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Abstract
Gene expression analysis has become a key component in understanding cellular behavior, disease mechanisms, 

and drug response. The advent of high-throughput sequencing, particularly single-cell RNA sequencing (scRNA-
seq), has expanded our ability to study cellular heterogeneity to an unprecedented level. Clustering algorithms needed 
to group genes or cells with similar expression profiles have become invaluable for analyzing the massive data sets 
generated by these technologies. This article reviews various clustering methods applied to gene expression data, 
particularly single-cell RNA sequencing. The analysis covers traditional methods such as hierarchical clustering and 
k-means, as well as more advanced approaches such as model-based clustering, machine learning-based methods, 
and deep learning methods. The primary challenges encompass handling high-dimensional data, mitigating noise, 
and achieving scalability for large datasets. Moreover, new advancements such as multi-omics data integration, deep 
learning-based clustering, and federated learning offer potential enhancements in accuracy and biological relevance 
for clustering applications in gene expression research. The review concludes with a discussion of clustering 
algorithms in handling increasingly complex gene expression data for more accurate biological insights.

Key words: Clustering methods, Bioinformatics, Machine Learning, Deep learning, single-cell RNA 
sequencing, Gene expressions.

Introduction

Gene expression analysis has become a cornerstone of modern molecular biology, providing vital 
information about cellular functions  [1], disease mechanisms [2], and drug responses [3]. The advent 
of high-throughput sequencing technologies, particularly single-cell RNA sequencing (scRNA-seq), 
has transformed our ability to conduct gene expression research [4] . As we delve into the complex 
world of cellular heterogeneity and function, clustering algorithms are becoming indispensable tools 
for making sense of the vast and complex datasets generated by these technologies.

Using clustering, an unsupervised machine learning technique, researchers can categorize genes 
or cells by similar expression patterns, which helps reveal underlying structures in the data [5].
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As the field of genomics continues to evolve, the importance of robust and efficient clustering 
algorithms cannot be overstated. The aim of this review is to provide a comprehensive overview of 
the current state of clustering methods in gene expression analysis, with a particular focus on their 
application to single-cell RNA-seq data.

The Rise of Single-Cell RNA Sequencing. Single-cell RNA sequencing has emerged as a powerful 
tool in genomics, offering unprecedented insights into cellular heterogeneity and function. Unlike 
bulk RNA sequencing, which provides an average expression profile across a population of cells, 
scRNA-seq captures the transcriptomes of individual cells, revealing true diversity in seemingly 
homogeneous populations [6].

Identifying Complex and Rare Cell Types. One of the main applications of scRNA-seq is the 
identification and characterization of rare cell populations that may be masked in bulk sequencing 
approaches. By studying the transcriptomes of individual cells, researchers can detect subtle changes 
in gene expression that define different cell types or states.

Elucidating Gene Regulatory Networks. The high-resolution data provided by scRNA-seq enable 
the construction of detailed gene regulatory networks. By studying gene co-expression patterns in 
individual cells, researchers can infer regulatory relationships and build models of gene interaction 
networks. This approach has led to the discovery of new regulatory mechanisms and improved our 
understanding of how gene expression is coordinated at the cellular level [6].

Assessing Developmental Trajectories. scRNA-seq has revolutionized the study of developmental 
biology by allowing researchers to track the developmental trajectories of individual cell lineages. 
By analyzing gene expression profiles of cells at different stages of development, scientists can 
reconstruct the molecular pathways that direct cellular differentiation and maturation [7].

Revealing Cell-to-Cell Variations in Disease. In the context of disease research, scRNA-seq has 
proven invaluable in identifying cell-to-cell variations in various disease states. The technology has 
been particularly effective in cancer research, where it has shed light on tumor heterogeneity and the 
existence of rare cell populations that may contribute to drug resistance or disease progression [8].

Applications in Drug Discovery and Development. scRNA-seq has applications that reach 
fundamental research, playing a crucial role in drug discovery and development. This technology 
allows for more precise and effective drug discovery strategies by offering in-depth insights into how 
individual cells respond to drugs [9].

