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Abstract

This paper presents the investigation of the process of optimizing the parameters of a PID controller using
machine learning algorithms for the oil separation process control system. The optimization of the controller
parameters (Kp, Ki, Kd) is important, in order to improve control quality and reduce the number of errors in dynamic
processes. To solve this issue, several innovative methods were considered, such as the cuckoo search algorithm
(CSA), the firefly algorithm (FA), particle swarm optimization (PSO), and the support vector machine (SVM). All
the data, including the current process values (PV), setpoints (SP) and output signals (OP) were obtained from
Tengizchevroil. In addition, the metrics, such as root-mean-square error (MSE), adjustment time, overshoot, and
steady-state error were used to assess the effectiveness of optimized regulators. Overall, the results of the research
indicate that there was a significant improvement of the dynamic characteristics of the system due to the usage
of machine learning algorithms compared to the traditional approaches. The obtained parameters of optimization
achieved the target value while being faster and more stable, thus increasing the productivity of control in the
technological process.

Keywords: oil separation, automation system optimization, PID controller, parameter optimization, machine
learning, Cuckoo Search Algorithm, Firefly Algorithm, Particle Swarm Optimization, Support Vector Machine.

Introduction

In recent years, the issues related to improving the efficiency and stability of the technological
processes are prominent in the oil and gas industry. Oil and gas separation, where the precise control
of process parameters plays the vital role is considered as one of the key processes in this industry.
Due to its simplicity and versatility the proportional integral differential (PID) regulator is widely
used as the main control tool in these systems. However, the limitations of the traditional methods of
setting the parameter of the PID controllers decreases its effectiveness, thus leading to the increase
in costs, significant errors and lower quality of the product.

Over the years, there has been an increase in the widespread usage of machine learning methods
such as optimization algorithms in the field of automation. Algorithms, including particle swarm
Optimization (PSO), the Firefly algorithm, the Cuckoo Search Algorithm and the support vector
Machine (SVM) method allow for high accuracy in estimation, including through optimization. These
methods take into consideration the dynamic characteristics of the processes and make effective
adjustments to the parameters of PID controller. Consequently, it results in more precise control and
significant decreases in the number of errors.

The aim of work is to use rare machine learning algorithms based on data from the oil separation
processes to develop and apply an approach for the optimization of the parameters of PID controller.
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The real equipment indicators are used as input data: the values of (point value), SP (setpoint value)
and OP (output).

Further, these data are applied to build models and evaluate their performance. By optimizing the
parameters of the PID controller, it is expected that the overall quality of control and the stability of
the system despite the external disturbances will increase, while the errors will be minimized.

Thus, this work is aimed at combining modern machine learning methods and traditional
management approaches to solve urgent issues of the oil and gas industry. The results of the study
can be applied to improve the operation of automation systems in real production conditions.

The oil and gas industry is defined by complex processes that require accurate control to provide
efficiency, safety and environmental compliance. One of the most important elements of equipment
in this industry is a three-phase separator, which plays a crucial role in the separation of oil, gas and
water in the production process [1]. To maintain stable and efficient operation of such separators, it
is important to implement advanced control systems capable of controlling dynamic changes in the
technological control process built by sensors of physical values like temperature, pressure and level
[2, 3]. The Proportional-Integral-Derivative (PID) controller is one of the commonly used feedback-
based control loop mechanisms due to its simplicity and effectiveness in managing production
processes and machines [3, 4]. Yet the performance of the PID controller largely depends on the
correct tuning of its parameters [5].

Traditional PID tuning methods, such as the Ziegler-Nichols method and manual trial-and-error
approaches, often lead to admittedly not optimal output, especially in nonlinear processes and time-
varying processes such as three-phase separation [6, 7]. Various types of control strategies used for
PID tuning discussed in [8]. This study compared Integral Absolute Error (IAE) values considering
first, second and third order systems. The method has limitations to Single Input Single Output
systems. The closed-loop Ziegler Nichols methods was studied, and its limitation was that this methos
is not applicable for open-loop systems which are not stable. It involves trial-and-error method to
select the parameter, so it is time consuming. The Chien-Hrones-Reswick auto tuning technique
was also considered in the paper. This method delivers an overshoot system response in the range
10—-20% however it provides a fast response.

