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DEVELOPMENT OF A PRACTICAL APPROACH 
FOR INFORMATION CONFRONTATION MODELING 

IN SOCIAL NETWORKS BASED ON GAME THEORY METHODS

Abstract
This study investigates the dynamics of social networks  in the context of information confrontation between 

users. It introduces a simulation method for modeling these conflicts, which is based on game-theoretic and 
probabilistic approaches. The paper suggests a method for dynamically observing, following, and updating the 
status of the network. This innovative method conceptualizes information conflicts as a two-player game where 
the objective is to control as many network nodes as possible. By applying game theory, we formulated a strategy 
adaptation algorithm that allows each player to modify their decision-making based on the Facebook Researcher 
open dataset and current network conditions of its Kazakhstani segment. The method for tracking the network’s 
state dynamically leads to significant reductions in resource use and enhancements in computational efficiency. 
Comparative computational tests against other methodologies demonstrate the practical value of our approach for 
addressing a broad spectrum of challenges in information and analytical systems.

Keywords: game theory, strategy adaptation, Social networks, information conflict, simulation algorithm, 
probabilistic approach, analytical systems.

Introduction

This study addresses the critical challenge of analyzing social networks, which have become 
central to information dissemination, communication, and entertainment in contemporary society. 
The increasing prevalence and intricacy of social networks underscore the urgency of developing 
sophisticated analytical methodologies. Current data indicate that an average individual dedicates 
approximately 144 minutes daily to social media, a figure that has seen a consistent rise over the 
past decade. This trend underscores the significance of social networks as venues for information 
conflicts, including manipulation efforts and the dissemination of false information. 

Generally, the issue of modeling the influence and management of information on social 
networks has been explored since the late 1990s [1]. The lack of stringent regulatory oversight and 
the anonymity afforded by the internet present opportunities for malicious entities to propagate 
harmful content. Information warfare, encompassing a spectrum of scenarios where information 
is weaponized to achieve specific objectives, often involves conflicting interests among different 
parties. Examples include corporate rivalries, political disputes, propaganda campaigns, and efforts 
to counteract misinformation and manipulation. Given these considerations, investigating the 
structure of social networks to bolster online security, prevent the spread of harmful content, and 
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combat issues like botnets is of paramount importance. The evolving complexity and dynamism of 
social networks challenge existing analytical methods, necessitating the development of new, more 
effective, and efficient solutions [2].

This research introduces an innovative approach to social network analysis within the framework 
of information conflicts. It integrates game-theoretical principles with probabilistic models of 
information dissemination and dynamic network modeling. Additionally, it presents a sophisticated 
algorithm for real-time monitoring and strategy adjustment among network entities. The objective is 
to establish a model for information confrontation between two entities, designated as A and B, that 
surpasses existing methodologies in terms of efficiency and resource utilization. The validity and 
applicability of the proposed model are affirmed through extensive testing on large-scale network 
models, highlighting its relevance and practical utility in contemporary social network analysis.

The field of social network analysis includes a large number of research interests and 
methodologies, reflecting its significance in understanding complex social structures and behaviors. 
Studies in this domain have traditionally focused on varied aspects such as information warfare, 
community detection, node influence and centrality, viral information dissemination, recommendation 
systems, and sentiment analysis within networks. Various analytical techniques such as graph theory, 
machine learning, clustering, genetic algorithms, and game theory have been employed to dissect 
these phenomena [3].

Our research situates itself within the context of information confrontation in social networks, 
a key aspect of information warfare. The process of information dissemination forms a crucial 
component of this confrontation. Traditionally, models for information dissemination in social 
networks are categorized into graph-based and non-graph-based approaches. Among the graph-based 
models, the Independent Cascades (IC) model [4] and the Linear Threshold (LT) model [5] are 
particularly prominent.

The Linear Threshold model operates under the premise that a node becomes activated when the 
influence from its activated neighbors surpasses a predefined threshold. This model aptly simulates 
situations where community or group decisions are critical, effectively mirroring real-life scenarios 
like the adoption of new products or ideas once they gain sufficient traction within a community. 
This model also sheds light on social influences impacting decision-making, often cited in studies of 
phenomena such as the “tipping point effect.” 

