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ON A SPECTRAL PROBLEM FOR THE LAPLACE
OPERATOR WITH MORE GENERAL BOUNDARY CONDITIONS

Abstract

In this paper, we consider a spectral problem for the Laplace operator with more general boundary conditions
in a unit disk B,. In the special cases, the boundary conditions inlude periodic and Samarskii-lonkin type boundary
conditions. The main important property of our problem is its non-self-adjointness, which causes number of
difficulties in their analytical and numerical solutions. For example, the Fourier method of separation of variables
cannot be applied directly to our problem. Therefore, the possibility of separation of variables is justified in this
paper. Namely, we present a method that reduces solution of the problem to a sequential solution of two classical
local boundary value problems. By using this method, we construct all eigenfunctions and eigenvalues of the
problem in explicit forms. Moreover, completeness of the system of the eigenfunctions is proved in L*(B, ). Notably,
our result generalises the special case of the result on the two-dimensional periodic boundary value problem for the
Laplace operator obtained in [1-2].
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Introduction

In [1], as a two-dimensional analogue to the classical periodic boundary value problems the au-
thors considered the Poisson equation
—Au =f(z), z€B, (1.1)
in a unit disk B1 = {2 = (x,¥) = x +iy € C:|z| <1} with the periodic boundary conditions

u(l,@) — (—ljku(l,(p + 1) = (), 0<@<=m, (1.2)

aul + 1"au1 + 0= < 1.3
BT(’(P) ( )BT(’(P H)—V(@), —‘P—H: (:]

where f(z) € CY (B_l), (@) € C**Y[0,7], and v(g) € C[0,n],0 < y < 1,k = 1,2. In[1], the self-
adjointness of these problems was shown, and all corresponding eigenvalues and eigenfunctions

were constructed. The problem (1.1)-(1.3) is referred to as antiperiodic when X = 1 and periodic
when k = 2.
In [2] the authors considered the Poisson equation (1.1) with the following boundary conditions

u(l, @) +u(l2n— @) = (@), O=sp=nm (1.4)
ou 1 ou 1,2 O=sgp< 1.5
5(@—5(,?:—@—1@), =@=m, (1.5)
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where f(z) € CY (B_l), (@) € C**Y[0, 7], and v(¢) € C[0,7], 0 < y < 1. The eigenvalues of the
spectral problem (1.1), (1.4)-(1.5), with T = v = 0, consist of all the eigenvalues of the Dirichlet
and Neumann problems, and each eigenvalue corresponds to one eigenfunction. As for the spectral
problem (1.1)-(1.3) with k = 1 and T = v = 0, its eigenvalues consist of only a part ("half") of the

eigenvalues ,u,(cﬂj of the Dirichlet problem for n = 2j and a part ("half") of the eigenvalues ,u,(cﬂj
of the Neumann problem for n = 2j + 1. Additionally, it was noted that each eigenvalue has two
corresponding eigenfunctions. For the multidimensional extension of these problems, we refer the
reader to [2].
Later, in [3] spectral problems for the Laplace operator with the following more general bound-
ary conditions
u(l,@)—au(l,2n — @) =0, D=sp =m, a+1 (1.6)

du Ju
g(l,fp)—g(l,h—@) =0, O0=sg¢p=m (1.7)

were investigated. One can note that this problem reduces the antiperiodic problem when @ = —1
from [2] and Samarksii-lIonkin type problem from [4] when @ = 0. Observe that the latter problem
is non-self-adjoint when a@ # —1. Nevertheless, the author in [3] managed to prove completeness of
its eigenfunctions. For studies on the well-posedness of the Poisson equation with inhomogeneous
conditions, we refer to [4] when & = 0 as well as to [5] and [6] with general & in two and multidi-
mensional cases, respectively. For other generalisations of (1.1)-(1.3) we can refer to e.g. [7] and [8].
We can also refer to [9] and [10] for the Samarskii-lonkin type non-local problems concerning other
partial differential equations.

Here, in this paper we consider similar problem with a parameter in the second
boundary condition (1.7): Let By={z=(x,y)=x+iy €C:|z] <1} be a unit disk,
T = |z|, = arctan(y/x), Bff =B; n{y =0}, and B = B, n {y < 0}. We consider the spectral
problem corresponding to the Laplace operator

—Mu(z) = du(z), |z| < 1 (1.8)
with the boundary conditions

In the special case f = —1 the problem (1.8)-(1.10) becomes the periodic boundary value prob-
lem from [2].

