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Abstract

This paper deals with numerical modelling of supersonic flow of cone and sphere bodies using the penalty
function method. The main objective of the study is to evaluate the effectiveness of the penalty function method,
also known as the immersed boundary method, for solving compressible gas dynamics problems. We apply modified
Navier-Stokes equations considering streamlined bodies and use the ENO scheme for the numerical solution. The
simulation results demonstrate that the proposed approach successfully describes the physical processes occurring in
the supersonic flow of a cone and sphere, including the formation of shock waves, pressure, temperature and density
distributions. The obtained data are compared with experimental results, confirming the adequacy and accuracy
of the developed numerical model. The presented work contributes to the development of methods for numerical
modelling of compressible supersonic flows and demonstrates the promising use of the penalty function method for
solving a wide class of gas dynamics problems.
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Introduction

Numerical modelling of compressible flow around moving solids is an important problem in
many engineering applications such as rocket engines. The solution of such problems is often related
to the study of the interaction between gas flows and solid bodies. For example, the task may be to
find the pressure distribution on the surface of a streamlined body, to determine the forces acting on
the body or the flow velocity field. Creation of a mathematical model of gas-body interaction requires
correct setting of boundary conditions at the interface of two media. The most popular approach for
this purpose is the use of boundary meshes. All surfaces are defined by grid nodes, and the required
boundary conditions are given by algebraic relations in these nodes. For a complex geometrical body,
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the construction of a mesh with boundary correction is a very resource-intensive and time-consuming
process.

Considering the described difficulties, an alternative approach based on immersed boundary
methods [1-2], which ensures fulfilment of boundary conditions in mathematical models without
using boundary-controlled meshes, has been rapidly developed in recent decades. The method can
perform modelling on simple Cartesian meshes and impose gas immersed boundary conditions. Two
important advantages of this idea are its simple implementation and the relatively easy extension
from a stationary body to a moving body in general without mesh reconstruction. The immersed
boundary method (IBM) was first formulated by Peskin [3], where the interfaces between two media
were modelled by adding initial conditions to the basic equations of gas dynamics. Based on this
idea, various formulations of the immersed boundary method have now appeared [1], which can be
divided into two classes:

The boundary condition is determined by adding external forces or sources that take into account
the original gas dynamics equation and the influence of the boundary (Continuous Effect Method,
e.g., Brinkman Penalty Method and Feature Based Volume Penalty Method [4] and Discrete Effect
Method [5]),

Methods for spatial discretisation of the original equation that vary near an immersed boundary
(discrete action methods such as the phantom cell method [6—7] and the cut cell method [8]).

Immersed boundary methods were originally proposed for modelling the flow of incompressible
fluid and have recently been applied to modelling the flow of compressible fluid [14—17]. The penalty
function method applied is universal because an ordered body is added to the differential equation
in the form of an initial function, and the resulting new equation is discretised and solved in the
usual way. An extension of the penalty function has been proposed that imposes characteristic-based
boundary conditions using its hyperbolicity to establish homogeneous and inhomogeneous Neumann
and Robin boundary conditions. This characteristic-based penalty method (CBVP) is flexible and can
be applied to parabolic and hyperbolic evolution equations. In this paper, CBVP is considered for
the fully compressible Navier-Stokes equation. This method provides strict error control with pre-
selected parameters for all boundary conditions [4].

The method of immersed boundaries is considered in many research works [9-13]. When
studying the method in this work, the conditions of cone flowing with compressible gas were taken
into account. To solve this problem, the method of penalty functions on characteristics was used. The
aim of this study is to model the flow of a fully compressible gas past a cone. The study starts with
the Navier-Stokes equations with penalty functions for a compressible medium with initial terms,
including the continuity equation written by the penalty function.

The results obtained allow us to gain a deeper understanding of the physical processes occurring
in the supersonic flow of a cone-sphere-type body and to evaluate the eftfectiveness of the method of
introducing a penalty function in this context. Research work on the supersonic flow problem V.A.
This was evaluated by comparing the experimental data with the article by Bashkin [18].

The aim of the work is to solve a numerical method for modelling the supersonic flow of a cone
and a sphere. The study aims to evaluate the effectiveness of the penalty function method.