However, the LT model’s primary limitation is its focus on collective thresholds rather than 
individual decision-making processes, which are vital in networks where personal decisions are 
pivotal. While both models operate on a discrete time axis where the information dissemination 
process is iterative and synchronous, starting from initially activated nodes [6], there have been 
adaptations to enhance their applicability and efficiency. For instance, some studies have introduced 
variations of the LT model that incorporate factors like content virality and user-specific probabilities 
of information acceptance [7]. Additionally, asynchronous versions of these models have been 
developed to optimize resource usage and improve computational efficiency, addressing some of the 
synchronous models’ limitations [8].

In addition to graph-based approaches, models that do not rely explicitly on predefined network 
structures, such as the Susceptible-Infectious-Recovered (SIR) and Susceptible-Infectious-Susceptible 
(SIS) models, are instrumental in understanding network dynamics [9]. These epidemiological models 
assess the state of each node and track changes in population segments over time using differential 
equations. They operate under the assumption of random interactions among nodes, which simplifies 
the analysis but might not capture the unique structural properties of specific social networks, thus 
limiting their detailed applicability to social phenomena.

Further enriching the toolkit for social network analysis, probabilistic models, influence 
maximization algorithms like Cost-Effective Lazy Forward (CELF) and CELF++, network 
monitoring optimization algorithms, and game-theoretic frameworks for modeling information 
influence have also been developed [9, 10, 11]. Game-theoretic approaches, in particular, have gained 
prominence. For example, one study employs game theory to devise strategies for blocking influence 
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maximization using oracles to generate mixed strategies for the players, while another builds on this 
with a hierarchical algorithm to enhance the method’s efficiency [12, 13]. 

The limitations of existing approaches often revolve around the assumption of static network 
conditions–despite the inherently dynamic nature of real networks–or the substantial computational 
resources required for processing complex network structures. The ongoing escalation in network 
complexity further complicates the analysis of modern networks using traditional methodologies. 
To address these challenges, we introduce a novel game-theoretic model combined with Markov 
probabilistic models for information dissemination. 

This hybrid model incorporates a streamlined one-oracle approach to reduce computational 
demands while capturing the dynamic interactions and strategic behaviors of entities within the 
network. The specifics of this model and its application are explored in subsequent sections of this 
study, where we detail its design, implementation, and the insights it offers into effective information 
warfare strategies between players A and B.

Any social network can be depicted as a graph G = (V, E), where V represents the vertices, 
corresponding to user accounts, and E denotes the edges, signifying the connections between these 
accounts. These graphs may be either directed or undirected. In a directed graph, connections have 
a specific orientation, meaning that if user A follows user B, it does not necessarily imply that user 
B follows user A. Twitter is a typical example of a directed graph, while networks like Facebook are 
examples of undirected graphs. 

The process of information dissemination on social media can cause certain pieces of information 
to gain fame and even become viral, spreading rapidly across the globe. This process generally 
unfolds in two primary stages:

 � Initial Distribution: Information is shared within a user’s immediate circle through personal 
messages or public posts.

 � Further Distribution: The information then propagates along the network’s edges according to 
the specific rules of the graph that models the network.

Each user within a social network exercises their judgment to either trust or dismiss the 
information they encounter. Furthermore, the decision of each user is influenced by the opinions 
and actions of others within the same network, a phenomenon known as social influence [13]. One 
straightforward method to model the dissemination of information is to consider each node in the 
graph as activated if the node receives and accepts the information, and not activated if the node 
either does not receive or does not accept it.

Figure 1 – A directed graph with 5 users and connections between them

Figure 1 illustrates a directed graph connecting five users. In this diagram, the weights on each 
edge indicate the strength of the connection between users. A higher weight suggests a greater level 
of trust between the users, which is crucial in the context of information dissemination, as users with 
stronger or more influential connections are more likely to trust each other. This modeling approach 
is visualized in Figure 2, where nodes that have accepted the information are highlighted in red. Then 
we adopt this modeling strategy in our research.
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Figure 2 – The process of node activation during the information diffusion

Materials and Methods

The Information Influence Model is designed to explore the impact of information on user behavior. 
Its primary objective is to determine how the information environment and the user’s awareness 
of information shape their decision-making processes. By employing this model, researchers can 
analyze how information flows within a network affect user behavior and decision-making. Because 
social networks can be used as the arena for various types of information confrontation, when 
analyzing social networks in the context of this confrontation, traditionally, three main nested classes 
are analyzed: Information Influence, Information Management, and Information Confrontation, as 
shown in Figure 3.

