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DEVELOPMENT OF A PRACTICALAPPROACH
FOR INFORMATION CONFRONTATION MODELING
IN SOCIAL NETWORKS BASED ON GAME THEORY METHODS

Abstract

This study investigates the dynamics of social networks in the context of information confrontation between
users. It introduces a simulation method for modeling these conflicts, which is based on game-theoretic and
probabilistic approaches. The paper suggests a method for dynamically observing, following, and updating the
status of the network. This innovative method conceptualizes information conflicts as a two-player game where
the objective is to control as many network nodes as possible. By applying game theory, we formulated a strategy
adaptation algorithm that allows each player to modify their decision-making based on the Facebook Researcher
open dataset and current network conditions of its Kazakhstani segment. The method for tracking the network’s
state dynamically leads to significant reductions in resource use and enhancements in computational efficiency.
Comparative computational tests against other methodologies demonstrate the practical value of our approach for
addressing a broad spectrum of challenges in information and analytical systems.

Keywords: game theory, strategy adaptation, Social networks, information conflict, simulation algorithm,
probabilistic approach, analytical systems.

Introduction

This study addresses the critical challenge of analyzing social networks, which have become
central to information dissemination, communication, and entertainment in contemporary society.
The increasing prevalence and intricacy of social networks underscore the urgency of developing
sophisticated analytical methodologies. Current data indicate that an average individual dedicates
approximately 144 minutes daily to social media, a figure that has seen a consistent rise over the
past decade. This trend underscores the significance of social networks as venues for information
conflicts, including manipulation efforts and the dissemination of false information.

Generally, the issue of modeling the influence and management of information on social
networks has been explored since the late 1990s [1]. The lack of stringent regulatory oversight and
the anonymity afforded by the internet present opportunities for malicious entities to propagate
harmful content. Information warfare, encompassing a spectrum of scenarios where information
is weaponized to achieve specific objectives, often involves conflicting interests among different
parties. Examples include corporate rivalries, political disputes, propaganda campaigns, and efforts
to counteract misinformation and manipulation. Given these considerations, investigating the
structure of social networks to bolster online security, prevent the spread of harmful content, and
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combat issues like botnets is of paramount importance. The evolving complexity and dynamism of
social networks challenge existing analytical methods, necessitating the development of new, more
effective, and efficient solutions [2].

This research introduces an innovative approach to social network analysis within the framework
of information conflicts. It integrates game-theoretical principles with probabilistic models of
information dissemination and dynamic network modeling. Additionally, it presents a sophisticated
algorithm for real-time monitoring and strategy adjustment among network entities. The objective is
to establish a model for information confrontation between two entities, designated as A and B, that
surpasses existing methodologies in terms of efficiency and resource utilization. The validity and
applicability of the proposed model are affirmed through extensive testing on large-scale network
models, highlighting its relevance and practical utility in contemporary social network analysis.

The field of social network analysis includes a large number of research interests and
methodologies, reflecting its significance in understanding complex social structures and behaviors.
Studies in this domain have traditionally focused on varied aspects such as information warfare,
community detection, node influence and centrality, viral information dissemination, recommendation
systems, and sentiment analysis within networks. Various analytical techniques such as graph theory,
machine learning, clustering, genetic algorithms, and game theory have been employed to dissect
these phenomena [3].

Our research situates itself within the context of information confrontation in social networks,
a key aspect of information warfare. The process of information dissemination forms a crucial
component of this confrontation. Traditionally, models for information dissemination in social
networks are categorized into graph-based and non-graph-based approaches. Among the graph-based
models, the Independent Cascades (IC) model [4] and the Linear Threshold (LT) model [5] are
particularly prominent.

The Linear Threshold model operates under the premise that a node becomes activated when the
influence from its activated neighbors surpasses a predefined threshold. This model aptly simulates
situations where community or group decisions are critical, effectively mirroring real-life scenarios
like the adoption of new products or ideas once they gain sufficient traction within a community.
This model also sheds light on social influences impacting decision-making, often cited in studies of
phenomena such as the “tipping point effect.”