Materials and Methods
The application of the penalty function method to the numerical solution of the flow of a cone
and a sphere by a supersonic flow of compressible ideal gas is considered. The numerical calculation

of the basic equations will be performed by a through calculation, for which modified equations will
be proposed taking into account the body flow (see Fig. 1).
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Figure 1 — a) Sphere flow diagram (Problem 1),
b) Cone flow diagram (Problem 2)
The equations of a compressible ideal gas:
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This tensor describes the viscous stresses in the fluid.
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here S, is Sutherland constant.
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Parameters in equations (1) — (3) are de-measured as in [19].

Boundary conditions for gas dynamics:

1) atthe inlet Up, Voo, Weo,y Moo Toa, Poo

2) at the outlet non-reflective boundary conditions;

3) on the lateral borders non-reflective boundary conditions;

4) at the upper and lower boundaries there are non-reflection conditions.

The penalty function method is used for this problem, the application of which is described in
detail in [20].

Results and Discussion

The process of supersonic compressible flow of a spherical body (problem 1) is considered.
Supersonic conditions: flow velocity, Mach number M., = 1.3 and Reynolds number Re = 10%
Adiabatic boundary conditions and slip conditions were set on the sphere surface.

Figure 2 shows the Mach number contour. When the flow is turbulent, it can be found that the
shock wave is not destroyed by turbulence, and even when the turbulence is intense, the shock wave
is still clearly visible at the top of the particle. Therefore, the wave structure around the particle is not
significantly different from laminar flow. In the forebody region, the Mach number induced by the
shock wave starts to decrease (to about 0.7).

One can observe the formation of a boundary layer in the front part of the sphere, as well as an
increase in the flow velocity as the flow bypasses the body. In the region where the flow detaches
from the body, the velocity changes due to vortices and turbulence zones. After passing the area, the
flow stabilises.

Figure 3 shows the temperature increase due to compression and heating of the gas during
collision. As one moves away from the body, a sparse vortex region appears, and hence the temperature
starts to fall.
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Figure 2 — Variation of the Mach parameter M, = 1.3 at YX
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Figure 3 — Temperature T change at ZY

As shown in Figure 4, due to the formation of the shock wave, there is an increase in density in
the frontal region of the body. Along the body surface, the density gradually decreases. This is due
to the change of flow characteristics along the body, redistribution of density in the boundary layer.
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Figure 4 — Density P change at YX

Figure 5 shows the pressure increase under the influence of the shock wave. The pressure
gradually decreases along the surface of the sphere. And in the rear region of the sphere there will be
a sharp pressure drop.

The process of flowing of a cone-shaped body by a supersonic compressible body (Problem 2)
is considered. Supersonic conditions: flow velocity, Mach number M., = 1.3 and Reynolds number
Re = 103. Adiabatic boundary conditions and slip conditions were set on the sphere surface.

L

1
1
1
1
"
"
1
1
1
1
1
1

a

[&)]

ol

ol

7
.6
.6
5
5
45
4
3
3
.2
2
A

w

Figure 5 — Pressure P change at YX
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In Figure 6, the distribution of Mach number M., = 1.3 when moving around a cone-type body
is shown. In the front part of the body, due to the impact of the shock wave, one can observe a
decrease in the flow velocity and a gradual acceleration of the flow velocity as the body is enveloped.

Figure 6 — Mach number M, = 1.3 at ZX

In Figure 7 the temperature of the device may cause the device to overheat. Doing so may cause
the temperature to drop below the specified value. Do not touch the sphere type with the cone type
and the cone type with the cone type and the cone type with the cone type, but also with the cone
type with the cone type and the cone type with the cone type and the cone type with the cone type.
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Figure 7 — Temperature T change at ZX
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Figure 8 shows the contour of density flux distribution around a cone-type body. There is an
increase in density in the region of the shock wave and a decrease in density in the rear region of the
body.
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Figure 8 — Density £ change at ZX

