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Abstract

This paper compares the finite difference and finite volume methods for solving time-fractional diffusion
equations. These methods are widely known for diffusion equations with integer order, but their effectiveness for
time-fractional diffusion equations has not been sufficiently studied. The definition of the Grunwald-Letnikov
fractional derivative is used to approximate the equation. An explicit difference scheme for the finite difference
method is obtained and a stability condition for the fractional time order difference scheme is derived, which is also
a generalisation for parabolic and hyperbolic type equations, which was previously unknown for schemes with a
fractional time order. An explicit discrete form for solving subdiffusion equations in two-dimensional space with
fractional time order by the finite volume method is presented. Numerical results show that the finite difference
method demonstrates high accuracy, while the finite volume method is better suited for complex geometries. These
findings provide insights for future developments in anomalous diffusion modeling.

Key words: subdiffusion, finite difference method, finite volume method, Grunwald-Letnikov fractional
derivative, stability condition.

Introduction

Fractional derivatives are applied from fundamental laws of natural science including physics,
biology, chemistry up to equations of economics and finance. For example, the equation for the elec-
tric field strength in one-dimensional space proposed by Westerlund S. [1] has the form

3%E 8%E
MOEOE"‘#OEOEOEQ"‘@: 0, (M
where E is the electric field strength, ig, £¢ and €, are constants, E< is the fractional derivative of the
electric field strength of order & (0 < a < 2).

Also, in his studies [2] we notice that he replaces fractional derivatives in Maxwell's equa-
tions, specifically the relations D = €E, B = pH (where D is the electric displacement and B is the
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magnetic induction), with D = eE®@-1) and B = puH @-1) This idea was further developed in [3].
Westerlund S. [2] considered that the theory of elasticity (F = kx), the Newtonian model of viscous
fluid (F = kx'"), and Newton's second law (F = kx'") lead to the conclusion that it is possible to
generalize Hooke’s law in the form F = kx?, where the order of the derivative p can be any real
number. The importance of fractional calculus in cosmology was described in [4, 5]. Based on [6—16]
we can see the importance of fractional derivatives in mechanics, for example, Bassett's problem on
the motion of a sphere immersed in an incompressible viscous fluid [6]. In dimensionless form, it
reduces to the differential equation

av(t) g B8°viE)
e T B gt

+V(@) =1, >0, 0<a<1, V(0" =1, )

Lundstrom, Richner [17] show the connection of non-integer order derivatives with neocortical
neurons. Harjule and Bansal [18] show fractional order models of viscoelasticity of lung tissue with
force:

o(t) = M e(t) + NDZ[e(t)], 3)

where @ is the stress, € is the involved strain, M is the spring stiffness, N is the viscoelastic parameter
of the system.

In biology and demography, the well-known Malthus law describes exponential population
growth. In this work [19], the Fractional Malthus equation has been considered:

(DEP)(®) =7 P(2), “)

where 7" is the growth rate and 0 < a < 1.
Applications of fractional calculus in different spheres of science are described in detail in [20-24].
In this paper we consider anomalous diffusion in two-dimensional space:

a% a2
Sty ) = —ulx,y, t) +

u(x,y,0) )

ay?

If 0 < o << 1 then it is called subdiffusion, but if 1 < a < 2, then this phenomenon is called
superdiffusion.

Nowadays the numerical solution of fractional order diffusion equations in terms of Caputo’s
derivative is presented in many papers [25-31], but many of them are based on the finite difference
method. [25] demonstrates the convergence of difference schemes for the one-dimensional equation.
Alikhanov A. [26] developed a new difference analogue of the Caputo fractional derivative for
0 < a < 1, which contributed to progress in this field. In [27, 29], schemes for fractional equations
with delay have been constructed. Reference [28] examines the finite element method for a nonlinear
parabolic equation of fractional order. Liu et al. [30] proposed implicit difference and explicit
difference techniques to find the numerical solution of space-time fractional advection dispersion
problem. A fractional analog of Crank Nicholson method was constructed to deal with the one-
dimensional space two-sided space fractional diffusion equation with functional delay in [31]. The
method of finite volumes also represents a huge role in numerical methods of solution of partial
derivative equations, since it allows to work with complex geometrical shapes, and the law of
conservation of the quantity of interest such as mass, momentum and energy is fulfilled.