However, the LT model’s primary limitation is its focus on collective thresholds rather than
individual decision-making processes, which are vital in networks where personal decisions are
pivotal. While both models operate on a discrete time axis where the information dissemination
process is iterative and synchronous, starting from initially activated nodes [6], there have been
adaptations to enhance their applicability and efficiency. For instance, some studies have introduced
variations of the LT model that incorporate factors like content virality and user-specific probabilities
of information acceptance [7]. Additionally, asynchronous versions of these models have been
developed to optimize resource usage and improve computational efficiency, addressing some of the
synchronous models’ limitations [8].

In addition to graph-based approaches, models that do not rely explicitly on predefined network
structures, such as the Susceptible-Infectious-Recovered (SIR) and Susceptible-Infectious-Susceptible
(SIS) models, are instrumental in understanding network dynamics [9]. These epidemiological models
assess the state of each node and track changes in population segments over time using differential
equations. They operate under the assumption of random interactions among nodes, which simplifies
the analysis but might not capture the unique structural properties of specific social networks, thus
limiting their detailed applicability to social phenomena.

Further enriching the toolkit for social network analysis, probabilistic models, influence
maximization algorithms like Cost-Effective Lazy Forward (CELF) and CELF++, network
monitoring optimization algorithms, and game-theoretic frameworks for modeling information
influence have also been developed [9, 10, 11]. Game-theoretic approaches, in particular, have gained
prominence. For example, one study employs game theory to devise strategies for blocking influence
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maximization using oracles to generate mixed strategies for the players, while another builds on this
with a hierarchical algorithm to enhance the method’s efficiency [12, 13].

The limitations of existing approaches often revolve around the assumption of static network
conditions—despite the inherently dynamic nature of real networks—or the substantial computational
resources required for processing complex network structures. The ongoing escalation in network
complexity further complicates the analysis of modern networks using traditional methodologies.
To address these challenges, we introduce a novel game-theoretic model combined with Markov
probabilistic models for information dissemination.

This hybrid model incorporates a streamlined one-oracle approach to reduce computational
demands while capturing the dynamic interactions and strategic behaviors of entities within the
network. The specifics of this model and its application are explored in subsequent sections of this
study, where we detail its design, implementation, and the insights it offers into effective information
warfare strategies between players A and B.

Any social network can be depicted as a graph G = (V, E), where V represents the vertices,
corresponding to user accounts, and E denotes the edges, signifying the connections between these
accounts. These graphs may be either directed or undirected. In a directed graph, connections have
a specific orientation, meaning that if user A follows user B, it does not necessarily imply that user
B follows user A. Twitter is a typical example of a directed graph, while networks like Facebook are
examples of undirected graphs.

The process of information dissemination on social media can cause certain pieces of information
to gain fame and even become viral, spreading rapidly across the globe. This process generally
unfolds in two primary stages:

¢ Initial Distribution: Information is shared within a user’s immediate circle through personal
messages or public posts.

¢ Further Distribution: The information then propagates along the network’s edges according to
the specific rules of the graph that models the network.

Each user within a social network exercises their judgment to either trust or dismiss the
information they encounter. Furthermore, the decision of each user is influenced by the opinions
and actions of others within the same network, a phenomenon known as social influence [13]. One
straightforward method to model the dissemination of information is to consider each node in the
graph as activated if the node receives and accepts the information, and not activated if the node
either does not receive or does not accept it.

0,537

Figure 1 — A directed graph with 5 users and connections between them

Figure 1 illustrates a directed graph connecting five users. In this diagram, the weights on each
edge indicate the strength of the connection between users. A higher weight suggests a greater level
of trust between the users, which is crucial in the context of information dissemination, as users with
stronger or more influential connections are more likely to trust each other. This modeling approach
is visualized in Figure 2, where nodes that have accepted the information are highlighted in red. Then
we adopt this modeling strategy in our research.
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Figure 2 — The process of node activation during the information diffusion
Materials and Methods

The Information Influence Model is designed to explore the impact of information on user behavior.
Its primary objective is to determine how the information environment and the user’s awareness
of information shape their decision-making processes. By employing this model, researchers can
analyze how information flows within a network affect user behavior and decision-making. Because
social networks can be used as the arena for various types of information confrontation, when
analyzing social networks in the context of this confrontation, traditionally, three main nested classes
are analyzed: Information Influence, Information Management, and Information Confrontation, as
shown in Figure 3.