Figure 9 shows the pressure distribution when travelling around a cone-type body. Due to the
shock wave in the frontal region of the body, the pressure increases, while the pressure decreases
when the flow detaches from the body.
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Figure 9 — Pressure P change at ZX (Problem 2)
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Figure 10 compares the experimental data for the pressure coefficient €, on the surface of the
sphere (Problem 1). The distribution calculated for M., = 1.3 the distribution agrees well with the
experimental results; however, there are certain differences. The calculated dependence almost up to
the cleavage point agrees with the data of [18].
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Figure 10 — The pressure coefficient C,, on the sphere surface is a constant solution
for M,, = 1.3 (e @ @is experiment and is numerical result)

There are some limitations and difficulties in modelling cone and sphere flow by the penalty
function method in supersonic flows. The main limitations of the penalty method are sensitivity to
parameter selection, possible problems with resolution of sharp nonlinearities, geometric complexity
and ensuring numerical stability of the model. When solving such problems, a combined approach
including adaptive methods and adjustments of the penalty term model to account for the specificity
of supersonic flows is often required.

Conclusion

The cone and sphere flow was analysed using the penalty function method for compressible
flows. The analysis includes the flow conditions Re = 1000, M, = 1.3, at which various physical
features are manifested. An ENO scheme is created for the problem. The system of basic equations
is reduced to a standard dimensionless form. The results of this analysis successfully demonstrate the
physics of the full range of configurations studied by the model of the proposed method. An accurate
prediction of the main volumetric quantities is obtained, in particular, the stability characteristics of
the method when registering impact traces on the sphere surface and supersonic region are confirmed.
As for the flow structure near the particle, a completely different picture was observed than in the
incompressible case. It can be determined that the shock wave is not eliminated by turbulence, which
means that the shock wave is still clearly visible in front of the particle.

This research work was developed using computational resources within the project. Rigorous
tests were carried out considering different test conditions. The streamline images of the investigated
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cones showed the temperature, density and pressure distribution on the surfaces of the corrected
bodies. The results were compared with many experimental and numerical references available in
the literature.

Further studies of the penalty function method for modelling cone and sphere flow in supersonic
flows can be developed in several interrelated directions. Particular attention should be paid to the
adaptation of this method for high-precision modelling of shock waves and breakaway zones, which
will significantly improve the reliability of the results obtained in critical flow regions. At the same
time, it is necessary to improve approaches to accounting for viscous effects in the boundary layer,
since these effects have a significant influence on the character of flow and thermal loads on the
surfaces of bodies.
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YUCJIEHHOE MOJAEJIUPOBAHHUE OBTEKAHUA COEPBI 1 KOHYCA
CBEPX3BYKOBBIM C KUMAEMbBIM IOTOKOM

AHHOTAIUA

B nanHOl pabore paccMaTpuBaeTcs YHCIEHHOE MOJEIHPOBAHUE CBEPX3BYKOBOTO OOTEKAaHUs TEJI KOHyca U
cdepsl ¢ ucronbp3oBaHueM Metosa mrpadHeix GyHKIMHA. OCHOBHOM IETIbI0 UCCIEAOBAHUS SIBIIIETCS OLCHKA 3(-
(exTrBHOCTH MeTO/a ITPAGHBIX (QYHKIMH, TAKKE M3BECTHOTO KaK METOJ| OTPY>KEHHON T'PaHMUIIBI, U PEIICHUS
3amad CKMMaeMoil Ta30BOM AMHAMUKH. [IpuMensercs MoxuduimpoBanHsie ypaBHeHnss HaBre-CTokca ¢ yueTom
00TeKaeMbIX Tel U Ucoib3yroT cxeMy ENO mist uncienHoro penienust. Pe3ynsraTsl MOAEIMPOBAHUS 1EMOHCTPHU-
PYIOT, 4TO NPEIUIOKEHHBII MMOAXO0]] YCIICIIHO ONMUCHIBAET (PU3NYECKUE MPOIECCHI, TPOUCXOISIIHNE TIPH CBEPX3BYKO-
BOM OOTEeKaHUM KOHyca W cepbl, BKIo4asi GopMHUpOBaHUE yIapHBIX BOJH, paclipeieieHHe JaBieH s, TeMIepa-
Typbl U IIOTHOCTU. [losyueHHbIE TaHHBIE CPABHUBAIOTCS C DKCHEPUMEHTAIbHBIMU PE3YJIbTaTaMH, MOATBEPKaast
a/IEKBaTHOCTh ¥ TOYHOCTH pa3paboTaHHOHN urciIeHHoi Mozenu. [IpencraBnennas pabora BHOCHT BKJIaJ] B pa3BUTHE
METOJIOB YHCJIEHHOTO MOJICIINPOBAHMSI CKMMAEMBIX CBEPX3BYKOBBIX TEUCHUH U JEMOHCTPHPYET MEPCIIEKTHBHOCTh
UCIIOJIB30BaHUS MeToia IITPaGHBIX (GYHKIHMH Ul peLIeHNs LIMPOKOTo Kilacca 3a1ad ra3oBoil AMHAMHKU.