The purpose of this paper is to compare the efficiency of the finite difference method (FDM) and
the finite volume method (FVM) in solving the fractional order time-dependent diffusion equations
and to derive the stability condition for the explicit scheme of equation (5). Similar comparisons
for integer derivatives were made in [32—34]. The effectiveness of the finite volume method (FVM)
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for advection-diffusion equations is demonstrated in [32], however, we will show that this is not
the case for subdiffusion equations. In [35] the comparison of FDM and FVM is given only for the

superdiffusion equation.
Preliminaries. There are several definitions of fractional derivative, the best known are the

definitions of Riemann-Liouville, Caputo, Grunwald-Letnikov. In this paper we use the Grunwald-
Letnikov definition of fractional derivative [36,37] of the form

- )
a T — - 'k — a) B
(P16 = Jim®™* g ) &+ 1) fle—kh) =
. e Tlk- a] No1
- Plzl—l-g(h) r(- a]l"(k+1]zk S0 f(x — kh) )

X—Xg

where h = —
The form of wr1t1ng (7) does not provide a possibility to perform calculations for integers @ since

I'(—a) is not defined, and requires the calculation of large numbers, so it is necessary to take

T(k—al ANk L (a _(—a]'(—a+1]'"(—cr+k—1] 8
M{—a)T(k+1) =1 (k)_ k! ®)

The proof of equality (8) is given in [38,39].
Substituting in (7) the obtained equality (8) we obtain

(D£,) () = lim(m)~= Z{=3 (7)F(x — kh) ©)
Problem Statement
T T 2 F(xy, )
3t%  axZ 3yt XY (10)

a

where @ = 0.5, F(x,y,t) = 1000- ( + iﬁ) -y - sinx +1000- (S +t) - y - sinx.

3 1\-"; w";

Initial condition: u(x,y, 0) = 0;
Boundary conditions: u(0,y,t) =0, u(1,y,t) = 1000- (% + t) -y -sinl,

u(x,0,t) = 0, u(x,1,£) = 1000- (%+ r) Csinx

Analytical solution:
ulx,y,t) = 1000- (%+t)-y-sinx )
Materials and Methods

Solution of equation (10) by finite difference method.
The discrete analogue of the Grunwald-Letnikov fractional derivative definition (9):

(D f)(x]l o 'n+1 'n+1 k() (12)

An approximation of the second order derivative:

BxZ Ax? (13)
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Using (12) and (13) we find the finite-difference scheme for (10):

n n,.mn n n,. mn
11+1 n+1 k Uy j 32U Uy o Uy T2U U Gy
Z ( ) - AxZ + Av? + F(xiﬂij tn) (14)

A%

From (14) we can obtain the explicit scheme:

n+l __
U~ =

n n n n n n
Uy i—2Uy i+ i Uj g —2U; U
— o, 1=1.J L0 il e ¥ Lj—1 LJ Ljt+1 n+1l 11+1 k
= At ( - + - + F(x,,y;, ﬂ)) REturtR(Y) (15)

Stability analysis of the difference scheme (15):
The Grunwald-Letnikov approximation of the fractional derivative has a first order error. For

details see Podlubny [40].

8%y n n
= Rt (0) + 0(AD) (16)
@ Wy =2ty 2
== o T OoAxT) (17)
Tu _ Wt 40 (Ay?) (18)
gy? Ay?
Let's have
N=D+s¢, (19)

where N is the solution obtained on the computer, D is the exact solution of the difference equation,

€ is the rounding error.
Let us consider equation (14) in homogeneous form:

n n n n n n
Zn+1un+1 k( )=“5—1,1‘2“5,}""“241,}_|_“='J—1‘2“f,j+“f,j+1 (20)
ApE k=0 T1] Ax? Ay?

Considering (19), (20) will take the form:

Zn+1Ni1Ei—l k( )+E'n_+1 k( )_

At
1 n 1 n o, am n 1 n T 1 n
Ny ey NG 2 Ny e + Nij—a¥8ij— —2N ;=28 ;4 Ny oy 51549
- Ax? Ay? (21)
n n,.mn n n,.m
Zﬂ+1 n+1— ;,:( ) _ Ei—a,j 28 E 4 j + Eij-1 728 e i (22)
Apx S k=0 1; AxZ Ay?

Let's represent € (X, ¥, 1) as a sum of Fourier series:
e(x,¥,t) = by (D)e'm¥eitm (23)

Let's see. £, (x, ¥, t) = X, by, (£)ei'm¥e!tm¥ We will look for a solution in the form z™ e'!m*g'lm
When t = 0 (n=0) it has the form efim¥eilmy_ Let 2" = €***then

n _ ean.ﬁ.t = g9, Em(x, ¥, f) — eateiimxeilm_y’ (24)
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Im is real, @ can be complex. Substituting (24) into (22), we obtain

n+1

E @ (E+AL—KAL) pilmx gilmy (o:) _
k

k=0
a 2L ol !ml\.r—,ﬁ.x)ez!my_2eargz!m.rngmy +eatgz!ml,x+ﬂx)ez!my
= At +
- - - - - Jﬂxz - - -
garezIm.rgz!ml‘y—ﬂy}_zeargz!mxeﬁmy +eargz!m.rgzlml‘y+ﬂy))

Ay?