Information Influence

Information Management

information Confrontation

Information Management

Information Influence
Figure 3 — A model of information influence, management and confrontation

Expanding upon the Information Influence Model, the Information Management Model
introduces an additional layer of complexity by incorporating deliberate control over user behavior
through targeted information influence. This extension allows for a more nuanced understanding of
how information can be strategically managed to guide or alter user behaviors within the network
[14]. This approach is crucial for studies aimed at understanding the dynamics of information control
and its implications on individual and collective actions within social networks.

The main task of this model is to develop strategies to affect the user in a desired way. For
instance, given two players A and B each of which can influence the initial opinions of certain agents

in the network. Let A & N be the set of agents, whose opinions are formed by player A, and BE N

be the set of agents whose opinions are formed by player B, then ANB=0 .
Let us assume that information management is unified [15], meaning that all agents in the set

A form initial opinions u € U, and all agents in the set B form initial opinions v € V, where U and
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V € R. The change in the opinion of a network agent, taking into account his own opinion, as well
as the opinions of his surrounding neighbors, can be represented as an expression (1):

xti=Y aij * xjt-1,t=12, ..., EN. (1)

According to [16] this expression (1) can be simplified as X =}’ rj*xj0 and in the context of
information management can be expanded to X(u,v) = rAu + rBv + X0, meaning that the final
opinion of the social network agents is linearly dependent on management factors u and v with the
weights A > 0 and 1B > 0, where tA+ 1B <= 1.

Finally, using the model of information management makes it possible to model the information
confrontation between users having opposing interests and wanting to influence the subjects of the
network. To form a game-theoretic model of player interaction, it is necessary to determine the
objective function of each player. For instance, the objective function of a certain player can be
determined as follows [17]:

f(u,v) = QA(X(u,v)) - CA(u), 2)

where QA(X(u,v)) is the quality function of changing the opinion of a particular agent by player
A; CA(u) is the cost function, i.e. the resources spent by player A to change the opinion of a certain
agent.

Consequently, [15] states that the population of objective functions G = {fA(u,v), fB(u,v),
u€U, vEV} and sets of possible actions result in family of games, the differences between which
are generated by the specification of the players’ information and the order of functioning. If the
description of the game and the expression of changing the agent’s opinion are common among
all players who make their choices only once, simultaneously and independently, then we obtain a
game in normal form. In such a game it is possible to search for the Nash Equilibria and assess the
effectiveness of player moves by Pareto. According to game theory, the Nash equilibria is a situation
in a non-cooperative game where each player is assumed to know the equilibrium strategies of the
other players, and no player has anything to gain by changing only their own strategy unilaterally.
Mathematically it is expressed as follows:

Ui(si*, s-i* ) >= U (si , s-i* ), 3)

where U, is the payoff function for player i; s.* is the strategy chosen by player i in the Nash
equilibrium; s_* is the strategies chosen by all other players in the Nash equilibrium.

According to [18], two primary principles govern social influence within a social network: herd
behavior and information cascades. An information cascade occurs when users disregard their own
opinions and adopt the views or behaviors of others, based on the assumption that these others have
acted on valid information—even if such information may not actually be sound. This process leads
individuals to follow a chain reaction of decisions made by predecessors without critically evaluating
the underlying information [19].