Note that the problem (1.8)-(1.10) is non-self-adjoint in general, so the direct use of the method

u(l,p) —u(12r—¢) =0, 0<gp<m (1.9)

du du
5 Le)—B-—(121-¢)=0, 0sp<m BER (110)

of separation of variables is impossible. Here, in this paper we propose another method that reduces
the solution of the problem to a sequential solution of two classical local boundary value problems.
By this method, we calculate eigenfunctions and eigenvalues of the problems (1.8)-(1.10) in an ex-
plicit form. Furthermore, we prove completeness of the eigenfunctions.

Material and methods

As mentioned in Introduction, as analogues of the classical periodic and anti-periodic problems
the authors in [1, 2] considered two and multidimensional versions for the Laplace operator. Then,
in [3-6] these problems but with more generalised Samarskii-lonkin type boundary conditions that
include periodic, antiperiodic and Samarskii-Ionkin type boundary conditions were investigated. We
also refer to [7—10] for other generalisations. Here, we are interested in a non-self-adjoint spectral
problem, for which it is impossible to directly apply traditional method of separation of variables.
In this paper, we will demonstrate a method that reduces the solution of the problem to a sequential
solution of two classical local boundary value problems.
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Results and Discussion

In this section, we present our main result. Before doing so, we will introduce the necessary
notations.

We will use Lg to denote the closure in IZ (B, ) of the operator defined by the differential expression
£,u = —Au(z) on the linear manifold of functions u(z) € C**¥(B,), 0 < y < 1, satisfying the
following two boundary conditions

du du

Now we are ready to state our result on the spectral problem Lg :
Theorem 1. Let g # 1. Then the system of the eigenfunctions of the operator Lg takes the form

ul(2) = J.(rfAy)coskep, O0<@<2m, k=0]12,.. (2.1)
uz (z) =]m(T\fﬂT,_,) sinme + %jo (TJE) + Z anfn(rm cosng (2.2)

forall0 < ¢ < 2m,m = 1,2, ..., where

2 pf (V) A+ B) [T

= sinmipcosnpdp,n+=mmn=0,1,..

a,
.(VA:) 1= 8) o

Here, J;(x),i = 0,1, ... are Bessel functions, 4, and Ay are eigenvalues of the Dirichlet and
Neumann problems for the Laplace equation in By, respectively. Moreover, the system of the
eigenfunctions of the operator Lg is complete in L* (B,).

Proof of Theorem 1. Let us begin by introducing the auxiliary functions

c(r,¢) = (u(r,@) +u(r, 21— 9)), s(r,9) = > (u(r, @) — u(r,2mr — 9))  (2.3)

A direct calculation shows that the functions ¢(z) and §(z) satisfies the following spectral prob-
lems: for the function s(z), we have the Dirichlet problem

—As(z) =As(z), z€B;;s(1,9) =0, 0= <27 (2.4)
and for the function ¢(%), we obtain the Neumann problem
.. — e (Le), 0sg=m
—Ac(z) = Ac(2), z€B;; —(L@) =150

kil 2.5
1—ﬁar(1’(‘9)’ T<@ <20 (2.5)

Further, we split the rest of the proof into two cases:
In the case of A # A, it can be observed that s(r, ¢) = 0, and the Neumann problem (2.5) be-
comes

—Ac(z) = Ac(z), z € By; z—;(l, 0)=00=<¢ <27 (2.6)

Due to the property ¢(7, @) = c(r, 2T — @) from (2.3), one of the series of the eigenfunctions
of the spectral problem Lg has the form

u, (z) = J, (T\fﬂj\,) coske, k=0,1,.. (2.7)
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It remains to consider the case 4 =4Ap. In this scenario, by using the property
s(r,¢) = —s(r, 2m — @) from the representation (2.3), we get

5, (2) =]m(r1.f,ln)sinmqo, m=1,2,.. 2.8)
Substituting this representation into the Neumann problem (2.5) implies

Recalling ¢(r, @) = ¢(7, 2T — @) we seek the function €(7 @) in the form
c(r,@) = _fo (T\!'ln) + Yey Anfn (T\;lD)COS?‘lt‘p 2.11)

Plugging this into the boundary condition (2.10), we calculate

Ap(1 +
a,f, (JE) =— f J;:E E)]m (ﬂsm mycos npdy
’ JEF hl E)]m (ﬂsm mycos npdy

f ZJE(_Hﬁ)

(1l —

T

]m(\f—) sin my cos npdy, n=20,1,..

that is,
—Ac(z) = /1Dc(z) Z € By, (2.9)

1
ac +'8,//1D m(,MD)smmq), 0<¢p<m
= (1,0)= { X 210)
or +'8,/AD m(,MD)smqu, <@ <2m.