. (25)
Dividing by e® e!'m*elim¥ and ysing the ratio

e'f + e tF

cosff = >

Get this:

n+1 ea.(;j.t—k;j.t] (a) — At (2cos!m.ﬁ.x—2 n 2coslpdy—2 )
k=0 ke Ax? Ay?

(26)

Using the trigonometric identity

e () - 155

Let us rewrite the last relation in the following form:

o o
aht n+1 jaldt—kat) ey _ . 4487 . o (ﬂf) g AeE L (Imﬂy)
et + ¥rise (k) a—4-—sin” (= 4@2 sin® (= 7

Let's represent the expression L p+1 ea(4r-kA0) (%) as

n+1

; oo (At—kae) (D _ pal-ap (';‘) 4 pa(-200) (:) 4 pal-300) (z) 4o

. . At(1—k
Since for each harmonic £7** = e®**£ then |e?*| < 1. Note that |e® (a ]l =1 (:) = Othen

|(:)3 am(l_kjl = (:) Let us take each term of the left-hand side of equality (27) as a module.
Let's use the modulus property

la, + a, + a;+... +a,| < |a;| + |la,| + |lag| + -+ |a,l
|€a.ﬂt + Zﬁ:% ea(ﬂt—kﬂt} (:)l = Ieaml + |(:)ea(—2,ﬁt]| + |(:)ea(—aaﬂl + |(:)ea(—4.ﬁt]| F -

By defining 37£3() ~ @ — 1 we find out that the scheme is stable at

A% Imdx A% L dy
|o: — 4r31n2 (mT) — 4 ——gin? (mT)

x2 Ay?

<a (28)

Let's consider two possible cases:
At . Imdx At Linby

1) @—4—;sin’ (m—) — 4 —gin? (m—) <a
Ax? 2 Ay? 2

AT, | —_" At I Ay

—4 —— gin? (m—) — 4—— gin? (m—) =0
Ax? 2 Ay? 2

A% AtE

—+—=0

Ax2 Ay2
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AT (lnAx A% LBy
2) ¢ —4— sin? (m—) — 4 —s5in® (m—) < —a
Ax? 2 2

Ay?
AT (lpbx Ao 2 [l
4 sin® (%) — 45 sin? () < —2a
A% A% @
Ax? Ayt 2
AT g A% .ﬁ.t“ a . o
In the first case R 0, and in the second case at —— +— =~ . The last inequality is
the stability condition of this scherne
Solution of equation (10) by the finite volume method.
Let us introduce the Nabla operator for two-dimensional space:
du < du
Vu = it P j (29)
Equation (10) is transformed in integral form
fv o 2dv = f V- ('G'u)dV+f F(x,y, t)av (30)
Following the Gauss-Ostrogradsky theorem (30) will take the form
I{,—f‘i"u ndA+ F(x,y,t) -V, (31

ate

Since the control volumes are bounded by a certain number of faces, the surface integral can be
replaced by a discrete sum of sides.

J.Vu-TdA ~ Tp(Vw); -7y - Ay (32)
8%y —
Correspondingly Sz Vo = Zs(Vu)s -7 - Ar + F(x,3,1) -V, (33)

Since u is a scalar quantity, the gradient U is a vector, such a vector in the Cartesian coordinate
system (X,y,z) can be written as

‘Fu=a—“f+a—“}+a—:E, (34)

where i, j, k are unit pairwise orthogonal vectors.
Vu can be expressed in bases i, f,,f, :

; (35)

where 7 is the unit normal vector, t,,t, are unit tangents on the plane perpendicular to the plane of
the normal vector.

It's worth noting z—i = (Vu) - i, — = (Vu) - j, =(Vu) -k =
= Vu = [(V) - i+ -ﬂj + [(va) - m (36)
Similarly (35) can be converted to

Vu = [(Vu) - ﬁ]ﬁ+[('ﬁ'u) - fl]fl + [('G'u) . fz]f2 (37)
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Let's consider Vi in two-dimensional space, then

(VW = [V -7 [V - ey (38)

Figure 1 — Two neighboring cells of an unstructured grid

Consider a vector I which connects two centres of adjacent cells. Let's perform scalar multiplica-
tion [ with equation (38)

(Vu)p - 1= [(Vu)s - 7if] g - L[ (V) - T e - (39)
Note that the value 7 - I = & since ¢ - L is a component of the vector [ along the direction of

normal to the surface, so it is the distance between the centre O and 1 measured in the direction of
normal to the surface. Then

(Vg - 1= [(Va) g - Tig[o+[ (Ve - T - 1 (40)

To express (Vu)s - I through the values of the centres of the cells, we decompose in Taylor

series the centres O and 1 with respect to f. This procedure is similar to the definition of the central
difference formulas for an orthogonal mesh.