On the other hand, herd behavior involves individuals mimicking the decisions and actions of
others but with the flexibility to modify these actions based on their personal perspectives. In this
scenario, while individuals are influenced by the group, they do not completely abandon their own
judgments or insights. In our research, we have developed a model that incorporates these concepts
of social influence. This model is visually represented in Figure 4. Let us now delve deeper into
each component of the depicted scheme to understand how these dynamics of social influence are
integrated and modeled.
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Figure 4 — Information Confrontation Model

First of all, we designed an artificial network (See Figure 5) using the Networkx, a Python library,
to model different experiments and compare the results. We apply standard graph theory methods to
model the social network. We have graph G = (V, E) where vertices (V) are social network accounts
and edges (E) are connections between them. Each vertex in the graph has a list of parameters
required to process the model. As it is an information confrontation model, each node of the graph
has the following parameters:

"A_trust_prob’,i.e. 0.1 <="A trust prob’ <= 1:shows the probability that a user will be activated
by player A;

A trusted’, i.e. "A_trusted’ € {1, 0}: shows whether or not a user has been activated by player
A

'B_trust prob’,i.e.0.1 <='B_trust prob’ <= 1: shows the probability that a user will be activated
by player B;

'B_trusted’, i.e. 'B_trusted” € {1, 0}: shows whether or not a user has been activated by player
B;

‘spread factor’, i.e. 0 <= “spread factor’ <= 1: shows the ability of the user to spread gained
information further to its neighbors;

‘activity rate’, i.e. 0 <= activity rate’ <= 1: shows how active the user is in the network.

To show the strength of connections between users, we integrated the weight factor upon each
edge, showing the trust level ("trust_level’, i.e. 0 <= "trust_level’ <= 1) between the users. With the
help of this simulated network, we have conducted plenty of experiments, which will be discussed
in detail in the “Results” section.

However, having just an artificial network is not enough to make solid conclusions, so we
decided to test our algorithm on real social networks. For that purpose, we decided to program the
crawler system, which will be integrated with real social network APIs and pull publicly available
data required for information confrontation modeling [20].

Then, the data will be cleaned and preprocessed, and after that, based on this data, the network
model will be created and injected into the confrontation game. To keep the network dynamic, the
Crawler will periodically pull new data from the actual network and inject it into our game. The part
of the research that includes real-world network integration is currently in progress. That is why all
the experiments presented in this paper are performed on the designed artificial network.

Game Processing. We modeled information confrontation as the game of two players, A and B,
that fight for influence in a particular social network. It can be two companies that want to gain the
trust and loyalty of users. Each player aims to spread its information across as many users in social
networks as possible, having limited resources. To reach this goal effectively, a player should adapt
his strategy to respond to the changing environment, considering the current network state and the
predicted opponent’s strategy. A player has three options to move:

¢ [t can send information to a particular user (i.e., try to activate it)

+ It can try to switch the user activated by its opponent, thus luring the user to its side

¢ [t can try to increase the likelihood that a particular user will believe his information
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Figure 5 — Artificial network model with 300 nodes

If the node is activated by player A it is colored red and if it is taken by player B it is colored blue.
All other nodes are represented as gray. Figure 6 shows how the information diffusion is generated by
two players in our network model. The game lasts for a number of rounds settled at the initialization
phase. At each round of the game, players choose the best move according to the cost function, i.e.,
the move that brings the highest profit to the user is selected. In our game, this cost function is as
follows:

Q = P(aCtivation)curr * Sfactor curr * Arate curr + Zl

€ Neighbors(trust_level(curr,i) * P(activation); * S_factor; * A_rate;)’

where P(activation)curr — the probability that the current node will be activated by the given player;
S factorcurr — the ability of the current node to spread information further; A_ratecurr — the activity
level of the current node in the network; trust level(curr, i) — trust level between current node and its
neighbor [; P(activation)i — the probability that the neighbor i of the current node will be activated by
the given player; S_factori — the ability of the neighbor to spread information.

Figure 6 — Information diffusion process generated by two players
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This quality function considers not only the current node’s parameters but also its neighbors’
parameters to identify the nodes, the activation of which will maximize the spread of the information
of the given player. This function also considers the willingness of the user to spread information
further at a given time. For instance, the user may have a high spread factor, but at a given time, it
may not want to spread information for some reasons such as bad mood, fatigue, frustration, etc [21].
It is accomplished by including the randomness factor in the model to make nodes act like real-world
social network users.

Real-world social network users depend on plenty of random factors such as mood, fatigue level,
engagement in social network activity, etc. Therefore, it is essential to consider such factors when
modeling the information dissemination process. The algorithm of how each player selects its best
move at a given time is shown in Figure 7.

