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PENALTY FUNCTION METHOD FOR MODELING
OF CYLINDER FLOW WITH SUBSONIC COMPRESSIBLE FLOW

Abstract

Numerical modelling of compressible flows around moving solids is important for engineering applications
such as aerodynamic flutter, rocket engines and landing gear. The penalty function method is particularly effective
when using orthogonal structural meshes within a finite difference scheme and is widely used to solve both laminar
and turbulent flow problems. The method is based on the direct application of the Navier-Stokes equations with
added sources, which allows the boundary conditions to be set indirectly. This method facilitates the imposition of
Dirichlet boundary conditions but complicates the application of Neumann conditions. Nevertheless, the method
works well with both types of boundary conditions, making it suitable for thermal and compressible flows where
Neumann conditions are often used. Despite its flexibility, the method requires a high degree of data management
and additional coding. This paper presents results of a recently developed higher-order method for compressible
subsonic flows, demonstrating accurate modeling of moving objects without numerical noise. The method has been
tested on stationary and moving objects over a wide range of Reynolds and Mach numbers.

Key words: numerical modelling, cylinder, subsonic flow, penalty function method, Navier-Stokes equations
system.
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Introduction

In recent decades, quantitative methods have been an integral part of research in aerodynamics
and fluid dynamics. One of the most important tasks is the accurate simulation of flow around various
bodies, which allows predicting aerodynamic performance and optimizing designs [1-2]. One of the
classical problems in this field is the modeling of flow around a cylindrical type body with supersonic
flow. This process is complex and involves many physically important phenomena such as flow
separation, vortex formation, and interaction of vortices with the body surface [3].

The penalty function method based on characteristics offers an effective method for solving
problems with complex boundary conditions [4—7]. The main advantage of this method is its ability
to take into account the influence of boundary conditions on the flow distribution, which plays a
particularly important role in modeling the rotation of complex-shaped bodies. The penalty function
method has been successfully applied in various areas of fluid and gas mechanics, but its use for
modeling supersonic flow around a cylinder requires additional research and adaptation [8-9].

To solve the modeling problem with subsonic flows around a cylindrical-type body using the
method of penalty functions based on observations, it is necessary to first determine the geometric
parameters of the object and the flow properties. Then an appropriate numerical method must be
selected and boundary conditions must be set [10—11]. Then, the Navier-Stokes equations describing
the motion of liquid or gas in the flow are solved. In these equations, parameters such as viscosity
and density of the medium have a significant influence on the characteristics of the simplified body,
including the effect of force and pressure distribution [12—15]. Variation of these parameters can lead
to different flow regimes, such as laminar or turbulent, which significantly affect the aerodynamic
properties of the object [16—18].

Abalakin's paper presents a method of numerical modeling of external flow of solids with viscous
compressible fluid, which does not require calculation of their boundaries on a computational grid.
The mathematical model is solved by the method of immersed boundaries. It satisfies the necessary
boundary conditions at the interface of two media (solid and air) and does not require the construction
of the corresponding body grids for numerical calculations. In this work, several variants of the
method are performed, corresponding to different boundary conditions for the temperature at the
resistive surface in the flow: isothermal and adiabatic. In the first case, the Brinkman penalty method
was applied; in the second case, the volume penalty method based on the characteristics [19-20] was
applied.

The Smokoski paper used a penalty function method based on the description of body traversal
by compressible viscous flows. The paper used AMR (adaptive mesh refinement) meshes [21].

The following paper by Abalakin provides a characterization-based volume determination
method for numerical simulation of flow that compresses above solid resistances in unstructured
grids. The aerodynamic flow modeling is based on lattices mounted under the body with rigid
and fluid interfaces defined by the lattice nodes, where the boundary conditions are explicitly
specified [22].

The purpose of this work is to model subsonic flows around a cylindrical body using the
observation-based penalty function method. The advantages of this method include the simplicity
of its implementation and the possibility of using it in different types of problems. In addition, this
method can be effective in eliminating instabilities or peculiarities in the numerical solution that may
arise during modeling.