In it could be seen the comparison of two types of PID controllers [9]. This study conducts
a comparative analysis between a fractional-order PID (FO-PID) controller and a standard PID
controller for a nonlinear robotic arm manipulator system. The tuning of the controllers’ gain
parameters is achieved through a genetic algorithm (GA), which optimizes the controllers based on
various cost functions, including integral of squared error (ISE), integral of absolute error (IAE),
integral of time-weighted absolute error (ITAE), and integral of time-weighted squared error (ITSE).
The study uses MATLAB/SIMULINK simulations to evaluate the controllers’ performances under
different operational scenarios of the robotic arm.

The article proposes the use of the Atom Search Optimization (ASO) algorithm and its chaotic
variant, Chaotic Atom Search Optimization (ChASO), to optimize parameters of the fractional-order
PID (FOPID) controller for DC motor speed control [10]. ASO, inspired by atomic motion models, is
valued for its simplicity and effectiveness in addressing various optimization challenges. ChASO, an
enhancement using logistic map chaotic sequences, aims to improve convergence speed and escape
local minima, providing more precise results. Paper implemented PID with Intern Model Control
(IMC) method, which loaded into a PIC microcontroller to control the level through varying the
liquid flow [11]. The results were satisfactory as the system response had fewer oscillations, less
settling and rise times, and there was no steady state offset. In a study, an improved Cuckoo Search
algorithm for detecting intrusions in information systems was proposed [12]. The authors modified
the classical algorithm in order to increase the accuracy and speed of optimization, which made it
possible to effectively analyze data and identify anomalies.

To solve these problems, researchers are increasingly exploring the possibility of using
optimization algorithms and methods to automate the tuning [13, 14, 15]. Recent research shows
that using rare algorithms can further improve the tuning process, providing higher convergence
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rates, reliability and adaptability to the dynamics of a complex system, while common optimization
algorithms such as genetic algorithms and Particle Swarm optimization have shown promise [16, 17,
18].

This study addresses the complex trajectory tracking challenges of a three-link rigid robotic
manipulator (3-LRRM) by designing and comparing three neural network-based control structures
combined with PID: the NN-PIPD controller, the NN+PID controller, and the ELNN-PID
controller [19]. Using the Coot Optimization Algorithm (COOA), each controller’s parameters are
tuned to minimize the integral time square error (ITSE), with a novel objective function specifically
aimed at reducing control signal chattering. Evaluations under various scenarios, including
disturbance rejection, model uncertainties, and reference tracking, demonstrate that the NN-PIPD
controller provides the best performance, excelling in stability, robustness, and precision in tracking,
with an exceptionally low ITSE value of 0.001777. One of the rare algorithms called Jellyfish search
studied in paper [20]. This study introduces a modified version of the Jellyfish Search (JS) algorithm,
termed the modified Jellyfish Search (mJS) algorithm, to optimize PID controller parameters for DC
motor speed control. While the original JS algorithm is effective, its exploitation capabilities are
limited. To enhance performance, the mJS incorporates quasi-dynamic opposed-based learning and a
Weibull probability distribution to improve convergence and precision. The optimization goal is set
to minimize the integral of time-weighted absolute error (ITAE). The mJS algorithm was validated
on benchmark functions, showing superior performance compared to contemporary optimization
methods, including Gray Wolf Optimization (GWO), JAYA, and Golden Jackal Optimization (GJO).
In simulation results across three DC motor models, the mJS algorithm consistently achieved lower
ITAE values, faster settling times, and improved response stability compared to other algorithms,
demonstrating its potential in industrial control applications and contributing to advanced PID
optimization methodologies.

The study uses five nature-inspired algorithms—NewBAT, Cuckoo Search (CS), Firefly (FF),
Gray Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA)—to optimize the FOPID
parameters: Kp, Ki, Kd, and p [21]. The optimization objective is minimizing the integral of time
absolute error (ITAE) while also evaluating maximum overshoot, settling time, and time to maximum
response. Simulations carried out in MATLAB/Simulink with the FOMCON toolbox demonstrated
the controllers’ robustness against disturbances at the output. The optimized parameters were
tested against varying reference inputs, and the controllers’ responses were assessed with visual
and statistical analyses, offering a reliable basis for selecting effective algorithms and measuring
performance. This research contributes to optimizing FOPID controllers in time-delayed systems
by providing comparative insights on the efficacy of different nature-inspired algorithms, validated
through statistical methods for robustness and reliability.