Figure 3 – A model of information influence, management and confrontation

Expanding upon the Information Influence Model, the Information Management Model 
introduces an additional layer of complexity by incorporating deliberate control over user behavior 
through targeted information influence. This extension allows for a more nuanced understanding of 
how information can be strategically managed to guide or alter user behaviors within the network 
[14]. This approach is crucial for studies aimed at understanding the dynamics of information control 
and its implications on individual and collective actions within social networks.

The main task of this model is to develop strategies to affect the user in a desired way. For 
instance, given two players A and B each of which can influence the initial opinions of certain agents 
in the network. Let A ⊆  N be the set of agents, whose opinions are formed by player A, and B ⊆  N 
be the set of agents whose opinions are formed by player B, then A ∩ B = ∅ . 

Let us assume that information management is unified [15], meaning that all agents in the set 
A form initial opinions u ∊ U, and all agents in the set B form initial opinions v ∊ V, where U and  
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V ⊆ R. The change in the opinion of a network agent, taking into account his own opinion, as well 
as the opinions of his surrounding neighbors, can be represented as an expression (1):

    xti = ∑ aij * xjt-1, t = 1,2, … , i ∈ N.                                           (1)

According to [16] this expression (1) can be simplified as X = ∑ rj*xj0 and in the context of 
information management can be expanded to X(u,v) = rAu + rBv + X0, meaning that the final 
opinion of the social network agents is linearly dependent on management factors u and v with the 
weights rA > 0 and rB > 0, where rA + rB <= 1.

Finally, using the model of information management makes it possible to model the information 
confrontation between users having opposing interests and wanting to influence the subjects of the 
network. To form a game-theoretic model of player interaction, it is necessary to determine the 
objective function of each player. For instance, the objective function of a certain player can be 
determined as follows [17]:

    f(u,v) = QA(X(u,v)) - CA(u),                                                       (2)

where QA(X(u,v)) is the quality function of changing the opinion of a particular agent by player 
A; CA(u) is the cost function, i.e. the resources spent by player A to change the opinion of a certain 
agent. 

Consequently, [15] states that the population of objective functions G = {fA(u,v), fB(u,v), 
u∈U, v∈V} and sets of possible actions result in family of games, the differences between which 
are generated by the specification of the players’ information and the order of functioning. If the 
description of the game and the expression of changing the agent’s opinion are common among 
all players who make their choices only once, simultaneously and independently, then we obtain a 
game in normal form. In such a game it is possible to search for the Nash Equilibria and assess the 
effectiveness of player moves by Pareto. According to game theory, the Nash equilibria is a situation 
in a non-cooperative game where each player is assumed to know the equilibrium strategies of the 
other players, and no player has anything to gain by changing only their own strategy unilaterally. 
Mathematically it is expressed as follows: 

                                Ui(si*, s-i* ) >= U (si , s-i* ),                                                            (3)

where Ui is the payoff function for player i; si* is the strategy chosen by player i in the Nash 
equilibrium; s-i* is the strategies chosen by all other players in the Nash equilibrium.

According to [18], two primary principles govern social influence within a social network: herd 
behavior and information cascades. An information cascade occurs when users disregard their own 
opinions and adopt the views or behaviors of others, based on the assumption that these others have 
acted on valid information–even if such information may not actually be sound. This process leads 
individuals to follow a chain reaction of decisions made by predecessors without critically evaluating 
the underlying information [19]. 

On the other hand, herd behavior involves individuals mimicking the decisions and actions of 
others but with the flexibility to modify these actions based on their personal perspectives. In this 
scenario, while individuals are influenced by the group, they do not completely abandon their own 
judgments or insights. In our research, we have developed a model that incorporates these concepts 
of social influence. This model is visually represented in Figure 4. Let us now delve deeper into 
each component of the depicted scheme to understand how these dynamics of social influence are 
integrated and modeled.
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Figure 4 – Information Confrontation Model

First of all, we designed an artificial network (See Figure 5) using the Networkx, a Python library, 
to model different experiments and compare the results. We apply standard graph theory methods to 
model the social network. We have graph G = (V, E) where vertices (V) are social network accounts 
and edges (E) are connections between them. Each vertex in the graph has a list of parameters 
required to process the model. As it is an information confrontation model, each node of the graph 
has the following parameters:

`A_trust_prob`, i.e. 0.1 <= ̀ A_trust_prob` <= 1: shows the probability that a user will be activated 
by player A;

`A_trusted`, i.e. `A_trusted` ∈ {1, 0}: shows whether or not a user has been activated by player 
A;

`B_trust_prob`, i.e. 0.1 <= ̀ B_trust_prob` <= 1: shows the probability that a user will be activated 
by player B;

`B_trusted`, i.e. `B_trusted` ∈  {1, 0}: shows whether or not a user has been activated by player 
B;

`spread_factor`, i.e. 0 <= `spread_factor` <= 1: shows the ability of the user to spread gained 
information further to its neighbors;

`activity_rate`, i.e. 0 <= `activity_rate` <= 1: shows how active the user is in the network.
To show the strength of connections between users, we integrated the weight factor upon each 

edge, showing the trust level (`trust_level`, i.e. 0 <= `trust_level` <= 1) between the users. With the 
help of this simulated network, we have conducted plenty of experiments, which will be discussed 
in detail in the “Results” section. 

However, having just an artificial network is not enough to make solid conclusions, so we 
decided to test our algorithm on real social networks. For that purpose, we decided to program the 
crawler system, which will be integrated with real social network APIs and pull publicly available 
data required for information confrontation modeling [20]. 

Then, the data will be cleaned and preprocessed, and after that, based on this data, the network 
model will be created and injected into the confrontation game. To keep the network dynamic, the 
Crawler will periodically pull new data from the actual network and inject it into our game. The part 
of the research that includes real-world network integration is currently in progress. That is why all 
the experiments presented in this paper are performed on the designed artificial network.

Game Processing. We modeled information confrontation as the game of two players, A and B, 
that fight for influence in a particular social network. It can be two companies that want to gain the 
trust and loyalty of users. Each player aims to spread its information across as many users in social 
networks as possible, having limited resources. To reach this goal effectively, a player should adapt 
his strategy to respond to the changing environment, considering the current network state and the 
predicted opponent’s strategy. A player has three options to move:

 � It can send information to a particular user (i.e., try to activate it)
 � It can try to switch the user activated by its opponent, thus luring the user to its side
 � It can try to increase the likelihood that a particular user will believe his information
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Figure 5 – Artificial network model with 300 nodes

If the node is activated by player A it is colored red and if it is taken by player B it is colored blue. 
All other nodes are represented as gray. Figure 6 shows how the information diffusion is generated by 
two players in our network model. The game lasts for a number of rounds settled at the initialization 
phase. At each round of the game, players choose the best move according to the cost function, i.e., 
the move that brings the highest profit to the user is selected. In our game, this cost function is as 
follows:

             
              , 

where P(activation)curr – the probability that the current node will be activated by the given player; 
S_factorcurr – the ability of the current node to spread information further; A_ratecurr – the activity 
level of the current node in the network; trust_level(curr, i) – trust level between current node and its 
neighbor I; P(activation)i – the probability that the neighbor i of the current node will be activated by 
the given player; S_factori – the ability of the neighbor to spread information.

Figure 6 – Information diffusion process generated by two players 

𝑄𝑄 =  𝑃𝑃(𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑚𝑚𝑎𝑎𝑖𝑖𝑙𝑙𝑛𝑛)𝑎𝑎𝑐𝑐𝑟𝑟𝑟𝑟  ∗  𝑆𝑆𝑓𝑓𝑚𝑚𝑎𝑎𝑎𝑎𝑙𝑙𝑟𝑟 𝑎𝑎𝑐𝑐𝑟𝑟𝑟𝑟
 ∗  𝐴𝐴𝑟𝑟𝑚𝑚𝑎𝑎𝑒𝑒 𝑎𝑎𝑐𝑐𝑟𝑟𝑟𝑟  +  ∑𝑖𝑖