For numerical solution of modeling of supersonic flow of compressible ideal gas around a
cylindrical body (see Fig. 1), the application of the method of penalty functions based on observations is
considered. This method allows us to efficiently solve computational fluid dynamics problems taking
into account penalty functions for exact compliance with boundary conditions. The mathematical
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formulation of the problem involves modifying the Navier-Stokes equations to introduce penalty

functions and using the characteristics for numerical solution.
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Figure 1 — Flow scheme
Main equations for a compressible perfect gas:
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Boundary conditions for gas dynamics:

+ at the input will Uz, Voo, Wz, Moo, Teo, Pos;

¢ at the output will boundary conditions of non-reflection;
¢ at the lateral boundaries will non-reflection conditions.
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Materials and methods

The Control Based Volume Penalisation Method (CBVP) is based on the idea of introducing a
penalty term into the Navier-Stokes equations (1)—(3) to model solids in fluid flow.

The basic idea of the method is that when n—0, the velocity of the fluid inside the solid tends to
the velocity of the solid.

Comparison of CBVP with the Immersed Boundary Method (IBM) for the cylinder flow problem:

1. CBVP generally provides better accuracy near the solid boundary because the penalty term
directly affects the velocity field.

2. CBVP may be more stable for larger values of the penalty parameter n, but this may lead to
stiffness of the system of equations.

3. IBM can be more computationally efficient, especially for complex geometries, as it does not
require mesh rebuilding.

4. CBVP is easier to realise as it does not require special processing of the solid boundary.

5. The CBVP can be easily integrated for the Navier-Stokes equations by adding a penalty term.

6. CBVP does not require complex processing of the cylinder boundary or rearrangement of
the computational grid. The geometry of the cylinder is taken into account through the characteristic
function y(x), which simplifies the implementation of the method.

7. The method is easily adaptable to different flow conditions and geometries. You can easily
change cylinder parameters (size, position) or add other objects to the flow.

8. If the penalty parameter 1 is properly chosen, the method provides a stable solution even at
high Reynolds numbers.

9. The penalty term in CBVP has a clear physical interpretation as a force acting on the fluid
from a solid body.

10. When the penalty parameter 7 is reduced, the CBVP solution converges to the exact solution
of the streamline problem with the sticking condition on cylinder surface.

As we have realised, both methods give results close to the experimental value, but CBVP in this
case shows a slightly more accurate result.

The CBVP method is a powerful tool for modelling the interaction of liquid and gas with solids.
It provides good accuracy and is relatively easy to implement. However, like any method, it has
its limitations and areas of application where it may be less effective than other approaches. The
choice between CBVP and other methods depends on the specific problem, required accuracy and
computational resources.

According to the paper, we consider the construction of CBVPM with positive Robin, Neumann,
Dirichlet boundary conditions on a streamlined body by introducing additional penalty functions in
the initial equations. For this purpose, in the region {2 with streamlined bodies 2, we consider the
following evolution equation for velocity [3]:

% _ RHS. (6)
at

here RHS is the right-hand side describing the physical source terms. Equation (6) can be either
hyperbolic or parabolic. For this problem we consider 3 main boundary conditions on the body £2,:

* Dirichlet’s condition is i = 1, (X, ), X € 80,.
S B a
¢ Neumann’s condition is P G(x,t), % € 90y,

) e . ] .
¢ Robin’s condition is a(%, t)i + S ﬁ = q(x,t).
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In order to add these boundary conditions to equation (6), we introduce the characteristic function
n(Z, t):

w(@ 1) = {1, ifxe€ [l?,lrjmde the body
0, ifx€q,
Then for each task according to CBVPM, equation (6) will take the following form:

a_i:_(l_ Y-RHS—Z @ —1,) +x- L

at * g U= HVn dx;dx;’ (7)
% (1—)RHS — =, 25— 4@& 1) (8)
at * e M dxy qix, ’

a1 3 . M L

% = (=) RHS ~Z |a(@,0ii + f-my 30~ GG, 0)]. ©)

here s, 1 are penalty parameters, which a 71, 57, — 0 controls the error of decisions by reducing the
time in the calculation of penalty functions.

Since the basic system (1)~(4) contains the variables P, pu; it is necessary to define the
corresponding equations with penalty functions for the density. [tis necessary to preserve the continuity
equation inside the streamlined body. According to the paper, consider such a passive evolutionary
condition, which is based on Neumann's condition. Due to the fact that the flow characteristics are
directed inside the streamlined body, the solution at the interface should be determined by the flow
physics using some derivative defined by the penalty function in the region 2, [3].

In this paper, the Neumann condition for £ is used, where the derivative sought in the region {2,
will be the derivative along the normal to the body surface, and the density inside the body becomes
passive to the gas flow.