Fundamental methods such as Ziegler—Nichols, Cohen—Coon, Chien—Hrones—Reswick, and
Astrom—Hagglund are used to adjust the proportional, integral and differential parameters of PID.
In addition, hybrid methods such as fuzzy-tuned PID controllers and optimization algorithms can
be used to adjust these parameters. Various optimization algorithms, such as the ABC optimization
algorithm, gray wolf optimization algorithm, evolutionary optimization algorithms, particle swarm
optimization, Harris Hawks optimization algorithm, and Harris Hawks gas optimization algorithm,
can be used for parameter tuning [22—-26]. Sometimes, the desired response may not be achieved
with PID controllers. To overcome this problem, alongside classical PID controllers, more advanced
PID controllers have been used [27]. There are advanced controllers such as 2DOFPID, tilt-integral
derivative (TID), FOPID and PTID [28, 29]. By adding degrees to the PIDs, changing their basic
structures, or using them in partial formats, attempts have been made to obtain a better response.

Description of the technological process of oil separation

Oil is a complex mixture of hydrocarbons of various molecular weights, other chemical
compounds, various gaseous, liquid and solid substances containing more than 100 carbon atoms,
oxygen, etc., a natural liquid with a peculiar odor, consisting of heterogeneous sulfur compounds and
a mixture of metals. Oil is the most important type of mineral found in the sedimentary layer, which
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is oily, brown, flammable, sometimes black or greenish yellow, and even colorless. An integrated oil
treatment plant is required to receive oil well products, to pre-separate products (into oil, associated
petroleum gas, and formation water) and to treat oil to commercial quality. The work examines
the separation unit at the complex oil treatment unit, so the process control system should provide:
automated real-time control of the separation process at the complex preparation plant; in case of
emergencies — notification of the operator about this; indicators of device states; management of the
necessary parameters; The main goals of creating an automated process control system: increasing
the accuracy of measuring process parameters; increase in staff efficiency; reduction of labor costs in
process control; optimization of working conditions. System composition: three-phase separator; flow
meters; level indicators; pressure sensors; level gauges; temperature sensor; actuators. This scheme
in Figure 1 represents the process of processing and separation of extracted products consisting of
oil, gas and water.
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Figure 1 — Principal scheme of the oil separation process

Products from the extraction bushes (OGW) are supplied to the entrance, which then goes through
several stages of separation. At the first stage, a first-level separator (1st Stage Separator) is used,
where the primary separation of the liquid and gas phases takes place. The liquid is sent for further
processing, and the high-pressure gas is discharged for subsequent transportation. Then the liquid
enters the second-level separator (2nd Stage Separator), where a more detailed phase separation
takes place, including the separation of medium-pressure gas.

After the second stage, the separated liquid enters the Degasser, which removes the residual
gas to prepare the liquid for shipment to the storage tank (Flow Suction Tank). The gas released at
each stage is sent to different gas lines depending on the pressure: low, medium or high. The water
separated from the oil is sent to the water treatment system (Produced Water to Treating), and the oil
is prepared for further transportation. The gas flows are directed either to the plant for processing,
or to the compressors for further pressure increase. The diagram demonstrates the process of multi-
stage separation of products, including gas, liquid and water treatment systems, ensuring processing
efficiency and minimizing losses.
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Materials and Methods

Optimization algorithms: Cuckoo Search Algorithm

The Cuckoo Search Algorithm (CSA) is a metaheuristic optimization algorithm inspired by the
behavior of cuckoos that lay their eggs in the nests of other birds. The algorithm is based on a random
search mechanism, using the Lévy flight method to generate new solutions. The main idea of the
CSA is to replace bad solutions (sockets) with better ones based on their fitness. CSA is better suited
for tasks that require global search but require fine tuning. Pseudocode for its implementation:

Pseudocode 1 — Cuckoo Search Algorithm
Input: f(x), n, MaxGeneration, pa
Output: x best, f(x best)
BEGIN
Objective function f(x), x = (x1, x2, ..., xd)*T
Generate an initial population of n host nests xi (i = 1, 2, ..., n), each containing a random
solution;
WHILE (t < MaxGeneration) or (stop criterion not met) DO
Generate a new solution using Lévy flights for a randomly chosen cuckoo;
Evaluate its fitness Fi;
Choose a nest randomly among n nests (say j);
IF (Fi > Fj) THEN
Replace nest j with the new solution;
END IF;
A fraction (pa) of the worst nests are replaced with new random solutions;
Keep the best solutions (nests with high-quality solutions);
Rank the solutions and find the current best;
Pass the current best solutions to the next generation;
END WHILE;
Return the best solution found;