Listing 1.0. Player's best move algorithm

Inputs:
R - current player's resources,
G, suceu - the subset conmining not activated nodes of the current player

Output:
player's best move
. Begin
2. lterate through the set of inactivated nodes of the current player:
a. Apply the cost function to each node

b. Find the node with the highest quality

3. If the selected node is not activated by the opponent:
a. Ifitis possible to activate it right now:
i.  Activate this node
ii. Remove this node from the current player's set of inactivated
nodes
iii. Reduce the resources of the current player
b. Elseif it is not possible to activate it right now:
i. Increase its activation probability by 0.1
ii. Reduce the resources of the current player
4. If the selected node is activated by the opponent:
a. Ifitis possible to switch the node right now:
i. Switchit
ii. Remove this node from the current player's set of inactivated
nodes
iii. Add this node to the opponent's set of inactivated nodes
iv. Reduce the resources of the current player
b. Elseifit is not possible to switch it right now:
i.  Increase its activation probability by 0.1

ii. Reduce the resources of the current player
5. End

Figure 7 — The algorithm of player selection
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Observation and Optimization. To optimize the model’s performance, we designed an Oracle that
constantly monitors the network and its state [22]. This oracle tracks all the changes in the network
at a given time and documents them in the report. With the help of this oracle, we can visualize the
network and the state of each element at any given time during the model’s execution. This oracle
also keeps track of the inertial network changes provoked by a specific node’s activation.

These so-called “inertia changes” occur when an activated node tries to activate its neighbors
without the engagement of any player. Using such an oracle significantly increases the speed of
computations and minimizes the amount of resources consumed by the game. The process of network
state tracking and actualization is represented in Figure 8.

Listing 2.0. Network actualization and inertial effect after each move

Input:
G - social network graph

Output:
Actualized network

|. Begin
2. If the last move was ‘activate’ or “switch’:
a. Update Oracle's report
b. If the node is able to spread information to its neighbors and is
willing to do that:
i. Take a random subset of neighbors this node is willing to
share information with
ii. Run through each neighbor in this subset and try to activate it:
I. If neighbor is not activated by the opponent:
a. If neighbor can be activated:
i.  Activate it
ii. Remove it from the current player’s set of
inactivated nodes
b. Else:
i.  Skip this neighbor
2. Else if neighbor is activated by the opponent:
a. If neighbor can be switched by the current
player:
i. Switch it
ii. Remove it from the current player's set of
inactivated nodes
iii. Additto the opponent’s set of inactivated
nodes
b. Else:
i.  Skip this neighbor
<. Else:
i. Do nothing
3. Else if the last move was “increase trust_prob™:
a. Update Oracle's report
4. End

Figure 8 — The algorithm of network state tracking
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The Independent Cascade model describes a scenario where each activated node has a single
opportunity to activate each of its inactivated neighbors with a specific probability. This model is
particularly suited to scenarios that mimic the viral spread of information, where one node’s activation
can lead to a chain reaction across the network. Nevertheless, the IC model’s simplicity—each node
having only one chance to activate its neighbors—may not fully capture the repeated efforts users
often make in real interactions, nor does it accommodate the long-term dynamics of node interactions
within continually evolving networks.

Results

In this research, we proposed a novel approach for modeling information warfare between
users in social networks based on game theory methods, probabilistic approaches for describing the
spread of information, and dynamic algorithms for monitoring and tracking the state of the network
at a given time. To find out how well the model does its job, we conducted several experiments on our
artificial network, and we plan to conduct experiments on a real-world network in the future.