This procedure can be carried out by introducing an additional equation and taking advantage of
the hyperbolicity of the CBVPM equations to extrapolate the density derivative to the surface of the
streamlined body along the normal by means of the following equation:

2 _ 2,2 (10)

= T N

at e k dxg

P = (l—x)nk:TinL PP,

Plo, = 2.
Finding ¢ (X,t) along the {2 region provides the necessary boundary condition from £ for
equation (7), which is solved only inside the body. Thus, the density derivatives outside the body are
determined from the continuity equation and extrapolated inside the body by integrating equation (7).
Therefore, the function ® (¥,t) is completely passive to the physics of the flow.
Then the equation for the density with the penalty function taking into account the Neumann
boundary condition for \rho at the boundary of the streamlined body is written as follows:

% _ 1_.0. _x( % _
% = (1-)-RHS %(nkaxk 2), (11)

where RHS is the right-hand side of the continuity equation.
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Using the constructed equations with penalty functions for i, # we can write equations for % and
E; using the following equations:

2 _ g% 4 p (12)
at at at
35 _ 8 1.\ 8
8t at (ch_'_ zui)_ at (pe), (13)
1,
where € = ¢T + ;uf
a(pe]_ ap %_ ap a 2 _
ar at+pat e +P ET+ (2 1)]_
_,au BT

Boundary conditions are set for the temperature on the streamhned body:

a:r
|aﬂo =4q.

The modified equation for the temperature for the whole region is written as:
ar
= (=% -RHS — = (m 7=~ q). (14)

where M, is Mach number, Re = Lot i Reynolds number, Pr is Prandtl number.
Let us rewrite (12) taking into account (7) and (11):

U

% _ 3,22 4 p T (1) - RHS——(n 2 @)+ p(1— ) RHS — 2(@ — ) + p -
e dxyg k]

8%y

82

o Bx;dx;

L — (1 —3)-[i,RHS + p - RHS] — [uzx(nka—p—*i’)—i-pi(ﬁ—ﬁ’o)+px-vn-
e b

dxy gl

Now let us rewrite (13) taking into account (11), (7) and (14):

3 E; dp #
a—:_ e(1— ) - RHS——( ka——t?)%—pﬁi(l—x)-RHS—pﬁi—(ﬁ—ﬁ’o)+pﬁix-vn-
e Xk
Cy P ar

. Ea + ¢c,p(1—)RHS — oo kg —4) = = (1—x)-[eRHS + pii, - RHS + c,p - RHS] —
ax ar g“u Cy o ar
— nk——'ﬁ)—pui—(u—uo)—kpﬁix-vn-—z— - (nk——q)= (1 —»)-RHS —
Ne day My dacyoe; Ne dorg
e ap sEp® s a%u; cy P ar
—n——+— —pﬁ’i—(ﬁ’—ﬁo)+pﬁix-vﬂ-—’—v—(nk——q)=[l—x)-Rh’S—
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ny [dpe a2 1 E&  cpp ar
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ny 3E; 2ngeyp 8T nkpﬁ-au pu a%u; 1 B¢  coypq
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. . . ar .. .
Let g=0 in this problem, i.e. 1 P q = 0, then the energy equation is rewritten as:

aEI Ny 85 [ TP — Nepw  duy 1 Ex¢ — 8%y
—=1(1—-x)-RHS — —— U U ——— + pU,

( ) [”i'c dxg  p ( o) e dxx Me P pthtn axz'axf]_
Let us write the final modified system of equations (1)-(3) taking into account the penalty

functions , decreasing boundary conditions on the streamlined body:
Z=1-n)- RHS—i(nka—p—-i*)

apu; _ B 1 u; ( 8 )_ ] 8%u;
= (1 —)-RHS — x[ -p(u, — T @) — puv, axj-axj]
afr_ oy [EOB L Pu g gy PE L YR 1E 0%
(1—3)-RHS — x| o (w, —u, T ¢ + puv, - P
In the obtained system, let us represent the RHS as a sum of convective and viscous summands,
then:
( Zr-0- a*’“‘+(1—x)RHs+ (n % _2)=0
6,('.'uE Bpuzu_., . E gp
+ (=) - + (1 — %)RHS, +x[ (—’ W)+ (s - )]
_ [ azu,
#|PUn Bxjdx; o
aEr _ auaﬂr _ T g W M S SRR R L T
+ (1 —»)—+ (1 —x)RHS, +x[ u,) + oo e " P —— + pi, v, ax_;axj] =