As we delve into the world of clustering algorithms for gene expression analysis, it is critical to 
remember the profound impact these computational tools have on our ability to extract meaningful 
biological insights from the wealth of data generated by single-cell RNA sequencing. The following 
sections will explore various clustering approaches, their strengths and limitations, and their 
applications to deciphering the complexities of gene expression data.

Materials and Methods

Clustering is a fundamental technique in gene expression analysis, enabling researchers to group 
genes or samples based on their expression profiles. This facilitates the identification of patterns and 
relationships, aiding in the understanding of complex biological processes. Various clustering methods 
have been developed, each with its strengths and limitations. Traditional methods like hierarchical 
and k-means clustering offer simplicity and efficiency, while model-based approaches provide 
flexibility and statistical rigor. This section explores several clustering techniques, highlighting their 
applications, advantages, and limitations in the context of gene expression analysis.

Traditional Clustering Methods. Traditional clustering methods are widely employed due to 
their straightforward implementation and interpretability [10]. Hierarchical clustering is particularly 
popular for its ability to uncover relationships at multiple levels of granularity. By constructing a 
dendrogram, hierarchical clustering provides a visual representation of nested clusters, making it 
intuitive for biological interpretation [11]. Its flexibility allows researchers to explore data without 
specifying the number of clusters in advance. However, it has significant computational demands, 
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with a time complexity of O(n3)O(n^3)O(n3), and is sensitive to noise and outliers, which can distort 
the clustering structure.

K-means clustering is another widely used method, known for its computational efficiency and 
simplicity [12]. It partitions data into kkk clusters by minimizing within-cluster variance, making it 
well-suited for large datasets. K-means is easy to implement and adapts to various distance metrics, 
enhancing its flexibility. Nonetheless, it requires the number of clusters to be predefined, which can 
be a challenging task. Additionally, the algorithm is sensitive to the initial placement of centroids 
and assumes that clusters are spherical, which may not always align with the actual data structure.

K-medoids clustering addresses some of k-means’ limitations by using medoids – actual 
data points – as cluster centers, which improves robustness to outliers [13]. This method offers 
better interpretability, as medoids are representative of the data. K-medoids allows for the use of 
various distance metrics, making it possible to analyze mixed data types; nevertheless, it is more 
computationally intensive than k-means and still requires the number of clusters to be specified in 
advance.

Model-Based Clustering Methods. Model-based clustering operates on the assumption that data 
are produced from a combination of probability distributions, making it especially suitable for gene 
expression data, which frequently display complex statistical characteristics [14]. 

Gaussian Mixture Models (GMM), one of the most commonly used model-based approaches, fit 
data as a mixture of multivariate Gaussian distributions [15]. This allows for flexible cluster shapes 
and probabilistic assignments, enabling the handling of overlapping clusters. However, GMMs are 
sensitive to initialization and can overfit in high-dimensional spaces.

Latent Dirichlet Allocation (LDA), originally developed for text analysis, has been adapted for 
gene expression studies to identify latent functional groups of genes [16]. LDA assigns genes to 
multiple groups with varying probabilities, offering a nuanced view of gene relationships. While it 
can reveal biologically meaningful patterns, LDA requires careful interpretation and may not capture 
all expression data complexities.

Clustering remains a cornerstone of gene expression analysis, with traditional and model-
based methods offering complementary strengths. Traditional methods like hierarchical, k-means, 
and k-medoids clustering are prized for their simplicity and efficiency, though they face challenges 
with large datasets and noisy data. Model-based approaches, including GMMs, LDA, and DPMMs, 
provide greater flexibility and adaptability to complex data structures but come at the cost of higher 
computational complexity. The choice of clustering method depends on the specific goals of the 
analysis, data characteristics, and available computational resources. Together, these methods provide 
a robust toolkit for exploring and interpreting the rich information embedded in gene expression data.