First of all, we ran the model and analyzed how well two players adapted their strategies during
the game. Several experiments conducted on networks with different numbers of nodes confirmed
that users were able to effectively change their strategies according to the changing environment
to gain maximum profit from each step. For instance, the results of a confrontation game with 100
rounds between two players A and B having limited resources in the network with 500 nodes, are
shown in Figure 9.

information_warfare_simulation: ending state

Node ookors
- grey nodes: 193
=i red nodes: 133
=i blue nodes: 164

Figure 9 — Confrontation in the network with 500 nodes

Furthermore, we conducted comparison tests with other existing methods. The results of the
experiments were compared with those of existing IC and LT models. We evaluated the efficiency of
each approach based on its ability to maximize the spread of the information in the network, taking
into account the initial limitations of resources. We compared the elapsed time of each approach
and RAM and CPU usage on the networks with the different number of nodes. The performance
comparison is represented in Figure 10. However, these methods face challenges when applied to
large-scale real-world networks due to their computational intensity and time requirements. For
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instance, identifying optimal nodes for monitoring a Twitter subnetwork with 11,000 nodes and
25,000 connections required approximately 28.7 hours in one study, highlighting the significant
resource demands of these analyses.
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Figure 10 — Performance comparison of the approach

As can be seen from the graph, when the number of nodes was significantly small, all three
models showed approximately similar results. However, when the number of nodes exceeded 1000,
our model showed slightly better results than the others. Moreover, the execution time gap between
these models became more prominent as the number of nodes in the network increased.

Since we progress to the second phase of this research, which involves integration with a real-
world network, we plan to further evaluate and compare the performance and resource utilization
of these models in an actual social network setting. This upcoming comparison will provide deeper
insights into the efficiency and practicality of our model when applied to real-world data, potentially
confirming its viability for broader use. The approach significantly increases the validity of the model
since it becomes capable of verification based on current data, thereby ensuring a high level of
reliability of research conclusions.

Comparative analysis of our approach with existing models, such as Linear Threshold and
Independent Cascade models, revealed meaningful findings. While our model demonstrated
competitive RAM and CPU utilization, especially on large networks, nuanced differences in
computational efficiency highlight the potential of our approach. The LT model has shown a consistent
and predictable level of CPU consumption, indicating its linear thresholding mechanism, as shown
in Figure 10. In contrast, the IC model’s CPU usage has exhibited a more volatile pattern, reflecting
the stochastic nature of the cascading process.

Thus, at the end of the experiment, when the number of nodes was approximately 10,000, our
model could process them in 5814 seconds, whereas 6541 seconds and 8722 seconds were required
for processing by IC and LT models, respectively. In terms of CPU and RAM, our model has also
shown promising results. As represented on Figure 11 the IC Model consumed the highest amount
of memory among those models, and our model consumed the least memory compared to the other
models.
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Figure 11 — Memory usage comparison with other models

The results suggest that the game theory approach maps well to the computational requirements
of existing models and offers a robust framework for capturing the complex dynamics of information
propagation. In particular, the zigzag pattern of CPU usage, as represented on Figure 12, in the IC
model highlights the complex and unpredictable nature of the information cascade, which our game
theory model handles more consistently and efficiently.

The model demonstrates superior performance in CPU consumption compared to the IC model,
although it does not outperform the LT model. However, the difference in CPU usage between the
LT model and our model is minimal and not significant. Overall, our model has delivered satisfactory
outcomes across numerous tests conducted on an artificial network with varying numbers of nodes.
Our algorithm can be used in many fields requiring social network modeling, including information
confrontation modeling, network security, disinformation, viral content reduction, suppression of
uprisings, and weakening of adverse effects on society.

Discussion

The advent of social networks has caused a paradigm shift in information dissemination,
transforming the landscape of communication, influence, and decision-making processes. Therefore,
understanding the dynamics of information confrontation in social networks is not just an academic
interest but also an urgent need. Models designed to simulate these dynamics, especially using game
theory methods, offer a perspective from which it is possible to decipher complex interactions and
predict potential outcomes [23].
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Figure 12 — CPU usage comparison with other models

The research began with the ambitious goal of modeling information confrontation in social
networks using a new approach based on game theory. The pervasive nature of social networks
and the multifaceted ways in which reliable and controversial information is disseminated on them
emphasize the relevance of this study. As social networks become increasingly important in forming
public opinions, political discourse, and market dynamics, the ability to analyze and predict the flow
of information becomes crucial.