Now let us group the terms in the equations that are included in the vectors of variables % and *;:

( ap apu, ap
E+(1—x)- o, +(1—x)RHS+xcnka—xc¢= 0
dpu, dpu; dpu; duy;
p +(1—3)- Pty + (1—x)RHS, + x.n;,,—— d — AP +xb,o(_’ Uy,) — H U, P
ot 9, 9%,
au,
P Un 9x; 0x; B
dE, T E, dE, . . E,
E—F( — x) - ox, + (1—#%)RHS, —|—;4:c-i"1;:-@—%k+J4:£,,ou1 - (ﬁ:—uo)—xc-;qﬁ
_ 0T T
He = = My = i
. . e b
Let us rewrite (14) in vector form:
—+U—x) (ai Zi+2:)+x n,t +§+(1 %) - RHS = 0, (15)
here the vectors E 1‘3 G and § take the following form:
Hpp(u —uy) — #.Pu— x n,“o —xpun-g ]
Hpp(V — Vo) — 3, PV — xcnkp— — #pu,, - 21;
S= Hyp(W — W) — 3 PW — xnkp—— HpU,, Z
v
sy [ — ug) + pr(v — vo) + pW(W — ;)] —xcqs——x.:-nk{ P ok e
a2y 8%y w
xpvn{u@+ P } |
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Let us rewrite (15) taking into account the new vector §™:

8 9f  af  aé ad . n _ B
E+U—x)-(a+a+g)+xcnnka—m+xbn(ﬁ—um)+.S' +(1—x%)-RHS=0, (17)

where
0 0 0 0 0
0= 0 0 0
Hp
Hp = 0 0 . 0 0
0 0 =0
Hp
0 0 0 0 04
— 0 0 0 0]
0 — 0 0 0
®, =|0 0 Xi 0 0
00 0 =0
0 0 0 0 —
—x,.P ]
du 8%u
—x,PUu— N p—— KU, - —
Axy dx?
—x,Pv — xcnkpﬂ — HpU,, 7
Bxy a2
s — dw 8%w
—x PwW — xcnkpa—” —HPUy
Er du dv dw
oty [ (et — o) + pu(w — o) +pwlw —wo)] — 8% — . mifp S+ p o+ p o)
8%u 8ty 82w
—KP'UH{H@-FT?;-FWE‘ZZ} _’

u ( du + du + au)
n,— =|n,—+n,—+n,—) i
when Mk g L™ Y oy z5. ) is normal.

0 pu ov ow

pu pul+p puv puw
i=|pov| E=| puw F=|pvi+p| G=| pww

pw puw pvw pw? +p

E. b (E: +plul (E: + plvk (E, + pwl
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Then after time integration:

S+l n auntt naanﬂ- n auntt TR+l e S
AL+ Ac(l — 3) - (A +B +C + At-xy (T —w, ) =u" — At(l — ) -
dx dy dz bn ot

RHS™ = At -, n, - — — AtS™

an‘H':L 4 B‘n aan'l'l 4 C‘n an‘H':L)

(I + Aty JU™ + At(I — ) - (A“ ="+ At-ny Uy, —

dx dv dz
At(I — %) -RHS™ — At -x, -y, - ——.dtS“| (I+ At -,
—>n+1+ﬂt(lr+ﬂt )—l. 7 — . (A,n aﬂn+1+Bnaﬂn+1+Cn aanﬂ)_ (j’_'_ﬂt )_1—11_|_
U Hp,, ( ) — ™ = )= Hp,) U

At(T1+ At 3, ) sty gy — A(I+ At -3¢, ) (I — 30) - RHS™ — At(I+ At 36, ) -5, -y
—At(I+ At -3, )" S™

A different integration:

n+1i aJ’H-:L ,JIJ‘Hi an-{-i
(I + At 36, ) U™ + At( — 3) (A“ - +cn . )+ ﬂf'”%'“k(aax +aav
1:'1‘11‘1 ) )
332 )= — At(I — %)RHS™ — AtS™ )
then