2\! ‘;]“D_f;n (\,f Ap ) B .
- d =0,1,..
a, y ( D) L 1 sin my cos nydy , n=20,1,

forn #mand a, =0 forn =m.
Thus, we have completed the construction of the eigenvalues of the Lg problem:

ul(z) = J(rfAy)coskep, 0=@<=2mk=0,12,.. (2.12)
uz(z) =J, (TJE) sin mg +%fﬂ(?’\fl—ﬂ) + Z anfn (TJE) cosng (2.13)

forall0=r=1,0=¢p=<2nr, m=12,..

Here, the convergence of the obtained series in (2.13) can be verified by using asymptotic forms
of the Bessel function and Leibniz criterion.

Now, we need to show the second part of our result, namely that the obtained eigenfunctions
(2.12) and (2.13) are complete in L? (B,). For this, we note that

f ul(2)f(z)dz = f f 7] (rf 2 ) (F(r, @) + f (1, 2m — @))cos kedrde = 0
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k=oo
Using the fact that the system {rJi (7+/2y ) cos kt‘,o}kzo is complete in I? (B]"), we derive from
above that
fr,@+f(r2n—¢@)=00<¢@p <m. (2.14)

Taking into account this, we obtain

fu;(z)f(z)dz= (U (r4f2p)sinme) f (2)dz

o0

+ J’El (%jo (ry2p) + Z @l (7+/2p ) cos ncp) f(2)dz

n=ln¥m

=f f” ] (120 )sinme (f (r, @) — f (r, 21 — @))drde = 0.

o0

Here, using the completeness of {7/, (/45 )sin mtp}ﬁz in I7 (B"), we conclude that

flr,o) —fr,2n—p) =0, 0=¢p =m. (2.15)

Thus, a combination of (2.14) and (2.15) implies f(r,¢) = 0 for 0 < ¢ < 2m, which yields the
completeness of the eigenfunctions (2.12) and (2.13) in L* (B,), as desired.

Conclusion

Thus, we showed a method for the non-self-adjoint spectral problem that reduces the solution
of the problem to a sequential solution of two classical local boundary value problems. Namely,
this method allowed us to construct eigenfunctions and eigenvalues in explicit form. Moreover, we
proved completeness of the eigenfunctions in L2 (B, ). It should be noted that the question of whether
the system of eigenfunctions we have constructed forms an unconditional basis in L? (B,) remains
open.
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"MaremMaTrka )XoHe MaTeMaTHKAJIBIK MOJICIIbICY HHCTUTYTHI,
Anmarsl K., Kazakcran