∈  𝑁𝑁𝑒𝑒𝑖𝑖𝑙𝑙ℎ𝑏𝑏𝑙𝑙𝑟𝑟𝑏𝑏(𝑎𝑎𝑟𝑟𝑐𝑐𝑏𝑏𝑎𝑎_𝑙𝑙𝑒𝑒𝑎𝑎𝑒𝑒𝑙𝑙(𝑎𝑎𝑐𝑐𝑟𝑟𝑟𝑟, 𝑖𝑖)  ∗  𝑃𝑃(𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑚𝑚𝑎𝑎𝑖𝑖𝑙𝑙𝑛𝑛)𝑖𝑖  ∗  𝑆𝑆_𝑓𝑓𝑚𝑚𝑎𝑎𝑎𝑎𝑙𝑙𝑟𝑟𝑖𝑖  ∗  𝐴𝐴_𝑟𝑟𝑚𝑚𝑎𝑎𝑒𝑒𝑖𝑖) 
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This quality function considers not only the current node’s parameters but also its neighbors’ 
parameters to identify the nodes, the activation of which will maximize the spread of the information 
of the given player. This function also considers the willingness of the user to spread information 
further at a given time. For instance, the user may have a high spread factor, but at a given time, it 
may not want to spread information for some reasons such as bad mood, fatigue, frustration, etc [21]. 
It is accomplished by including the randomness factor in the model to make nodes act like real-world 
social network users. 

Real-world social network users depend on plenty of random factors such as mood, fatigue level, 
engagement in social network activity, etc. Therefore, it is essential to consider such factors when 
modeling the information dissemination process. The algorithm of how each player selects its best 
move at a given time is shown in Figure 7.

Figure 7 – The algorithm of player selection
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Observation and Optimization. To optimize the model’s performance, we designed an Oracle that 
constantly monitors the network and its state [22]. This oracle tracks all the changes in the network 
at a given time and documents them in the report. With the help of this oracle, we can visualize the 
network and the state of each element at any given time during the model’s execution. This oracle 
also keeps track of the inertial network changes provoked by a specific node’s activation. 

These so-called “inertia changes” occur when an activated node tries to activate its neighbors 
without the engagement of any player. Using such an oracle significantly increases the speed of 
computations and minimizes the amount of resources consumed by the game. The process of network 
state tracking and actualization is represented in Figure 8.

Figure 8 – The algorithm of network state tracking
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The Independent Cascade model describes a scenario where each activated node has a single 
opportunity to activate each of its inactivated neighbors with a specific probability. This model is 
particularly suited to scenarios that mimic the viral spread of information, where one node’s activation 
can lead to a chain reaction across the network. Nevertheless, the IC model’s simplicity—each node 
having only one chance to activate its neighbors—may not fully capture the repeated efforts users 
often make in real interactions, nor does it accommodate the long-term dynamics of node interactions 
within continually evolving networks.

Results

In this research, we proposed a novel approach for modeling information warfare  between  
users  in  social  networks based on game theory methods, probabilistic approaches for describing the 
spread of information, and dynamic algorithms for monitoring and tracking the state of the network 
at a given time. To find out how well the model does its job, we conducted several experiments on our 
artificial network, and we plan to conduct experiments on a real-world network in the future. 

First of all, we ran the model and analyzed how well two players adapted their strategies during 
the game. Several experiments conducted on networks with different numbers of nodes confirmed 
that users were able to effectively change their strategies according to the changing environment 
to gain maximum profit from each step. For instance, the results of a confrontation game with 100 
rounds between two players A and B having limited resources in the network with 500 nodes, are 
shown in Figure 9. 

Figure 9 – Confrontation in the network with 500 nodes

Furthermore, we conducted comparison tests with other existing methods. The results of the 
experiments were compared with those of existing IC and LT models. We evaluated the efficiency of 
each approach based on its ability to maximize the spread of the information in the network, taking 
into account the initial limitations of resources. We compared the elapsed time of each approach 
and RAM and CPU usage on the networks with the different number of nodes. The performance 
comparison is represented in Figure 10. However, these methods face challenges when applied to 
large-scale real-world networks due to their computational intensity and time requirements. For 
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instance, identifying optimal nodes for monitoring a Twitter subnetwork with 11,000 nodes and 
25,000 connections required approximately 28.7 hours in one study, highlighting the significant 
resource demands of these analyses.

Figure 10 – Performance comparison of the approach 

As can be seen from the graph, when the number of nodes was significantly small, all three 
models showed approximately similar results. However, when the number of nodes exceeded 1000, 
our model showed slightly better results than the others. Moreover, the execution time gap between 
these models became more prominent as the number of nodes in the network increased. 

Since we progress to the second phase of this research, which involves integration with a real-
world network, we plan to further evaluate and compare the performance and resource utilization 
of these models in an actual social network setting. This upcoming comparison will provide deeper 
insights into the efficiency and practicality of our model when applied to real-world data, potentially 
confirming its viability for broader use. The approach significantly increases the validity of the model 
since it becomes capable of verification based on current data, thereby ensuring a high level of 
reliability of research conclusions.