18%u

Uy =up | (2 — xf)+av (o =y7) + 35l 2] G xp)° ool (0 —y) +
;;xav (%2 =x7) (32 =5 )+"' @1)
U = s + | (%0 — xf)+av (vo —v7) + 75l, 2], (o =) ++:zvz (vo—¥7)" +
aZ
%axay . (xo xf) (y —y ) + - (42)
By subtracting equations (41), (42), we obtain
U —Up %Z_zlf(% Xg) + |f(}’ —Yo) = (Vu)s- I (43)

Based on equations (43) and (40)
[:Vu)f ul—uo [('Gqu-Ef]Ef- I

& &

(44)
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From the obtained equality (44), where (Vu) ¢ - I = u; — ug or (Vi) g - 1)1 =
=uy—upy = (Vu)p- =22

_ Il
Likewise (Va) s - T = “‘I‘;fl‘*’

(45)

Then equation (44) will take the form

v, 7y = [

. (46)
5 5lefl - lf

Substituting the obtained equation (46) into (32), we obtain

u unb(f)~%o _ |¥atn—wein |z . . 47
gt Vo _Zf( 5f [ 571e| ]tf -’-f)Af +F(x,y,t)- 1 (47)
Using (12) and (47) we find the explicit discrete form by the Jacobi method using an unstruc-

tured mesh:
n+1

1 un+1—k (G:) Vo=

Ate v k) P
k=0

5 (“Ena(ﬁ—ﬂ? _ [ﬂ?,a(f}—ﬂ?b(f}
f Bif SirlEirl

| r1s) -y + PGt -,

Atd un — un un — un _ —
_ y ) Z < L,nbg) i [ La(f) l,b(f)] T li,f) Aip + F(x,y,t,)"V,
i 7 uf

8ir|Eur (48)
n+1 a
—k
T Z w7 ()
k=1

An analysis of the stability of the discrete form of FVM, only with the definition of Caputo's
fractional derivative is given in [41].

Results and Discussion

FVM

0.8
08
0.4

0.2

0

0.4 06 0.8 1 0 0.2 04 08 08

Figure 2 — Graphs of the analytical and numerical solutions in a) and b) respectively
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The number of cells is 7828, the number of nodes is 4015, the time step is 10~1%s. The discrete
form (48) has been iterated 10 000 times. The largest relative error is equal to 4.2%, but it is worth
considering that this error is a single case. It follows from this that the relative error doesn’t accurately
represent the actual situation, which may mislead us in the future. Therefore, for this purpose, we use
RMSE, similar methodology was used in [42]

ngzo(“iﬂum —'“icm}z
n-1 , (49)
where n is the number of cells, Uinum is the value u(x,y, t) in the numerical solution of i — th cell,
Uian is the analytical value u(x,y, t) of { — th cell.
Calculating the error using formula (49), we obtain RMSE;,, = 9,9068-1077.

FDM

08
06
04
0.2

0

02 0.4 06 0 1 Q 0.2 0.4 086 0.8

Figure 3 — Graphs of the analytical and numerical solutions in a) and b) respectively

The time step is 1072%, 10 000 iterations were performed on the obtained finite-difference
scheme (14). The formula (49) was used in the FVM to estimate the error, in the case of this method,
it will take the form:

RMSEFDM _ JEl—:o(uiﬂ:_n;—ﬂian)z, (50)
where n is the number of nodes, Yinumis the value of u(x,y, t) in the numerical solution of i — th
node, Uan is the value of u(x,y, t) in the analytical solution of i — th node.

The relative error is calculated by the formula

7 — |u[xi}fj,tn]—w[xia?j*tﬂ]| (51)
u [xia}’jJtﬂ) ’

where u(x, ¥, t) is the analytical solution, w(x, ¥, t) is the numerical solution, n=10000.

Present the values of errors and computation time in seconds for different steps Ax in the form
of a table.

192



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI

Ne 1(72) 2025

Table 1 — Relative and RMSE

At Ax max [z"] St T
0=<i=N+1 :
1/10 0.000074421494 0.000000016668 19.856
1/20 0.000074891038 0.000000017484 49,746
1010 1/40 0.000075008461 0.000000017794 147.799
1/80 0.000075037819 0.000000017921 320.456
1/100 0.000075041342 0.000000017945 405.846

We can observe that as the step size Ax decreases, the computation time also increases. The error
values do not change significantly; however, with a decrease in Ax, the relative error starts to vary
after 4 - 1077, and the RMSE changes after 10~2. This could be attributed to the machine representa-
tion of such small numbers.