Results

RNA-seq Data Analysis Pipeline. The RNA-seq data analysis pipeline shown in Figure 1 is a 
critical process for extracting meaningful biological information from raw sequencing data [17–19]. 
This pipeline consists of several key steps, each of which plays an important role in transforming raw 
reads into interpretable gene expression data. Understanding this pipeline is necessary to appreciate 
the context in which clustering algorithms are applied.

Preprocessing. Preprocessing is an initial and critical step in the RNA-seq data analysis process. 
This step aims to ensure the quality and integrity of the raw sequencing data before further analysis. 
The main goals of preprocessing include:

1. Quality Control: The overall quality of the raw data is assessed using tools such as 
FastQC [20]. At this stage, various metrics such as per-base sequence quality, GC content, sequence 
length distribution, and overrepresented sequences are checked.

2. Adapter Trimming: Sequencing adapters, which are artificial sequences added during library 
preparation, are removed using tools such as Trimmomatic [21] or Cutadapt [22].
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Alignment. Alignment, also known as mapping, is the process of determining the genomic 
origin of each sequence read. This step is fundamental to RNA-seq analysis because it allows one 
to determine which genes are expressed in a sample. Aligners such as STAR [23], HISAT2 [24], or 
TopHat2 [25] are used to handle reads that span exon junctions.

Figure 1 – Gene expression analysis pipeline

Quantification. Quantification is the process of assessing gene or transcript expression levels from 
aligned RNA-seq reads. This step converts the mapped reads into meaningful expression values   that 
can be used for comparative analysis. Quantification tools such as HTSeq [26] or featureCounts [27] 
are used to count the number of reads that map to each gene’s exons.

Normalization. Normalization is a critical step to remove systematic bias and ensure comparability 
between samples. Without proper normalization, differences in sequencing depth, gene length, and 
other technical factors can obscure true biological differences.

Differential Expression. Differential expression analysis aims to identify genes that show 
statistically significant differences in expression levels between experimental conditions. This 
process typically involves tools such as DESeq2 [28], or edgeR [28] use statistical models to test for 
differential expression.

Clustering. Clustering is a powerful technique used to group genes or samples with similar 
expression patterns. This step is essential for detecting co-expressed genes [29], uncovering new cell 
or tissue subtypes, and gaining insights into the overall structure of gene expression data.

Various clustering algorithms can be employed (Table 1). We compared six clustering algorithms 
using the R programming language, providing plots that demonstrate their applications and 
interpretability. All analyses were conducted using an open-access dataset from NCBI (PRJNA736095; 
GEO: GSE176415), following a comprehensive preprocessing workflow up to the extraction of the 
gene expression set, utilizing the Galaxy Project platform [30], with clustering performed exclusively 
on the gene expression dataset. In this table, we aimed to highlight the advantages and limitations 
encountered during our analysis.
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Comprehending this pipeline is vital for evaluating the context in which clustering algorithms 
are utilized, along with the various factors that can affect their performance and interpretation. In 
the sections that follow, we delve into specific clustering methods used in gene expression analysis, 
examining their advantages, limitations, and role in interpreting complex gene expression data.

Conclusion

The application of clustering algorithms to gene expression data has transformed our understan-
ding of biological systems, which allow researchers to uncover complex patterns, identify co-
expressed genes, and classify cell types with unprecedented accuracy. This review explored a wide 
range of clustering methods, from traditional approaches to cutting-edge machine learning methods, 
each offering unique strengths in gene expression data analysis. The challenges and future directions 
in clustering gene expression data highlight the intricate nature of modern genomic datasets and the 
increasing need for clustering algorithms that are scalable, interpretable, and biologically meaningful. 
Addressing the limitations of high dimensionality, data integration, and scalability will be critical 
to the continued success of clustering in gene expression analysis. Additionally, emerging trends 
such as deep learning, automated clustering pipelines, and federated learning hold great promise 
for advancing the field and enabling new biological discoveries. With the shift toward larger, more 
complex, and multimodal datasets, it will be crucial to develop advanced clustering methods capable 
of handling these challenges to deepen our understanding of gene regulation, cellular diversity, and 
disease mechanisms.