END;

Optimization algorithms: Firefly Algorithm

The Firefly Algorithm (FA) is a metaheuristic algorithm inspired by the bioluminescence of
fireflies. The main idea of the algorithm is that fireflies are attracted to each other based on their
brightness, which correlates with the fitness of the solution. Brighter fireflies attract less bright ones,
which leads to the evolution of the solution population to an optimal value. FA is characterized
by simplicity of implementation and efficiency in solving multidimensional optimization problems.
Pseudocode for its implementation:

Pseudocode 2 — Firefly Algorithm
Input: f(x), n, B, v, a, MaxGeneration
Output: x_best, f(x_best)
BEGIN
Objective function f(x), x = (x1, x2, ..., xd)"T
Initialize a population of n fireflies xi (i=1, 2, ..., n);
Define light intensity Ii proportional to f(xi);
Set parameters: attractiveness 3, absorption coefficient y, randomization a;
WHILE (t < MaxGeneration) or (stop criterion not met) DO
FORi1=1ton DO
FORj=1ton DO
IF (Ij > Ii) THEN
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Move firefly i towards firefly j using the attractiveness [3;
Add random perturbation to the position of firefly i,
END IF;
END FOR;
END FOR;
Update light intensity based on the new solutions;
END WHILE;
Return the best solution found;
END;

Optimization algorithms: Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization method based on the collective behavior
of'a swarm of particles, each of which represents a possible solution. The particles move through the
search space, guided by their own experience and the experience of their neighbors. The basic idea is
to update the velocity and position of each particle, taking into account its best solution and the best
solution in the swarm. Pseudocode for its implementation:

Pseudocode 3 — Particle Swarm Optimization
Input: f(x), n, MaxGeneration, pBest, gBest, vi
Output: x_best, f(x_best)
BEGIN
Objective function f(x), x = (x1, x2, ..., xd)*T
Initialize a population of n particles xi (i=1, 2, ..., n);
Initialize velocities vi randomly for each particle;
Define personal best (pBest) and global best (gBest) for each particle;
WHILE (t < MaxGeneration) or (stop criterion not met) DO
FORi=1ton DO
Update velocity vi based on pBest and gBest;
Update particle position xi based on vi;
Evaluate the fitness of each particle;
Update personal best (pBest) for each particle;
Update global best (gBest) for the swarm;
END FOR;
END WHILE;
Return the best solution found;

END;

Optimization algorithms: Support Vector Machine

The Support Vector Machine (SVM) method is used to predict continuous values, minimizing the
prediction error and providing a certain tolerance (parameter €). To work with nonlinear data, SVM
uses the so-called “nuclear trick”, which allows you to transform data into a higher feature space.
Kernels can be linear, polynomial, or radial basis functions (RBF). SVM regression is characterized
by resistance to overfitting, efficiency in tasks with high data dimensionality, and the ability to adjust
through hyperparameters such as the regularization coefficient (C) and tolerance (g). However, the
algorithm requires significant computational resources on large datasets and is sensitive to the choice
of hyperparameters. Pseudocode for its implementation:

Pseudocode 4 — Support Vector Machine
Input: f(x), n, MaxGeneration, xi, Xj, yi, yj
Output: x_best, f(x_best)

BEGIN
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Choose kernel function K(xi, xj) (e.g., linear, polynomial, radial basis function);

Set regularization parameter C and tolerance ;

ai = 0 for all data points 1 (Lagrange multipliers);

Define threshold parameter b = 0;

WHILE stop criterion not met DO
FORi=1ton DO

Compute the decision function:

f(x)=2Z qj

*yj *K(xj, x) + b

Calculate the error Ei = f(x1) - yi.

END;

Update ai using the optimization rule:
Maximize:

W(o) = ai-0.5* I8 0i * af * yi * yj * K(xi, xj)

Subject to:
0<ai<C
oai*yi=0

Update the bias term b using support vectors.
END FOR;
END WHILE;

Return the best solution found;

Mathematical model of the control object

Oil separation involves the separation of oil, gas and water, which requires fine tuning to maintain
optimal conditions inside the separator. This is especially important because the flow conditions,
temperature and pressure can change, affecting the quality and quantity of the products received. The
system parameters and variables used below are listed in Table 1.