8 ([ = 04" + 700y 1] o+ [ = 20B™ 4 20y 1) o 1 [ = C7 4 e,

aun+1 _
)=~} =" — At — x)RHS™ — Ats™
AW = (I — WA™ + %, "Ny

B™W = (- x)B"+x. n,

W =0 —m)C" +x ., ny

aunti guntt

—>n+1+(f+,ﬁt;fb) Af - {A“B"' R b ui— P + (hew ﬁa“ } (.’+ .ﬁtxb) u" —

(I+ f_‘\.txbn)_ At(I — )RHS™ — (I + At -3, ) ~*AtS™ ;

ad Ed ad

at e "ax,{
dp

O =(1—- x)n,—+ xd,
dng
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dd s dd ad dd
—+
at e

—+n,—+n.—|=0
* 8x Y ay Z a8z >

Fad
e > 0 the approximation depends on My, ™y, N, if they are positive, the difference is backward, if
c

they are negative, the difference is forward.

For = = 0:
Ne

For = < 0:

b an‘f'l_an
o _ L0,
at At

ad PPy
ax X

+ O(Ax) , ecnu ni >0,

3d D,
Z I 0(Ax), ecnn = < 0,
Me

dx Ax
32w ujyg—2uztuyoy
TE BT L o (Ax?
dx? 2Ax2 [: ),
$Mti_gh * [ b + b + aq:]
At Ne - * 8 Ya Zaz"
Atse ad dd ad
{D'n.+1=ch_ [nx_+nv_+ .
e dx < gy gz~
dn+l — " — ‘:"ﬂ [ﬂ, Pi—PFia Di—Pj_y ¢k—¢k—1]
- X z
e Ax 4 Ay Az

Atz €I3-+ —h; L i+ —h; q3k+ —qjk
Ol = n — K[, Ty gy DIRTD) gy DT
e Ax - Ay Az

Results and discussion

Figure 2 shows that when M., = 0.5 and Re = 1000, the flow is subsonic around a cylindrical
body. The image shows the distribution of Mach numbers in the rotational region of the cylinder,
showing regions characterized by changes in flow velocity.

The flow collides with the cylinder, causing pressure increase and velocity deceleration in front of
the cylinder. This region is represented by a smooth transition to lower values of Mach numbers. The
flow rotates around the cylinder and splits into two parts, resulting in a complex velocity distribution
around the cylinder. Along the surface of the cylinder, high values of Mach number are observed
at which the flow accelerates. Behind the cylinder, a recirculation region or trace is formed along
which the flow velocity decreases significantly. Low values of Mach numbers are seen in this region,
indicating the formation of vortices and turbulent current. The formation of low-velocity vortices
and regions behind the cylinder is a phenomenon characteristic of rotating bodies in subsonic flow

conditions.
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Figure 2 shows typical supersonic flow behavior when a cylindrical body is rotating. At M, =
0.5, the flow velocity is half the speed of sound in this medium, which allows us to observe both flow
stabilization and turbulent regions.

Re = 1000 shows an average turbulent flow regime, which is confirmed by the presence of
vortices behind the cylinder.

In Figure 3, the cylindrical body causes significant disturbance in the flow, which is reflected in
the change in velocities around it. Flow inhibition is observed at the front of the cylinder, resulting in
a low velocity zone (dark blue color) in front of the body.

Behind the cylinder, in its shaded region, a high velocity zone characterized by a high velocity
gradient is formed. This area depends on the impact of the cylinder on the surrounding flow and the
formation of vortices. The vortices, in turn, create regions of variable pressure and velocity at the
rear of the cylinder.

N
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X

[ ]
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|4 -]

oCOoQ0Q0QOO0000OOCO000
O—‘—‘V\JNWﬁAgU‘\(ﬁmm\l\l
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a)

b)

Figure 2 — Variation of the Mach parameter at M= 0.5 and Re = 1000
The central part shows a region of relatively constant velocity where the flow equalizes after

perturbations caused by the cylinder rotation. The influence of the cylinder on the flow gradually
decreases with distance from the body, and the flow velocity tends to the initial values.
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Figure 3 — Variation of velocity U at M, = 0.5 and Re = 1000

Figure 4 shows the temperature change during the rotation of a cylindrical body with supersonic
flow M., = 0.5 and Re = 1000. The region in front of the cylinder is characterized by an increase
in temperature caused by compression and deceleration of the flow. This manifests itself as a
concentration at high temperatures on the front surface of the cylinder.