The computation time of FDM with different steps Ax is presented in Table 1, in FVM is equal
to 1407.645s. Comparing the results of time and error, we can see the efficiency of FDM in our
task, as the largest relative error of FVM is 4.2% , and FDM is 0.0075% , also the RMSE of the

two methods indicates a smaller error in FDM, exactly RMSEp,, = 0,1666- 1077 for 4x = i and
RMSEg,, =9,9068-107".

Conclusion

. o .. A “ . . .
The derived stability condition —— + = % holds for equations with 0 < @ =< 2, meaning that

in the special cases of @ = 1 and & = 2 | it serves as the stability condition for the explicit method

for parabolic and hyperbolic type equations, respectively.

It is worth noticing in (15) we must store all its previous values, so FVM requires more compu-
tational resources.

The finite difference method is constructed by approximating derivatives by their discrete ana-
logues. The advantage of the FDM is the clarity of the discretization procedure, which makes it pos-
sible to construct schemes of high order of accuracy. The disadvantage of the FDM is the limitation
in the geometry of computational domains.

The algorithms were implemented using the C++ programming language.

REFERENCES

1 Westerlund S. Dead matter has memory! Physica Scripta, 1991, vol. 43, pp. 174—179.

2 Westerlund Causality S. Report 940426, University of Kalmar, 1994.

3 Caputo M. Free modes splitting and alterations of electrochemically polarizable media. Rend. Fis. Acc.
Lincei, 1991, ser. 9—4, pp. 89-98.

4 El-Nabulsi A.R. Cosmology with Fractional Action Principle. Romanian Reports in Physics, 2007,
vol. 59, no. 3, pp. 763-771.

5 Micolta-Riascos B., Millano A.D., Leon G., Erices C. and A. Paliathanasis. Revisiting Fractional
Cosmology, Fractal and Fractional, 2023, vol. 7, no. 2, p. 149. https://doi.org/10.3390/fractalfract7020149

6 Carpintery A. and Mainardi F. Fractal and Fractional Calculus in Continuum Mechanics. CISM, 1997.

7 Benson D., Meerschaert M. and J. Revielle. Fractional calculus in hydrologic modeling: A
numerical perspective. Advances in water resources, 2013, vol. 51, pp. 479—497. https://doi.org/10.1016/j.
advwatres.2012.04.005

8 Zhang Y., Sun H.G., Stowell H.H., Zayernouri M. and S.E. Hansen. A review of applications of
fractional calculus in Earth system dynamics. Chaos, 2017 Solitons & Fractals, vol.102, pp. 29—46. https://doi.
org/10.1016/j.chaos.2017.03.051

193



HERALD OF THE KAZAKH-BRITISH
No. 1(72) 2025 TECHNICAL UNIVERSITY

9 Tarasov V.E. Continuous Medium Model for Fractal Media. Physics Letters A, 2005, no. 336, pp. 167—
174. https://doi.org/10.1016/j.physleta.2005.01.024

10 Usman M., Makinde O.D., Khan Z.H, Ahmad R. and W.A. Khan. Applications of fractional calculus
to thermodynamics analysis of hydromagnetic convection in a channel. International Communications in Heat
and Mass Transfer, 2023, no. 149, p. 107105. https://doi.org/10.1016/j.icheatmasstransfer.2023.107105

11 Aleroev T.S., Aleroeva H.T., Huang J.F., Nie N.M., Tang Y.F. and S.Y. Zhang. Features of Inflow of
a Liquid to a Chink in the Cracked Deformable Layer, [IMSSC, 2010, vol. 1, no. 3, pp. 333-347. https://doi.
org/10.1142/S1793962310000195

12 Ninghu S. Fractional Calculus for Hydrology, Soil Science and Geomechanics, 2020. https://doi.
org/10.1201/9781351032421

13 Park HW.,, Choe J. and J.M. Kang. Pressure Behaviour of Transport in Fractal Porous
Media Using a Fractional Calculus Approach. Energy Sources, 2000, no. 22, pp. 881-890. https://doi.
org/10.1080/00908310051128237

14 Kulish V.V. and J.L. Lage. Application of Fractional Calculus to Fluid Mechanics. J. of Fluids Eng.,
2002, no.124, pp. 803-805. https://doi.org/10.1115/1.1478062

15 Varieschi G. Applications of Fractional Calculus to Newtonian Mechanics. Journal of Applied
Mathematics and Physics, 2018, no. 6, pp. 1247-1257. https://doi.org/10.4236/jamp.2018.66105

16 Tarasov V.E. Fractional Hydrodynamic Equations for Fractal Media. Annals of Physics, 2005,
vol. 318, no. 2, pp. 286-307. https://doi.org/10.1016/j.a0p.2005.01.004