Table 1 — System variables and parameters

Symbol Description Unit measurements
h(t) Water level inside the separator m
(ONQ)! Water flow rate m3/h
Q,.® Water outflow rate m’/h
r Cage cross section radius m
L Water m
hy(t) Oil level inside the separator m
P (1) Gas pressure inside the separator Pa
C, Exhaust valve release ratio -
u(t) Valve open percentage -

pw Density of water at operating temperature kg/m?

po Oil density at operating temperature kg/m?

Pw Downstream valve pressure Pa
Umax Maximum opening are of the control valve m?
APout Differential pressure over control valve Pa
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According to the geometry of the separator, the volume of water inside the separator is a function
of the water level h and has a specific relationship as:

V() = <r2 (r;—h) — (r—h)2rh = hZL) (1)

Since normal operation requires a water level between the high alarm level (LAH) and the low
alarm level (LAL), thus relation (1) can be simplified as a linear relationship over this interval, i.e.
V(h) = ALh(t) where A = nr2. The dynamics of the volume of water inside the separator corresponds
to the principle of mass balance, 1.e.:

dv(t) dh(t)
According to the theory of flow dynamics, the water flow through the LCV
340018 valve can be determined as:

AP,
Qout = Cof (W) p::;t; 3)
where f(u) represents the characteristics of the open zone valve related to the open percentage u. For
this particular LCV-340018 linear valve, the linear relationship is well maintained. Thus, there exists
f(u) = uUmax. The pressure drop across the valve, denoted as Pout, can be estimated as:

AP, (t) = By (t) + pogho(t) + pygh(t) — B, (1). (4)

The Cv of the valve in (3) is estimated using the least squares method based on the recorded data
of water flow, water and oil levels inside the separator, gas pressure inside the separator, and water
outlet pressure. Assuming that the density of water is constant, the value of Cv will be the solution:

2
N .
mine, ) |Qoue (D) = Cot (DU /APP—W(” ©)

In general, the prediction error is limited to 10%. The validation of this model is within acceptable
limits. If the gas pressure, downstream water valve pressure and oil level inside the separator are
constant or their deviations from the average values are ignored, the non-linear system model is
linearized under normal operating conditions. Assuming that the gas pressure, downstream water
valve pressure and oil level inside the separator are constant or their deviations from the average
values are ignored, the non-linear system model is linearized under normal operating conditions. By
inserting specific system parameters, the linearized model results in the form:

dAh(t)

47.55 P Q;n (t) — 1.81AR(t) — 10.82Au(t), (6)
where Ah(t) (Au(t)) represents the water level deviation (valve position) to equilibrium. Thus, the
transfer function representing the ratios from the unknown perturbation Qin(t) and the control input
u (t) to the output h (t), respectively, will look like this:

24355 + 4382 i
47.5552 + 24535 + 4382 (7

The transfer function is one of the ways to mathematically describe a dynamic system. Mainly
used in control theory, communications and digital signal processing. Represents a differential
operator that expresses the relationship between the input and output of a linear stationary system.
Knowing the input signal of the system and the transfer function, it is possible to recover the output
signal. Figure 2 shows the block diagram of the mathematical model in Simulink.

G(s) =
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0

N 243,55 + 4382
L "] 47.555% + 245.35 + 4382

Figure 2 — Block diagram in MATLAB

The simulation results are presented in Figure 2.1.

Peak AmpFude: 1.48

Orershoot: 48.3%
15 At i 0,286 soconds : Step Response . _—

Firial value: 0.80

Amplitude

Time [seconds)

Figure 2.1 — Result of block diagram modeling

As could be seen from the figure, the system is stable but does not reach the desired value
and there is an overshoot. To improve the dynamics of the system a typical controller should be
synthesized.

Results and Discussion

This chapter presents the results of using rare machine learning algorithms to optimize the
parameters of a PID controller using data from the oil separation process, which presented in Table 2.
To evaluate the effectiveness of each method, numerical experiments were performed, the results of
which are presented in graphical and tabular form.