Comparative analysis of our approach with existing models, such as Linear Threshold and 
Independent Cascade models, revealed meaningful findings. While our model demonstrated 
competitive RAM and CPU utilization, especially on large networks, nuanced differences in 
computational efficiency highlight the potential of our approach. The LT model has shown a consistent 
and predictable level of CPU consumption, indicating its linear thresholding mechanism, as shown 
in Figure 10. In contrast, the IC model’s CPU usage has exhibited a more volatile pattern, reflecting 
the stochastic nature of the cascading process. 

Thus, at the end of the experiment, when the number of nodes was approximately 10,000, our 
model could process them in 5814 seconds, whereas 6541 seconds and 8722 seconds were required 
for processing by IC and LT models, respectively. In terms of CPU and RAM, our model has also 
shown promising results. As represented on Figure 11 the IC Model consumed the highest amount 
of memory among those models, and our model consumed the least memory compared to the other 
models. 
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Figure 11 – Memory usage comparison with other models

The results suggest that the game theory approach maps well to the computational requirements 
of existing models and offers a robust framework for capturing the complex dynamics of information 
propagation. In particular, the zigzag pattern of CPU usage, as represented on Figure 12,  in the IC 
model highlights the complex and unpredictable nature of the information cascade, which our game 
theory model handles more consistently and efficiently.

The model demonstrates superior performance in CPU consumption compared to the IC model, 
although it does not outperform the LT model. However, the difference in CPU usage between the 
LT model and our model is minimal and not significant. Overall, our model has delivered satisfactory 
outcomes across numerous tests conducted on an artificial network with varying numbers of nodes. 
Our algorithm can be used in many fields requiring social network modeling, including information 
confrontation modeling, network security, disinformation, viral content reduction, suppression of 
uprisings, and weakening of adverse effects on society.

Discussion

The advent of social networks has caused a paradigm shift in information dissemination, 
transforming the landscape of communication, influence, and decision-making processes. Therefore, 
understanding the dynamics of information confrontation in social networks is not just an academic 
interest but also an urgent need. Models designed to simulate these dynamics, especially using game 
theory methods, offer a perspective from which it is possible to decipher complex interactions and 
predict potential outcomes [23].
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Figure 12 – CPU usage comparison with other models

The research began with the ambitious goal of modeling information confrontation in social 
networks using a new approach based on game theory. The pervasive nature of social networks 
and the multifaceted ways in which reliable and controversial information is disseminated on them 
emphasize the relevance of this study. As social networks become increasingly important in forming 
public opinions, political discourse, and market dynamics, the ability to analyze and predict the flow 
of information becomes crucial.

Conducted experiments allowed us to identify gaps in existing models, such as limited adaptability 
and predictability to dynamic changes in user behavior and network structure. Our approach provides 
deep insight into the interaction mechanisms in the information space, considering many factors, 
including probabilistic estimates and game theoretical strategies. The most notable novelty of our 
work is integrating game theory with dynamic probabilistic and monitoring algorithms, which allows 
real-time adaptation of information dissemination strategies. It represents a significant advance 
in information warfare research, offering a more granular and adaptive approach to managing 
information flows.

In future research, we plan to integrate an automatic crawler mechanism into our model that 
will be used to extract data through social network APIs, thereby ensuring that the input data for the 
modeling is up to date. This modification involves a significant deepening of the methodological 
approach by providing access to actual information flows and structures of social interactions. The 
resulting graph of a real social network will serve as the foundation for analytical work, allowing the 
model to operate with data reflecting the current state of social media. 

Conclusion 

In this research, we proposed a novel approach to analyze social networks in the context of 
information confrontation based on game theory, information dissemination probabilistic models, and 
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network monitoring, tracking, and optimization dynamic algorithms based on one Oracle approach. 
Social networks are a vital part of modern people’s lives, making social network analysis a relevant 
topic today.

The main advantage of our approach is that the whole process is dynamic, which makes it more 
realistic and natural. Using game theory allowed us to realistically model the process of information 
warfare and program adaptive strategies for each player. Our Oracle optimization algorithm helped 
us to overcome some limitations of existing methods by showing better results in elapsed time and 
resource consumption compared to other models. 