Conducted experiments allowed us to identify gaps in existing models, such as limited adaptability
and predictability to dynamic changes in user behavior and network structure. Our approach provides
deep insight into the interaction mechanisms in the information space, considering many factors,
including probabilistic estimates and game theoretical strategies. The most notable novelty of our
work is integrating game theory with dynamic probabilistic and monitoring algorithms, which allows
real-time adaptation of information dissemination strategies. It represents a significant advance
in information warfare research, offering a more granular and adaptive approach to managing
information flows.

In future research, we plan to integrate an automatic crawler mechanism into our model that
will be used to extract data through social network APIs, thereby ensuring that the input data for the
modeling is up to date. This modification involves a significant deepening of the methodological
approach by providing access to actual information flows and structures of social interactions. The
resulting graph of a real social network will serve as the foundation for analytical work, allowing the
model to operate with data reflecting the current state of social media.

Conclusion

In this research, we proposed a novel approach to analyze social networks in the context of
information confrontation based on game theory, information dissemination probabilistic models, and
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network monitoring, tracking, and optimization dynamic algorithms based on one Oracle approach.
Social networks are a vital part of modern people’s lives, making social network analysis a relevant
topic today.

The main advantage of our approach is that the whole process is dynamic, which makes it more
realistic and natural. Using game theory allowed us to realistically model the process of information
warfare and program adaptive strategies for each player. Our Oracle optimization algorithm helped
us to overcome some limitations of existing methods by showing better results in elapsed time and
resource consumption compared to other models.

In the upcoming research, we plan to integrate a real-world network into our model with the
help of a crawler algorithm and data preparation and optimization tools. The part of the job is still
in progress and will be revealed in the upcoming papers. This method has shown decent results and
provides excellent prospects for developing the process of modeling and analyzing social networks.
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AKEJIIIET'T AKITAPATTBIK KAPCBI OPEKET MOAEJIBAEPIHIH
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Anjarna
byn 3eprrey mainanaHylbuIap apacklHIaFbl aKIapaTThIK KAKTBHIFBIC JKaFIaibIH/Ia QJICYMETTIK JKeJiIeri e3apa
OpeKeTTeCy AMHAMMKACHIH TaJlJaiabl. 3epTTeyAe OMBIH TEOPHACHl MEH BIKTUMAIIBIK OMICTEpiHE HETi3eNIreH
KaKTBIFBICTAP/Ibl MOCIB/ICYNIH CUMYISIHUSIBIK TOCUTI YChIHBIIabl. COHBIMEH Karap, 3epTTey JKYMBICHI XKETiHIH

52



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI Ne 2(73) 2025

KYHiH JMHAMUKaIIBIK OaKpuIay, KaJaraay yKoHe )KaHapTy SJIICIH YChIHA/Ibl. byl MHHOBAIMSUIBIK TOCLT aKapaTThIK
KaKTBIFbICTAp/Ibl €Ki OWBIHIIBIHBIH ©3apa 1C-KUMBUIbI PETIHJE MOJENBbACHII, MYHJaFbl HEri3ri Makcar —
MYMKIHAITHIIE Kol kel TyHiHxepiH Oackapy. OWbIH TeopHsCHIH KoijaHa oTwIpbin, 0i3 Facebook Researcher
aIIBIK JEPEKTep JKUBIHTHIFBl MEH Ka3aKCTaHJIBIK CETMEHTTIH aFbIMIAFbl JKEIUTIK XKaFJallblHa Heri3aeireH, apoip
OWBIHIITBIHBIH IIEIIiM KaObUTAAy CTpaTerwsAcChIH OeifiMmeyre MYMKIHIIK OCepeTiH alropuT™M TYKBIPBIMAAIBIK.
YCHIHBIIFaH JKelli KYWiH JUHAMHUKANBIK OaKbulay oJici pecypcTapAbl TYTBIHYIBI €Ioyip a3alThIN, ecenTey
THIMJIUIITIH apTThIpyFa CENTiriH Turizeni. backa ojicTepMeH canbICThIpFaHAa JKYPTi3UIreH €CeNTiK ChIHAKTap
YCBIHBUIBII OTBIPFAH TOCUIIIH MPAKTUKAIBIK KYHIBUIBIFBIH TOJICIICII. BYJ1 9IICTIH MKEMILIITT MEH THIMJILUIITT OHBI
aKNaparThIK JKOHE aHAINTHKAIBIK JKYHeJlepaeri MacelesepaiH KeH ayKbIMBIH LIENIyre apHajFaH OoJaIlarbl 30D
Kypalra aifHaJIbIpaibl.
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AJTOPUTMI, BIKTUMAJIJIBIK KO3Kapac, aHAIMTHKAIIBIK KYHeep.
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PABPABOTKA INPUKJIAJTHOTO MOAXOOA
K MOAEJIUPOBAHUIO HHO®OPMALMOHHOI'O TIPOTUBOCTOAHUA
B COHUAJIBHBIX CETAX HA OCHOBE METOJ0OB TEOPUU UT'P