Table 2 — Fragment of the dataset variables

Point Value Setpoint Output
300,1995611 300 33,15965301
300,1159456 300 33,12499092
300,1966126 300 33,13821924
300,212981 300 33,15679941
299,9569751 300 33,19906364
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Figure 3 below shows the full data distribution.
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Figure 3 — Point Value distribution of FIC

Figure 4 below shows the Output distribution graphically.
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Figure 4 — Output distribution of FIC

The results were obtained based on the following algorithms: Cuckoo Search Algorithm (CSA),
Firefly Algorithm (FA), Particle Swarm Optimization (PSO). Each of the algorithms was used to
adjust the parameters of the PID controller, minimizing the time-weighted absolute error integral
(ITAE). The effectiveness of the algorithms was evaluated by the following metrics: Standard
error (MSE), Setting Time, Overshoot, Steady State Error. In Figure 5 the results obtained before
implementation CSA are presented.

System Response Before Optimization
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Figure 5 — System response before optimization using CSA
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Figure 6 demonstrates the response of the system after implementation of Cuckoo Search
Algorithm.

System Response After Optimization
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Figure 6 — System response after optimization using CSA

Prior to optimization, the system shows significant deviations from the set value of SP, which
indicates a high instability of regulation. The amplitude of the oscillations is large, and the system is
not able to effectively follow the target value. After optimizing the parameters of the PID controller,
a significant decrease in fluctuations is observed, and the system stabilizes, demonstrating more
accurate adherence to the set value of SP. This graphs clearly shows how optimizing the parameters
of the PID controller improves the response of the system, reducing deviations and increasing its
stability.

System Response Before Optimization
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Figure 7 — System response before implementation Firefly algorithm

Figure 8 below shows how system responses after optimization.

System Response After Optimization
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Figure 8 — System response after implementation Firefly algorithm
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The graph shows the system responses before and after optimizing the parameters of the PID
controller. Prior to optimization (upper graph), the system demonstrates significant overshoot, where
the PV process variable exceeds the target value of SP to 320, and then slowly returns to the set
level. After optimization (lower graph), the system response improves significantly: overshoot is
significantly reduced, the PV process variable quickly reaches the target value and remains stable.
The installation time is shortened, and the control becomes more accurate and stable.

Error Dynamics

20 T T
Before Optimization
E 10k After Optimization | |
L
0 ' :
0 50 100 150

Sample Index

Figure 9 — Error dynamics comparison before
and after implementation of PSO algorithm

System output before and after comparison results performed in Figure 10.

>

o System Output (PV)

P 320 . T

% = = = Qriginal PV

<310} Before Optimization |
> After Optimization

)

$300= ~ ! A I | - = ]
o

2 0 50 100 150
o

Sample Index

Figure 10 — Comparison of system output before
and after implementation of PSO algorithm

This graph shows two aspects of the system operation: error dynamics and process variable
before and after optimization of the PID controller. The upper graph shows the dynamics of the
error. Before optimization (red line), the error is characterized by significant overshoot and long-
term fluctuations that fade only towards the end of the period. After optimization (green line), the
error is significantly reduced, the system quickly achieves stability with minimal fluctuations. The
lower graph shows the output signal of the PV system. Before optimization (red line), the system
response shows a large overshoot and a long establishment time, while after optimization (green
line), the response becomes accurate, stable and quickly reaches the set SP value. Optimization of
the parameters of the PID controller has significantly improved the dynamic characteristics of the
system, ensuring its more accurate and stable behavior.

The graph shows a comparison of the actual values of the PV process variable, the predicted
values using the SVM model and the target value of SP. The graph shows that the SVM model
successfully smooths out fluctuations and brings the process variable closer to the set value, which
indicates its potential for use in forecasting and control optimization tasks.

To evaluate the effectiveness of the optimization algorithms used in this study, four key metrics
were analyzed: mean square error (MSE), Settling Time, Overshoot, and Steady-State Error. These
metrics provide a comprehensive assessment of the performance of each algorithm in the task of
managing the system and achieving optimal adherence to a given value.
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SVM Prediction vs Actual Values
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Figure 11 — Comparison of actual and predicted PV using SVM

The standard error (MSE) measures the mean square deviation of a controlled variable (PV) from
a set value (SP), providing information about the accuracy of the control. The Setting Time reflects
the time it takes for the system to stabilize within a given range around the SP. Overshoot indicates
the maximum amount of excess of PV over SP during the transition process, and the Steady-State
Error characterizes the difference between PV and SP after stabilization of the system.