At the sides of the cylinder, the temperature gradually decreases due to leakage and opening
of the flow around the body. A low temperature zone is formed at the rear of the cylinder, which is
the result of vortices and turbulent mixing caused by the flow around the cylinder. These vortices
promote mixing of cold and hot air, creating a low temperature zone behind the body.

Further, a gradual equalization of the temperature field can be seen from the cylinder, where the
flows mix and recover their original temperature. These changes best reflect the thermal effect of the
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cylinder on the surrounding flow and demonstrate the effect of heat transfer and turbulent mixing in
the region behind the body.
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Figure 4 — Temperature change T at M, = 0.5 and Re = 1000

Figure 5 compares the experimental data for the pressure coefficient P at the cylinder surface.
At Re = 40, the flow is characterized by a laminar constant recirculation zone, since the critical
point of Bernard-Fon Karman instability is not reached. A qualitative comparison of the vortex
isocontours with data from Al-Marouf et al [23] shows that the structural organization of the flow
is well understood. This includes the pressure coefficient C, which agrees well with the results of
Al-Marouf et al [23].
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Figure 5 — The pressure coefficient C on the cylinder surface is a constant solution
for M, =0.05 and Re =40 (+ » ¢ is experiment and is numerical result)

Conclusion

In this work, a characteristic-based penalty function method was used to simulate the supersonic
flow around a cylinder at parameters M,_, = 0.5 and Re = 1000 The numerical simulation results
were carefully compared with experimental data, which confirmed the accuracy and reliability of the
proposed approach.

The use of the penalty function method based on characteristics has shown that it provides high
accuracy and stability of the numerical solution when modeling complex flows. This method allowed
us to effectively consider boundary conditions and flow features around the cylinder.

In addition, a new method of reducing the equations to dimensionless form was used in this work,
which improved the convergence of the calculations and increased their accuracy. This application
also helped to reduce the computational cost, which is an important factor when performing complex
numerical calculations.

Comparison of the numerical simulation results with experimental data showed good agreement,
which confirmed the correctness of the selected method and its application for solving aerodynamic
problems at supersonic speeds. An ENO scheme was developed for the task.

Thus, the penalty function method based on characteristics has proven its effectiveness and can
be proposed for further use in numerical modeling of aerodynamic problems.
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Angarna

KosranaTblH KaTThl ISHEICP/IiH aifHaIaChIH/IaFbl ChIFBUIATHIH aFbIHAAP/IbI CAHJIBIK MOJIEIIbCY adPOJHHAMHKA-
JIBIK (ITFOTEP, 3bIMBIPAH KO3FAITKBIIITAPHI JKOHE INACCHJICD CHUSAKTHI HHXKCHEPIIK KojmaHOazapaa MaHbI3Ibl P
aTrkapazbl. AWBIN (yHKIUSUIAP 9/1iCI COHFBI abIPMAIIBIIBIKTAP SAICIHIH MIeHOepiH/Ie OPTOTOHAIBIBI KYPBUIBIMABIK
TOpNapapl MaiaJaHFaH Ke3le THUIMIUIITIMEH epeKIIeICHEel JKOHE JIAMUHAPIBI, COHNIAN-aK TypOYJICHTTI aFblH
MOceJeNepin memny/ie KeHIHeH KOJIaHbUIa/(bl. BYJI 9/TiC MeKapasbIK MAPTTap/Ibl )KaHaMa TYpPJe €Hri3y MYMKiH/Ii-
TiH KaMTaMachl3 €TeTiH KOCHIMINAa KO3[IePMEH TONBIKTHIphUIFaH HaBbe-CTOKC TeHIEynepiH TiKeNed KoimaHyFa
HeTi3aenreH. Aibin QyHkumsiap omici JAupuxie mexapanblK DIapTTapblH €HTi3ydl JkeHuineTeni, 6ipak Heitman
HIapTTapblH KOJIaHyJa Oenrii Olp KUBIHIBIKTAp TYABIPYbl MYMKiH. JlereHMeH, 9Jiic IIeKapaliblK IMIapTTapblH
€Ki TypiMEeH Jae THIMAI JKyMbIC icTeii, OyJ OHBI TEPMHSUIBIK JKOHE CHIFBIIATBHIH arbIHIAAp CUSAKTHI Heiiman
MapTTaphl KUl KOJJIAHBUIATHIH KOJAaHOANAp YIIiH BIHFAWIBI eTei. MKkeMaimirine KapaMmacTaH, dfic IepeKTepil
Gackapy/blH KOFaphl JCHICHIH KOHE KOCHIMIIA KOJATAY OPEKETTEPiH KAKET ereli. byl Makanaja ChIFbLIATHIH
CyOCOHHKAIBIK aFbIHIAPIBI CAHABIK MOICITBCYIC T HOTIKENEp OepeTiH KaKpIHAA 931pICHTCH KOFaphl PETTi o1ic
KapacTeIpbuiabl. Oic PeiiHonbac meH Max caHaapbIHbIH KeH JMara3OHbIHAa KO3FAIMAWTBIH JKOHE KO3FauaThiH
00BbeKTiIep e ChIHAIIBI, OYJI OHBIH THIMUIITT MEH KOJIJIAHY asiChIH KOPCETeIi.