In the upcoming research, we plan to integrate a real-world network into our model with the 
help of a crawler algorithm and data preparation and optimization tools. The part of the job is still 
in progress and will be revealed in the upcoming papers. This method has shown decent results and 
provides excellent prospects for developing the process of modeling and analyzing social networks. 
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ОЙЫН ТЕОРИЯСЫНЫҢ ӘДІСТЕРІ НЕГІЗІНДЕ ӘЛЕУМЕТТІК 
ЖЕЛІДЕГІ АҚПАРАТТЫҚ ҚАРСЫ ӘРЕКЕТ МОДЕЛЬДЕРІНІҢ 

ПРАКТИКАЛЫҚ ТӘСІЛДЕРІН ӘЗІРЛЕУ

Аңдатпа
Бұл зерттеу пайдаланушылар арасындағы ақпараттық қақтығыс жағдайында әлеуметтік желідегі өзара 

әрекеттесу динамикасын талдайды. Зерттеуде ойын теориясы мен ықтималдық әдістеріне негізделген 
қақтығыстарды модельдеудің симуляциялық тәсілі ұсынылады. Сонымен қатар, зерттеу жұмысы желінің 
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күйін динамикалық бақылау, қадағалау және жаңарту әдісін ұсынады. Бұл инновациялық тәсіл ақпараттық 
қақтығыстарды екі ойыншының өзара іс-қимылы ретінде модельдейді, мұндағы негізгі мақсат — 
мүмкіндігінше көп желі түйіндерін басқару. Ойын теориясын қолдана отырып, біз Facebook Researcher 
ашық деректер жиынтығы мен қазақстандық сегменттің ағымдағы желілік жағдайына негізделген, әрбір 
ойыншының шешім қабылдау стратегиясын бейімдеуге мүмкіндік беретін алгоритм тұжырымдадық. 
Ұсынылған желі күйін динамикалық бақылау әдісі ресурстарды тұтынуды едәуір азайтып, есептеу 
тиімділігін арттыруға септігін тигізеді. Басқа әдістермен салыстырғанда жүргізілген есептік сынақтар 
ұсынылып отырған тәсілдің практикалық құндылығын дәлелдеді. Бұл әдістің икемділігі мен тиімділігі оны 
ақпараттық және аналитикалық жүйелердегі мәселелердің кең ауқымын шешуге арналған болашағы зор 
құралға айналдырады.

Тірек сөздер: ойын теориясы, стратегияға бейімделу, әлеуметтік желі, ақпараттық қақтығыс, модельдеу 
алгоритмі, ықтималдық көзқарас, аналитикалық жүйелер.
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РАЗРАБОТКА ПРИКЛАДНОГО ПОДХОДА 
К МОДЕЛИРОВАНИЮ ИНФОРМАЦИОННОГО ПРОТИВОСТОЯНИЯ 

В СОЦИАЛЬНЫХ СЕТЯХ НА ОСНОВЕ МЕТОДОВ ТЕОРИИ ИГР

Аннотация
В данной работе исследуется динамика социальных сетей в контексте информационного противобор-

ства между пользователями. В работе представлен новый способ моделирования информационного проти-
воборства в социальных сетях, основанный на теоретико-игровых и вероятностных подходах. Кроме того, 
в статье предлагается метод динамического наблюдения, отслеживания и обновления состояния сети. Этот 
инновационный метод концептуализирует информационные конфликты как игру для двух игроков, целью 
которой является контроль как можно большего числа узлов сети. Применяя теорию игр, мы разработа-
ли эффективный алгоритм адаптации стратегий, который позволяет каждому игроку модифицировать свое 
принятие решений на основе открытого набора данных Facebook Researcher (а именно его казахстанского 
сегмента) и текущих условий сети. Метод динамического отслеживания состояния сети, представленный в 
данном исследовании, приводит к значительному снижению использования ресурсов и улучшению вычис-
лительной эффективности. Сравнительные вычислительные тесты с другими методологиями демонстриру-
ют практическую ценность нашего подхода. Гибкость и эффективность предложенного метода делают его 
перспективным инструментом для решения широкого спектра задач в информационных и аналитических 
системах.

Ключевые слова: теория игр, адаптация стратегий, социальные сети, информационный конфликт, 
алгоритм моделирования, вероятностный подход, аналитические системы.
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