The results of calculations based on the specified metrics for each algorithm are presented in the
table below:

Table 3 — Performance comparison of optimization algorithms

Algorithm MSE Settling Time Overshoot Steady State Error
Cuckoo Search 0.00072739 0 0.066533 0
Firefly Algorithm 1.687 6 2.2848 0.0109
Particle Swarm Optimization 1.687 6 2.2848 0.0109
SVM 0.0024785 0 0.040733 0.0471

A comparison of algorithms based on the presented metrics shows that the best result is achieved
when using the Cuckoo Search algorithm, which demonstrates a minimum standard error (MSE =
0.0007239), the absence of overshoot and establishment time, as well as zero steady-state error. The
Firefly and Particle Swarm Optimization algorithms show identical results with an MSE of 1.687, a
setup time of 6 steps and an overshoot of 2.2848%. The steady state error of these methods is 0.0109,
which is slightly worse compared to Cuckoo Search. The SVM algorithm demonstrates an average
result, showing MSE = 0.0024785, no establishment time and minimal overshoot (0.040733%),
however, its steady-state error is greater than all others (0.0471), which may indicate problems
with long-term control stability. Thus, the Cuckoo Search algorithm is the most effective among the
considered methods for all key metrics.

Conclusion

During the study, various approaches to optimizing the parameters of the PID controller for
process control were studied. The algorithms Cuckoo Search, Firefly Algorithm, Particle Swarm
Optimization and the regression method based on support vectors (SVM) were considered and
compared. The main focus was on metrics such as the mean square error (MSE), Settling Time,
Overshoot, and Steady State Error.
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The analysis of the results showed that each of the approaches has its own strengths and
weaknesses, depending on the characteristics of the system and management requirements. The
Cuckoo Search algorithm demonstrated the best results in terms of the MSE metric and minimal
deviations from the set value, which confirms its effectiveness for tasks with fast transients and high
control accuracy. The Firefly and PSO algorithms showed similar results, with slight differences
in overshoot and set time, which makes them suitable for systems with less stringent accuracy
requirements. The SVM method has also shown good results, especially in minimizing errors in the
steady state, but its effectiveness depends on the quality of the training data.

Thus, for the optimal choice of the optimization method, it is necessary to consider the specifics
of the process, the requirements for the management system and the resources available for
implementation. The presented results emphasize the importance of an integrated approach to the
analysis and comparison of various methods to achieve the best management characteristics.
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MYHARIbI CENAPALIMSIJIAY IPOLECI JEPEKTEPIHIH
HETI3IHJE MAIUUHAJIBIK OKBITY AJITOPUTMAEPIH KOJIJAHBIII
MU PETTETTIITHIH ITAPAMETPJIEPIH OHTAMJIAHIBIPY

AnjaTna

By sxympIc MyHaiier Oeiy mporeciH 6ackapy Kyiieci YIIiH MaIllHHAIBIK OKBITY alTOPUTMICPIH KOJIIaHy
apkputel PID perrterimniHig mapaMeTpiepiH OHTaWTaHABIpY MporeciH 3eprreiini. Kontpommep mapamerprepin
onraimanaeipy (Kp, Ki, Kd) 6akputay camaceliH jkaKcapTy jKOHE TUHAMUKAJIBIK MPOLECTEPACTI KaTelepai a3anTy
yiid MaHpI3bl. Byt Moceneni ey yurin Kexek i3ney anropurmi (CSA), Kapkbipaysik KoHb3Aap anroputmi (FA),
Gesmrextep ToObIH OHTalnaubIpy (PSO) xaHe Tipek BekTopIblK MammHa (SVM) cusKThl GipHele HHHOBAIHSIIBIK
dmicTep KapacThIPBUTABL. bapibIk nepekTep, COHBIH IMIiHAE TEXHOIOTHSIIBIK HYKTeHIH MoHAepi (PV), Oenrinenren
moHzAep (SP) xone mbirsic curHanaaps! (OP) Terismespoitngan aneiHasl. COHBIMEH KaTap, OHTaIaHIBIPBUIFaH
perTerimTepain THIMALUTITiH OaFanay YIIiH TyOipiik opTama kBaapaTTeiK Kare (MSE), OpHBIFY yaKbITBI, aCBIT KETY
JKOHE TYPaKThI KYH/Ieri KaTe CHAKThI KOPCETKILITEp KOMMaHbULbL. JKanmel anrania, 3epTrey HoTHKeIepl 1ocTypii
TOCUIIEPMEH CAJIBICTBIPFaH/Ia MAlIMHAIBIK OKBITY aJTOPUTMJIEPIH KOJJAaHy apKbUIbl JKYHEHIH JUHAMHKAJIbBIK
OHIM/IUTITIHIH alHTapibIKTall jkaKcapraHbIH KepceTeli. AJBIHFAaH OHTAWIaH/IBIPy HapaMeTprepi JKbUIIaM opi
TYPaKThl O0JIa OTHIPBIN, MaKCATTBl MOHTE XKETTi, OYJI TEXHOJOTMSUIBIK MpoIecTi O0ackapy eHIMIUITIH apTThIpyFa
MYMKIHIIK Oepi.