The diversity of available clustering methods reflects the complexity and heterogeneity of gene 
expression data. Although traditional methods like hierarchical clustering and k-means are still 
widely utilized, advanced machine learning and deep learning techniques are being increasingly 
adopted to tackle the challenges of high-dimensional and noisy data. As the field of gene expression 
analysis continues to evolve, integrating these methods with biological knowledge and leveraging 
the strengths of each approach will be critical to uncovering new insights into gene regulation and 
cellular function.

To sum up, the field of clustering algorithms for gene expression analysis is advancing swiftly, 
propelled by breakthroughs in sequencing technologies and computational methods. With the move 
toward more complex, large-scale, and multimodal datasets, developing sophisticated, scalable, 
and biologically interpretable clustering algorithms becomes crucial. These advancements hold the 
potential to enhance our understanding of gene regulation, cellular diversity, and intricate biological 
systems, ultimately fueling progress in areas from developmental biology to personalized medicine.

Figure 2 – Dendrogram. Hierarchical clustering of gene expression dataset
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Figure 3 – UMAP. of Hierarchical clustering of gene expression dataset

Table 1 – Comparisonal table of, mostly known clustering algorithms used in searching similar pattern 
on gene expressions. The given code on R is set of examples to run these clustering algorithms

№ Name Input Output, plot and interpretations. 
Sample.

Advantages and limitations Reference

1 Hierarchical 
clustering

Gene 
expression 
data

Plot: Dendrogram plot.
Output: Dendrogram showing 
hierarchical structure of clusters.
Interpretation: The hierarchy in 
clusters allows identifying nested 
subgroups within the data, providing 
insight into relationships among gene 
expression patterns and potential 
biological processes or cell types.
Sample: The dendrogram (Figure 2) 
displays three primary clusters when 
cut at a height of 0.8, each indicating 
a broad category of gene expression 
similarity.

Advantages:
 � Provides a detailed 

hierarchical structure, 
allowing exploration of 
clusters at different levels.

 � Does not require pre-
specifying the number of 
clusters, making it flexible 
for exploratory analysis.

 � Useful for identifying 
nested clusters and 
understanding complex 
relationships within data.
Limitations:

 � Computationally intensive 
for large datasets, as in 
samples.

[11]

2 K-means 
clustering

Gene 
expression 
data

Output: Cluster centroids and 
assignment of data points to clusters.
Plot: Scatter plot with cluster 
boundaries or bar chart of cluster sizes 
on UMAP.
Interpretation: Each cluster centroid 
represents a gene expression pattern, 
helping to identify dominant 
expression profiles that may 
correspond to biological functions.
Sample: To make this example 
relevant, we focused on three 
clusters (Figure 3), where each 
group may exhibit shared functional 
characteristics or biological pathways.

Advantages:
 � Efficient and 

computationally fast for large 
datasets, as in samples.
Limitations:

 � Requires specifying 
the number of clusters in 
advance, which may not 
always be known.

[12]
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3 K-medoids 
clustering

Gene 
expression 
data

Output: Medoids of clusters with each 
data point assigned to a medoid.
Plot: Similar to K-means, often scatter 
plots UMAP or heatmaps
Interpretation: Medoids provide 
robust representative profiles of each 
cluster, which can reduce sensitivity 
to outliers and reveal distinct gene 
expression patterns.
Sample: The clear separation of 
clusters (Figure 4) in the plot indicates 
distinct gene expression profiles, 
where each group may correspond 
to different biological functions or 
pathways. Output is very similar to the 
output of K-means clustering.

Advantages:
 � Less sensitive to outliers 

than K-means, as medoids 
are more representative of 
cluster centers.

 � Does not require spherical 
clusters, allowing for 
flexibility in cluster shapes.
Limitations:

 � Slower and more 
computationally intensive 
than K-means, especially for 
large datasets as in samples.

 � Requires specifying 
the number of clusters in 
advance, similar to K-means.