Tipek ce3aep: caHIbIK MOJEIBICY, LIMIIMHIP, JBIOBICKA ICHIHT1 aFbIH, aitbill QyHKIMsUIap 91ici, HaBre-CToke
TeHAYJEp Kyieci.
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METO/I IITPA®HBIX ®YHKIIUA 1151 MOAEJIUPOBAHUSA
OBTEKAHUSA NUJIUHIAPA JO3BYKOBBIM CKUMAEMbBIM ITIOTOKOM

AHHOTALUA

YncieHHOE MOJIETMPOBAHNE C)KMMAEMBIX TOTOKOB BOKPYT ABMKYIIIUXCS TBEPABIX TEI Ba’KHO JUIS TAKMX MHIXKE-
HEPHBIX MPHIOKEHNH, KaK a3pOoJIMHaMHUYECKUN (raTTep, pakeTHbIE IBUTaTeNu U maccu. Meron mrpadHsix QyHK-
i 0co0eHHO APPEKTHBEH MPH UCTIOIH30BAHUU OPTOrOHAIBHBIX CTPYKTYPHBIX CETOK B PAMKaX CXEMbl KOHEYHBIX
pa3HOCTEH M MIMPOKO MPUMEHSIETCS ISl peIIeHNUs 3a/1a4d Kak JAMUHAPHOTO, TaK ¥ TypOyJeHTHOTo TedeHus. Meton
OCHOBaH Ha NPSIMOM NpUMEeHEeHHH ypaBHeHn HaBbe-Ctokca ¢ 100aBIeHHBIME HCTOYHHKAMH, YTO TO3BOJISIET 3a-
JlaBaTh T'PAaHWYHBIC YCIOBUSI KOCBEHHBIM 00pa3oM. DTOT METOJ 00JjeryaeT HaJOKeHNEe IPAaHUYHBIX ycinoBuil [lu-
puxJe, HO yCIOKHSACT MpUMeHeHne ycoBuii Heiimana. Tem He MeHee METOI XOpOIIo paboTaeT ¢ 00OWMH THITAMH
TPaHUYHBIX YCIOBHH, YTO AENAET €r0 MOAXOIAIIUM AJISl TETUIOBBIX M CKUMAEMBbIX MTOTOKOB, II€ YaCTO MCHONB3Y-
toTcs ycnoBusi Heiimana. HecMoTpst Ha cBOKO THOKOCTh, METOJ| TPeOyeT BHICOKOIl CTEIICHHU YIIPaBICHHS JJAHHBIMU
1 JIOTIOJIHUTEIILHOTO KOIMpOBaHus. B nanHO#M paboTe mpencTaBieHbl pe3ynbTaThl HeAaBHO pa3paboTaHHOTO METO-
Jla Oosiee BBICOKOTO MOPSI/IKA ISl CKMMAEMBIX JI03BYKOBBIX MOTOKOB, IEMOHCTPUPYIOLINE TOUHOE MOJICITUPOBAHHE
JBIDKYIINXCSI OOBEKTOB 0€3 YMCICHHOTrO IryMa. MeTox ObUI MPOTECTHPOBAH HA CTALMOHAPHBIX M JBHOKYIIUXCS
00BeKTax B IMMPOKOM JIHarTa3oHe urcen Pelinonpaca m Maxa.

KaioueBble c10Ba: 4nCIeHHOE MOJICITMPOBAHKE, [IMIIMH/IP, 103ByKOBOE TEUEHHE, METO IITPAPHBIX QYHKIIMH,
cucreMma ypaBHeHui HaBre-Crokca.
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