17 Lundstrom B.N. and T.J. Richner. Neural adaptation and fractional dynamics as a window to
underlying neural excitability. PLoS Comput. Biol, 2023, no.19. https://doi.org/10.1371/journal.pcbi.1011220

18 Harjule P. and M.K. Bansal. Fractional Order Models for Viscoelasticity in Lung Tissues with Power,
Exponential and Mittag-Leffler Memories. International Journal of Applied and Computational Mathematics,
2020, no. 6. https://doi.org/10.1007/s40819-020-00872-9

19 Soares J., Jarosz S. and F. Costa Fractional growth models: Malthus and Verhulst. C.Q.D. Revista
Eletronica Paulista de Matematica, 2022, no. 22, pp. 162—177. https://doi.org/10.21167/cqdv22n22022162177

20 Xin Shen Applications of Fractional Calculus in Chemical Engineering, 2018, Ottawa, Canada.

21 Sugandha Arora, Trilok Mathur, Shivi Agarwal, Kamlesh Tiwari and Phalguni Gupta Applications
of fractional calculus in computer vision: A survey. Neurocomputing, 2022, no. 489, pp. 407—428. https://doi.
org/10.1016/j.neucom.2021.10.122

22 Ting Chen and Derong Wang Combined application of blockchain technology in fractional calculus
model of supply chain financial system. Chaos, Solitons & Fractals, 2020, no.131, p. 109461. https://doi.
org/10.1016/j.chaos.2019.109461

23 Alinei-Poiana T., Dulf E.H. and L. Kovacs. Fractional calculus in mathematical oncology. Scientific
Reports, 2023, no.13. https://doi.org/10.1038/s41598-023-37196-9

24 Tarasov V.E. Fractional dynamics: Applications of Fractional Calculus to dynamics of Particles.
Fields and Media. Berlin, Springer, 2010.

25 Shkhanukov M.Kh. O shodimosti raznostnyh shem dlja differencial'nyh uravnenij s drobnoj
proizvodnoj [On convergence of difference schemes for differential equations with fractional derivative],
Reports of the Academy of Sciences, 1996, vol. 348, no. 6, pp. 746—748 [in Russian]

26 Alikhanov A.A. A new difference scheme for the time fractional diffusion equation. J. Comput.
Phys., 2015, vol. 280, pp. 424—438. https://doi.org/10.1016/j.jcp.2014.09.031

27 Hendy A.S., Pimenov V.G. and J.E. Macias-Dias. Convergence and stability estimates in difference
setting for time-fractional parabolic equations with functional delay. Numerical Methods for Partial Differential
Equations, 2020, vol. 36, no. 1, pp. 118—-132.

28 Li D, Liao H., Sun W., Wang J. and J. Zhang. Analysis of L1-Galerkin FEMs for Time-Fractional
Nonlinear Parabolic Problems. Commun. Comput. Phys., 2018, vol. 24, no. 1, pp. 86—103. https://doi.
org/10.4208/cicp.OA-2017-0080

29 LiL., Zhou B., Chen X. and Z. Wang. Convergence and stability of compact finite difference method
for nonlinear time fractional reaction-diffusion equations with delay. Appl. Math. and Comput., 2018, no. 337,
pp. 144—-152. https://doi.org/10.1016/j.amc.2018.04.057

30 Liu F.,, Zhuang P, Anh V., Turner I. and K. Burrage. Stability and convergence of the difference
methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput., 2007, no. 191,
pp. 12-20. https://doi.org/10.1016/j.amc.2006.08.162

194



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI Ne 1(72) 2025

31 Pimenov V.G. and A.S. Hendy. A fractional analogue of Crank-Nicholson method for the two sided
space fractional partial equation with functional delay. Ural Mathematical Journal, 2016, vol. 2, no. 1, pp. 48—
57. https://doi.org/10.15826/umj.2016.1.005.

32 Gharehbaghi A., Kaya B. and G. Tayfur. Comparative Analysis of Numerical Solutions of Advection-
Diffusion Equation // Cumhuriyet science journal, 2017, no. 38, pp. 49-63. https://doi.org/10.17776/csj.53808.

33 Faure S., Pham D. and R. Temam. Comparison of finite volume and finite difference methods
and applications. Analysis and Applications, 2006, vol. 4, no. 2, pp. 163-208. https://doi.org/10.1142/
S0219530506000723.

34 Ali A.H., Jaber A., Yaseen M., Rasheed M., Bazighifan O. and T. Nofal. A Comparison of Finite
Difference and Finite Volume Methods with Numerical Simulations: the Burgers Equation Model. Complexity,
2022.

