HETI3Tl AMOIMSHBI — KYaHbIII, MYH, KOPKBIHBIII, XHIPKEHY, allly JKOHE
TaHFally — TaHy YIIIH TepeH HEWPOHIBIK JKEeNIepAl KOJNaHy KapacThIpblIajbl. DKCIIEPUMEHTTIK XKarnainapua
JKMHAJIFaH TEHECTIPUITeH JIepeKTep JKUBIHTBIFBI HETi3iHJe TOPT apXUTEKTypa OarajaH/bl: KOHBOJIOLUMSUIBIK HEH-
poumsIK xeii (CNN), Tombik koHBOPOnmsIbIK xkeni (FCN), EfficientNet sxone MobileNet. Moaenbaep anabiH ana
OHJICITeH OeT TepMorpamMMaapblHa OKBITBUIBII, Tekcepinmi. baramanran apxurekrypanapasiy imiage FCN ey
xorapel — 90,04% nonaix kepcerTi. by 3epTTey Tepen HeHpOHIBIK Keminep i, acipece FCN apXuTekTypachIHbIH,
TepMOrpadUsIIBIK JCPEKTEp HETI3IHIC SMONUUSIAPAbI TaHy MIHACTTECPIHAC THIMII CKCHIH TJICIICH Il KOHE OHBI
NcUX0(U3NOIOTHSITBIK OaKblIay, IEHCAYIIBIK CaKTay, COH/Iali-aK aJlaM MEH MallliHa apachbIHJIaFbl ©3apa dPEKEeTTeCy
JKyHernepinje KoijiaHyFa 00JIaTbIHBIH KOPCEeTeIl.

Tipek ce3xep: CNN, Efficient Net, Mobile Net, Fully Convolution Network, Tepmorpamma, HeHpOHIBIK KeJTi.
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'Kaszaxckuii HallMOHANBHBIN yHUBEPCUTET UM. anb-Dapadu, r. Anmarsl, Kazaxcran

KJIACCUPUKALIAS DMOIMIA
C HCIIOJIb30BAHUEM CBEPTOYHBIX HEHPOHHBIX
CETEN C PA3JIMYHBIMHA APXUTEKTYPAMHM

AHHOTAUMS

TermnoBM3nOHHAS ChEMKa MPEACTABISCT COO0ON HEMHBA3UBHBIN M HAAEKHBIN MOAXOI K PACIIO3HABAHUIO SMO-
U, GUKCUPYS TEMIIEpaTypHbIE M3MEHEHUsI Ha JIMIIE, CBSI3aHHbIE C ICUXO(HU3NOIOTHNYECKUM COCTOSTHUEM YelloBe-
ka. B HacToseM uccliieoBaHuy paccMaTpruBacTCs TPUMEHEHHE ITyOOKMX HEHPOHHBIX ceTel JUTs KitacCu(uKauu
mecTy 0a30BBIX AMOLMKI — paiocTh, TPYCTh, CTPaX, OTBPAILCHUE, THEB U YIUBICHNAE — [0 TEPMOTpaMMaM JIUIIA.
COaaHCHpOBaHHBIM HAOOP JAHHBIX OBUT COOPaH B KOHTPOJIHPYEMBIX IKCIIEPIMEHTAIBHBIX YCIOBUSX, 1 OBLIN OI1e-
HEHBI YETHIPE apXUTEKTYPhI TIIYOOKOTO O00yueHUs: cBepTouHas HelipoHHas ceTh (CNN), MOTHOCTBIO CBEpTOUHAS
cets (FCN), EfficientNet 1 MobileNet. Moaenu 006ydannuce ¥ TECTUPOBAINCH Ha MPEABAPUTEIFHO 00pabOTaHHBIX
TepMorpaduueckux u300paxeHusx jauna. Cpean HcclielyeMbIX apXUTEKTYp HauBBICIIYI0 TOYHOCTh — 90.04% —
nokazasna FCN. Pe3ynbrarsl 7eMOHCTPHPYIOT, YTO MOJIEITH TITyOOKOT0 00yueHus, ocodenHo FCN, xoporro moaxoast
JUIS 33/1a4 PACIIO3HABAHMS AIMOLMI 110 TEINIOBU3MOHHBIM JAHHBIM M MOT'YT OBITh MCIIOJIB30BaHBI B IICUXO(HU3HOIIO-
THYECKOM MOHHUTOPHHTE, 3JPaBOOXPAHEHUH H CHCTEMaX B3aUMOJICHCTBHUS YeJIOBEK — MAIlIMHA B PEaIbHOM BPEMEHH.

KuoueBble ciioBa: CNN, Efficient Net, Mobile Net, Fully Convolution Network, Tepmorpamma, HelipoHHBIE
CeTH.
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