KAJHIBITAHFAH INEKTIK ITAPTTAPBI BAP JIAIJIAC
ONNEPATOPBI YIHIH KOUBIJIFAH CIIEKTPAJIABIK ECEII TY PAJIbI

AHjaarna

byn makanazna B, Gipiik menGepinge Jlarnac onepaTopsl YIIiH jKajiMbl HIEKapanblK MapTTapbl 0ap COEKTPIIiK
ecen KapacTeIpbutafpl. JlepOec »xarmaiiapia OICKapalblK MIapTTap MEepHOATHIK koHe Camapckuii-MloHKHH
TUTIHJET] MeKapabIK MIapTTapasl KaMTHABL. EcenTiH MaHBI3IBI EpPEeKIIeIiri — OHBIH ©3iHe-031 TYHIHIeC eMecTiri,
OyJ1 aHATUTHKAIIBIK JKOHE CaHJIBIK IIelny/e OipKaTap KMbIHABIKTAP TyFbI3ajibl. Mbicaiibl, Dypbe aliHbIMATbLIAPBI
Oemy omici Tikenel KommaHbUIMaiabl. OChbIFaH 0aJIaHBICTHI YKYMBICTA aiHBIMAIBLTIAPIBI 06Ty OICiHIH KOJIIaHy
MYMKIHJIITT Herizaeneai. ATan aiTKaH7a, €CEeNnTi eKi JIOKaIbIbl KIACCUKAJBIK IIECKApajblK SCenTep/ai Ti30eKTei
HICIIyre KeNTIPEeTiH d/ic YChIHbUIaAbl. by oicTi maiinanana OTBIPBIN, €CeNnTiH 0apiblK MEHIIIKTI (DYHKIHsIaphI
MEH MEHIIIKTI MOHJIEPi aHBIK TYpHe aHbIKTaIbl. COHBIMEH KaTap, MEHIIIKTI (YHKIUIIAP KYHESCIHIH KSHICTITIHIe
TONBIKTHIFBI JIONeNieH1i. Afita keTy kepek, Oys HoTmxke Jlaruac omeparopbl YIHIH €Ki eJImeM/i MepHOATHIK
mIexkapainsiK ecenTiH [ 1, 2] eHOeKTepiH/e aapIHFaH HOTH)KEICPiHIH apHANbI )KaFTaifbIH JKaJITbLIAIb.

Tipexk ce3nep: Ilyaccon renueyi, Camapck-HoHKHH THITI ecell, MeHIIIKTI (GyHKIHsIap, MEHIIIKTI MOH/IED.

!TykenbaeBa A.,
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'MHCTUTYT MaTeMaTHKX U MaTeMaTHIeCKOrO MOJICTUPOBAHNS,
r. Anmarsl, Kazaxcran

Ob OJJHOM CIIEKTPAJIBHOM 3A JAYE JIJISI OIIEPATOPA JIATLJTACA
C BOJIEE ObIIUMU ' PAHUYHBIMHU YCJIOBUAMHU

AHHOTALUA
B nanHOif paboTe MBI paccMaTpUBaeM CIEKTPANbHYIO 3aa4qy A oneparopa Jlarmmaca ¢ 6omee odmivu Kpae-
BBIMH YCJIOBHSAMH B €IMHHYHOM Kpyre B . B 9acTHBIX cilydasx KpaeBble yCIOBHUs BKIIOYAIOT NEPUOAUYECKHE
KpaeBble ycnoBust Tuna Camapckoro-Monkrnna. OCHOBHOE Ba)KHOE CBOWMCTBO HaIIIeH 3a/1auu — 3TO €€ HeCaMOCOIpsi-
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JKECHHOCTbB, YTO BBI3BIBACT DA prI[HOCTeﬁ Py AaHAJTUTUICCKUX U YUCIICHHBIX PEHICHUAX. Haan/IMep, METO4 CDpre
JUTSL pa3/ieICHUs IEPEMEHHBIX HE MOXET OBITh IIPUMCHEH HANPsAMYIO K Haiiei 3amade. [losTomy B naHHOM padoTe
000CHOBBIBACTCSI BOSMOYKHOCTh IPUMCHEHUS METO/IA Pa3CIICHHS TIEPEMEHHBIX. A UMCHHO MBI TIPE/ICTABIISIEM Me-
TOJ, KOTOPBIH CBOIUT PEIICHIE 3a7a9H K MOCIEIOBATEIIFHOMY PEIICHHIO IBYX KIACCHYCCKHUX JIOKATBHBIX KPACBBIX
3anad. C NCIOIB30BaHIEM ATOTO METOJa MBI CTPOMM BCe COOCTBEHHBIE (PYHKITMH M COOCTBECHHBIC 3HAUCHUS 3a/1a4l
B ABHOM BHJie. boree Toro, 10ka3pIBaeTCs MOTHOTa CHCTEMbI cOOCTBEHHBIX (ynKimii B L*(B, ). IIpumeuarenbHo, uTo
HAIll Pe3yJIbTaT 0000IACT YACTHBIN CITydail pelICHUs ABYMEPHO 3a/1auu C MEPHOANICCKIUMU KPACBBIMH YCIIOBHSI-
Mu ajist onieparopa Jlamnaca, monydenHoro B [ 1, 2].

KarwueBble cioBa: ypasHenue Ilyaccona, 3amada tuna Camapckoro—MoHKMHA, COOCTBEHHBIE (DYHKIIHH,
COOCTBEHHBIE 3HAYECHU.
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