KuaroueBble cjioBa: o0TekaHHEe KOHyca, OOTeKaHHE C(Ephl, CBEPX3BYKOBOH MOTOK, TypOyJIeHTHOE TCUCHHE,
C)KMMAaCeMBIi Ta3.
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COEPA MEH KOHYCTBbI AbIBbIC KbIJIIAMJAbIFBIHAH )KOF'APbI
KBUITAMJIBIKTAFbI AFBIHMEH AVMHAJIBII OTY/II CAHJBIK MOJEJBIEY

Anjgarna

By 3eprrey koHyC meH cdepa Topizdi AeHETEepAiH aifHaTaChIHAAFHl ABIOBICTAH JKOFAphl JKBUIIAMIBIKTAFbI
arbIHIIBI CAHIBIK MOJCIbACYre apHaiFaH. MoenbAey YIUIH albIMIYIABIK (QYHKINS O1iCI KOJJAHBUIBIN, OHBIH
CBHIFBUIATBIH Ta3 JIMHAMHUKACHI €CENTEPIH IMIelIyJeri THIMAUIr OaranaHajpl. 3epTTEy[iH HEeri3ri Makcarbl —
OaThIpBUIFaH MIEKApaJIbIK S/IC peTiHje Oenriii jkazanay (yHKIMSCH ICIHIH KOJIJaHy MYMKIHIIKTEpPIH TaJiaay.
Mopnenbiey OaphICBIHIA aifHANBIT OTETIH JCHENepAl eckepeTiH momudukanmsuianrad HaBbe-CToke TeHaeynepi
naigananpuael. CaHIBIK IIENIiM axy YIIiH IKOFapBI monaikti ENO (Essentially Non-Oscillatory) cxemacs! Ko-
JIAHBLIBL. AJIBIHFaH HOTHIKEINIEP YChIHBLIFAH 9JICTIH KOHYC NeH cepa aifHamachlHIaFbl IbIOBICTAH KOFAPhI aFbIH
KE31H/IC TYBIHIANTHIH (PU3UKAIBIK TPOIIECTEP/Il — COKKBI TONKBIHAPBIHBIH TY31TyiH, KbICBIMHBIH, TEMIICPATyPaHbIH
JKOHE THIFBI3IBIKTIH TaPaJIybIH JI0J CHIIATTAUTHIHBIH KOpceTei. Moelbaey HOTHKEIEPl TOKIPHOCITIK IepeKTepMEH
CaJIBICTBIPBLIBII, 93IPJICHICH CAH/IBIK MOJCIB/IIH COMKECTIrl MEH AT pacTajibl. 3epTTEy HOTIKEIIEPI ChIFbLIA-
TBHIH Ta3 AMHAMHUKACHI CCCNTEPiHIH KEH KJIACHIH IICITyAe albIMIYIABIK (QYHKIUS OMiCiHIH HMEPCICKTUBAIBI TICIT
SKeHIH JOJNeNICH I )KOHE TBIOBICTAaH JKOFAPhI aFBIHAAP/IBI CAaHIBIK MOICIBICY SIICTEPIiH KETUIIIPyTe BIKIAT STEI.

Tipek ce3aep: KOHYC apKbUIbI OTETIH aFbliH, C)epa apKblIbl OTETIH aFbIH, JBIOBICTAH YKOFapbl arblH, TypOy-
JICHTTI CHIFBIJIATHIH I'a3 aFbIHBI.
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