35 SunY., and T. Zhang. A finite difference/finite volume method for solving the fractional diffusion
wave equation. Journal of the Korean Mathematical Society, 2021, no. 58, pp. 553—569. https://doi.org/10.4134/
JKMS.j190423.

36 Potapov A.A. Ocherki po razvitiju drobnogo ischislenija v rabotah A.V. Letnikova [Essays on the
development of fractional calculus in the works of A.V. Letnikov], Moscow, RANSIT, 2012. [in Russian]

37 Lyakhov L.N. and E.L. Shishkina. Drobnye proizvodnye i integraly i ih prilozhenija [Fractional
derivatives and integrals and their applications], 2011. [in Russian].

38 Meerschaert M.M. and C. Tadjeran Finite difference approximations for fractional advection-
dispersion flow equations. Journal of Computational and Applied Mathematics, 2004, vol. 172, no. 1, pp. 65—
77. https://doi.org/10.1016/j.cam.2004.01.033.

39 Uchaikin V.V. Metod drobnyh proizvodnyh [Method of fractional derivatives]. Ulyanovsk, Artishok,
2008. [in Russian].

40 Podlubny I. Fractional Differential Equations. Mathematics in Science and Engineering 198.
Academic Press, San Diego, 1999.

41 Zhang T. and Q. Guo. The finite difference/finite volume method for solving the fractional
diffusion equation. Journal of Computational Physics, 2018, no. 375, pp. 120-134. https://doi.org/10.1016/j.
jep-2018.08.033.

42 Wang F., Hou E., Ahmad 1., Ahmad H. and Y. Gu. An Efficient Meshless Method for Hyperbolic
Telegraph Equations in (1+1) Dimensions. Computer Modeling in Engineering & Sciences,128. https://doi.
org/10.32604/cmes.2021.014739.

"McaxoB A.A.,

PhD, mpodeccop, ORCID ID: 0000-0002-1937-8615,
e-mail: al.isakhov(@kbtu.kz
1A6bLIKacsIMOBa A.B.,

PhD, kaysimaacteipsuiran npodeccop, ORCID ID: 0000-0002-5967-6959,
e-mail: a.abylkasymova@kbtu.kz
*7Kaiinpioaes P.E.,
crynent, ORCID ID: 0009-0007-6323-0689,
*e-mail: raim.zhailybaev(@mail.ru
'"FOu C.JL.,
crynent, ORCID ID: 0009-0002-6295-1592,
e-mail: s_yun@kbtu.kz

'Kasakcran-bpuTtan TeXHUKAJIbIK YHUBEPCUTETI, AJMaThl K., Kazakcran

IMAPABOJIAJIBIK 7KOHE 'MITEPBOJIAJIBIK TUIITET'lI TEHAEVYJIEP
YIITH AKBIPJIBI AHBIPBIMIBIK CXEMAHBIH TYPAKTBILJIBIK IIIAPTBI:
BOJILIEK PETTI AU®®Y3UA TEHAEYJIEPI YIHIH AKBIPJIbI
KOJIEMJAEP 9AICIHIH CAJIBICTBIPBIJTY bI

Anjgarna
By 3eprreyne akpIpibl albIpbIMIap 9J1iCi MEH aKbIpIIbl KOJIeM/IEp SAICIHIH THIMJIUIIT CaJbICTRIPMAIIBI TYPIIE
tanganaael. by amicrep OyTiH perTi anddys3ust TeHaeynepi YiIiH KeHIHEH KOJIaHBUIFAHBIMEH, YaKbIT OOWBIHIIA
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Oemnmiek petTi nudy3us TCHICYIEP YIIIIH OJapIbIH OPHBIKTBUIBIFBI MCH JOJIIIT )KETKITIKTI ICHIeHIe 3epTTeIMe-
reH. 3eprrey 6apbichinaa [ proHBaibI-JIeTHUKOB aHBIKTaMachl HEri3iH/e O6JIIeK PeTTi TYBIHIBIHBI XKYBIKTay d/ici
KOJIAAHBUIBI. AKBIPIIBI alBIPBIMAAP 9/1IC1 YIIITH aliKBIH aiiBIPBIMIBIK CXeMa KYPBUIBIT, YaKbIT OOHBIHIIIA OOJIIIEK PeTTi
aifbIpMa CXeMAaCBhIHBIH OPHBIKTBUIBIK IIAPTHI KOPBITHII MbIFapbULABL. Byl mapt mapadonaisik jkoHe runepOoIaibK
TEHJICYNIep VIIiH JKaIblJlaMa TYP/AE YCHIHBUIBIN, YaKbIT OOMBIHIIA OOINIIeK PeTTi cxemaiap YIIiH OYpBIH-COHJIBI
Oenrici3 OONMFaH OPHBIKTHUIBIK KPUTEPHHIH aHBIKTayFa MYMKIiHAIK Oepmi. COHBIMEH KaTap, aKbIpibl KelIeMIep
9J1ici Heri3iHze yakpIT OOWBIHINA OOJIIIEK PETTI eKi enmeMal cyoanddy3us TeHIeyIepiH elyre apHaaral ailKblH
JIICKPETTI cxeMa YChIHBULIbL. CaHJIbIK MOZEIB/ICY HOTHKEIEPl KOPCETKEH IEH, aKbIpIIbl albIpbIMIAp d/1iCi JKOFaphl
JOIJIIKKE W€, all aKbIpiIbl KeJeMJep o/ici Kypaesi reOMeTPHsUIBIK IMINIHAEp YIIIH HEFYPIBIM THIMAL. AJBIHFaH
HOTIDKEIJIEp aHOMAJBABI TUPQY3HUs MPOIECTEPiH MOJCTBACYIE CAHBIK dIICTePAl JKETUIIIpyTre MaHBI3IBI HET13 Ooa
aJaisl.