Tipek ce3aep: MyHalpl cemapanusiay, aBTOMAaTTaHABIPY JKyiHeciH oHTaitmannepy, [IM]] perrerim, mapa-

METpJIep/i OHTANIAHIBIPY, MAIINHAIBIK OKBITY, KOKEKTEP/i 13/1ey allTOPUTMI, KapKBIPaybIK KOHBI3Aap alrOpHUTMI,
OeuttiekTep TOOBIH OHTAMIAHABIPY, KOJIAY BEKTOP MAITMHACHI.
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OINTUMHN3AIIUA HAPAMETPOB IUA-PET' YJIATOPA
C HCIIOJIB3OBAHUEM AJITOPUTMOB MAIIMHHOI'O OBYYEHUSA
HA OCHOBE JAHHBIX NPOUECCA CENAPAIIUU HE®THU

AHHOTAUMS

B pabote wucciemyercs mpoiece onTUMu3anuu napamerpos [T I-perymsitopa ¢ TOMOIIBIO HCIIOIB30BAHMUS
AJITOPUTMOB MAlIMHHOT'O 06yquI/151 JJI4 CUCTEMBI YIIPABJIICHUSA IMMPOLECCOM CeTiapalin HC(I)TI/I. OHTI/IMH?;&LII/IH na-
pametpoB koHTposiepa (Kp, Ki, Kd) Baxkna 1 noBbllIeHHs: Ka4ecTBa YIpaBIeHUs ¥ YMEHBIICHHs KOJIMYECTBa
OmMOOK B JUHAMHYECKHX Hporeccax. i1 pemenns 3Toi mpoliemMbl ObUI0 PaCCMOTPEHO HECKOIBKO MHHOBAIIN-
OHHBIX METOJIOB, TAaKUX KaK alropuT™M moucka Kykymku (CSA), anmroput™ cBemitakoB (FA), omrumuszanust pos
gactur (PSO) u meron onopubIx BekTopoB (SVM). Bee manHbIe, BKITIOUas TEKynue 3HaueHUs mporeccoB (PV),
ycraBku (SP) u Beixonubie curnanel (OP), Obin mosy4densl ot « Tenrusmespoiin»a. Kpome Toro, amst oreHku a¢-
(DEeKTHBHOCTH ONTHMHU3UPOBAHHBIX PETYIISITOPOB MCIOJIb30BAIUCH TaKHE ITOKA3aTeNH, KaK CPeJAHEKBaIpaTHdHas
ommbOka (MSE), Bpemst HACTpOMKH, IPEBBIIIEHIE M YCTAHOBUBIIASICS OMINOKA. B 11€710M pe3yiibraThl HCCIeA0BaHUs
CBUJICTCIIECTBYIOT O 3HAYUTEIHHOM YITyYIICHUN JHHAMHYCCKAX XapaKTCPUCTHK CUCTEMBI 3a CUCT MCIIOIb30BaHHUS
ANITOPUTMOB MAIITTHHOTO OOYUYEHHSI TI0 CPABHEHHUIO C TPAIUIIMOHHBIME Toaxonamu. [lomydeHHbIe TapaMeTpsl OTl-
TUMH3AIHAA JOCTHUIIIH [[EIEBOTO 3HAYCHHUS, OCTaBAsICh IPU 3TOM OoJiee OBICTPHIMU M CTAOMIBHBIMH, YTO TIO3BOJIIIIO
TMOBBICUTH MPONU3BOANUTEIILHOCTD YIIPABJICHUA TEXHOJIOTUYCCKHUM IIPOIICCCOM.
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