AHHOTALUA

B manHOii paboTe HccIeayeTcs: JHHAMHKA COL[HABHBIX CETeH B KOHTEKCTE HH(OPMAIIOHHOTO TPOTHBOOOD-
CTBa MEXXJIy MOJNB30BaTe/sIMU. B paboTe mpecTaBieH HOBBIH CIIOCOO MOICTUPOBaHHS HH(POPMAIHOHHOTO MPOTH-
BOOOPCTBA B COMATBHBIX CETSAX, OCHOBAHHBIN Ha TEOPETHKO-MIPOBBIX U BEPOSITHOCTHBIX Mojaxoxax. Kpome Toro,
B CTaThC MPEIAracTcs METON JMHAMUYECKOrO HAOMIOICH S, OTCICKUBAHUS 1 OOHOBJICHHS COCTOSIHUS CETU. DTOT
MHHOBAIIMOHHBIA METOJ KOHIEITYaIu3UPyeT HHGOPMALIMOHHBIC KOH(IUKTHI KaK UTPY [UISL IBYX MIPOKOB, LIEIBIO
KOTOpPOH SIBISICTCS. KOHTPOIb KaK MOJKHO OOJBILIEro YHCiIa Y3II0B CeTd. [IpUMEHsIsT TEOpHI0 Urp, MBI pa3pabora-
71 3G PEKTUBHBINA aJTOPUTM aIaNTAIUK CTPATETHi, KOTOPBII MO3BOIISIET KAJKIOMY UTPOKY MOAU(DUIIMPOBATE CBOE
NPUHSATHE PEIICHUH Ha OCHOBE OTKPBITOro Habopa aaHHbix Facebook Researcher (a mMeHHO ero ka3zaxcTaHCKOTO
CerMeHTa) M TeKYIIMX yCIOBUil ceT. MeTol TMHAMHUYECKOTO OTCIICKHBAHUS COCTOSIHHSI CETH, MPE/ICTABICHHBIN B
JTAHHOM HCCIICIOBAHHUH, IPUBOIUT K 3HAYUTEILHOMY CHH)KCHHIO UCIIOJIb30BAHUS PECYPCOB U YIYYLICHHUIO BBIYKC-
auTenbHOi A dexruBHOCTH. CpaBHUTEIBHBIC BEIYUCIUTEIBHBIC TECTHI C IPYTHMH METOIOJIOTUSMU JEMOHCTPUPY-
FOT MPAKTHYECKYO [EHHOCTh HAIIEero moaxoxa. [ MOkocTh 1 3 (HEKTHBHOCTD MPETIOKEHHOTO METO/a ACIAI0T €ro
HEPCICKTHBHBIM HHCTPYMEHTOM ISl PEIICHHS IIMPOKOTO CIIEKTpa 3a1a4 B MH(POPMAIMOHHBIX M aHAJUTHYCCKUX
CHCTEMaX.

KaioueBbie ciioBa: TCOpUs Urp, aaantanus CTpaTeFHﬁ, COIIMAJIbHBIC CCTH, I/IH(l)OpMaHI/IOHHHﬁ KOH(I)J'II/IKT,
AJITOPUTM MOACIIMPOBAHNA, BCpOHTHOCTHHﬁ IoAX01, aHAJIUTHYCCKUC CUCTCMBI.
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