Tipek ce3nep: cyoauddy3ust, akbIpITbl albIPBIMIAP 9TiC1, AKBIPITBI KOJIEM 91ici, | proHBaiba-JIeTHHKOB Oeek
PETTi TYBIH/BICHI, TYPAKTBUIBIK [IAPTHI.
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YCJOBHUE YCTOMUYUBOCTHU KOHEYHO-PASHOCTHOM CXEMBI
JJsI YPABHEHUM MAPABOJIMYECKOTO U THNNEPBOJIMYECKOT'O THITOB:
CPABHEHUE METOJIA KOHEYHBIX OFbEMOB JIJIS1 YPABHEHU
JNOPY3UUN JPOBHOI'O IMTOPAIKA

AHHOTAIUA

B nanHO# pabore NMpoBeJCH CPaBHUTENBHBIA aHAJIN3 METOJ0B KOHEUHBIX pasHOCTed W oObeMoB. /laHHBIE
METO/IbI IIMPOKO M3BECTHBI ISl YpaBHEHUH AN QY3UH C LETbIM MOPSIIKOM, HO TeM He MEHEee HEeOCTAaTOYHO HC-
cireoBaHa 3(GEKTUBHOCTD JAHHBIX METOJIOB JUISl ypaBHEHNH AN y3un ¢ IPOOHBIM MOPSIKOM 110 BpeMeHH. st
amNMpOKCHMAIINN YPaBHEHHS HCIIONB30BAHO OMpeneeHne OpoOHoN mpownsBonHoW [pronBambaa-JleTankoBa. J{ns
METO/Ia KOHEUHBIX pa3HOCTEll MoydeHa siBHas Pa3HOCTHAs CXeMa M BBIBEIEHO YCJIOBHUE YCTOWYMBOCTH VISl pas-
HOCTHOW CXEMBI C JPOOHBIM MOPSIKOM [0 BPEMEHH, YTO TAKXKE SIBISCTCS 000OLICHUEM ISl TapadOIHUCCKUX U
rUINEepOOIMYECKUX THIIOB YPaBHEHUH, YTO paHee ObUIO HEU3BECTHO JUISl CXEM C JIPOOHBIM IOPSAKOM MO BPEMEHH.
[IpencraBnena siBHast AUCKpeTHAs Gopma JuIs pemieHns ypaBHeHHH cyonuddys3un B AByMEpHOM IPOCTPAHCTBE C
JIPOOHBIM TOPSIIKOM MO BPEMEHH METO/IOM KOHEUHBIX 00BEeMOB. Pe3ynbraThl MOKa3bIBAIOT, YTO METOJ KOHEUHBIX
pa3HOCTEl JEMOHCTPUPYET BBICOKYIO TOYHOCTD, TOT/Ia KaK METOJ KOHEUHBIX 00BEMOB JIYHIIE MOAXOANT JUIS CIIOXK-
HBIX TEOMETPUUECKUX (GOPM. DTU PE3yNbTaThl OTKPHIBAIOT BO3MOKHOCTH ISl NAJIbHEHIIEr0 pa3BUTHS YHCIEHHBIX
METOZIOB B 33j1a4aX, CBS3aHHBIX C MOJICIIMPOBAHUEM ITPOIIECCOB aHOMAIBLHOM T dy3un.

KaioueBble ciioBa: cyonuddysns, METO KOHEUHBIX Pa3HOCTEH, METO KOHEUHBIX 00BEMOB, APOOHAs TIPOU3-
BogHAs [ proHBanbia-JleTHUKOBA, yCIOBHE YCTOHUMBOCTH.
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