[13]

4 Model-
Based 
Clustering 
Methods

Gene 
expression 
data

Output: Probability of each data point 
belonging to a specific cluster.
Plot: Probability density plots or 
cluster assignment visualizations on 
UMAP. 
Interpretation: This probabilistic 
approach allows for understanding 
overlapping clusters and provides 
statistical confidence in gene 
expression group assignments.
Sample: The UMAP plot (Figure 5) 
displays nine distinct clusters of gene 
expression profiles generated using 
Model-Based Clustering.

Advantages: 
 � Allows for overlapping 

clusters, capturing complex 
relationships in the data. 

 � Provides probabilities, 
adding statistical confidence 
to cluster assignments. 
Limitations: 

 � Computationally intensive, 
especially for large datasets, 
as in samples. 

 � Requires assumptions 
about the data distribution, 
which may not always be 
accurate. 

[14]

5 Gaussian 
Mixture 
Models 
(GMM)

Gene 
expression 
data

Output: Mean and covariance of each 
Gaussian component in the mixture. 
Plot: Contour plot or ellipses 
representing cluster densities. 
Interpretation: GMM reveals the 
continuous distribution of gene 
expression clusters, allowing insight 
into clusters with potential overlap in 
biological function.
Sample: The contour plot (Figure 
6) shows the density distribution 
of gene expression clusters, where 
contour levels indicate regions of 
higher probability for gene expression 
profiles. In the UMAP (Figure 8) 
visualization, eight clusters are 
color-coded, revealing complex 
relationships in gene expression 
patterns with some degree of overlap. 
The classification plot (Figure 7) 
shows clusters with ellipses, indicating 
the covariance structure of each 
Gaussian component, highlighting 
both the central tendency and spread 
of each cluster. Together, these 
plots suggest that GMM clustering 
successfully identifies overlapping 
clusters, providing insights into genes 
with mixed expression patterns across 
biological functions.

Advantages: 
 � Allows for overlapping 

clusters, which is suitable 
for complex gene expression 
data. 

 � Captures the variance 
within clusters, providing 
insight into cluster shape and 
spread. 

 � Provides probabilistic 
assignment, adding statistical 
confidence to cluster 
membership. 
Limitations: 

 � Computationally intensive 
for large datasets due to 
complex calculations. 

[15]

Continuation of table 1
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6 Latent 
Dirichlet 
Allocation 
(LDA)

Gene 
expression 
data

Output: Topic distribution per gene 
or sample, with topics representing 
clusters. 
Plot: Topic distribution histograms or 
heatmaps. 
Interpretation: LDA treats clusters as 
“topics” of gene expression, revealing 
latent structures and allowing for 
thematic categorization of gene 
functions or pathways.
Sample: The document-topic 
distribution histogram (Figure 10), 
showing the proportions of each 
topic (gene expression pattern) across 
genes. Peaks in blue, red, and green 
highlight dominant topics, suggesting 
prevalent expression themes. A term-
topic heatmap (Figure 9), illustrates 
the relationship between specific 
gene terms and topics, with darker 
colors indicating higher relevance. 
This heatmap provides insight into the 
gene features strongly associated with 
each topic, useful for understanding 
gene functions. Together, these graphs 
demonstrate LDA’s ability to capture 
the latent structure of gene expression 
patterns, offering a thematic 
categorization of gene functions and 
pathways.

Advantages: 
 � Effective for revealing 

hidden structures within 
complex data. 

 � Provides a thematic 
categorization, useful for 
understanding gene functions 
and pathways. 
Limitations: 

 � Requires pre-specifying 
the number of topics, which 
may not always match the 
true structure of the data. 

 � Computationally intensive, 
especially for large datasets.

[16]

Figure 4 – UMAP. of K-medoids clustering of gene expression dataset

Continuation of table 1
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Figure 5 – UMAP. Model-Based Clustering Methods of gene expression dataset

Figure 6 – Probability Density for each Gaussian component in the GMM.
 Gaussian Mixture Models (GMM) of gene expression dataset

Figure 7 – Classification (Cluster Assignment) with Ellipses representing Gaussian Components. 
Gaussian Mixture Models (GMM) of gene expression dataset
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Figure 8 – UMAP on the clustering data for dimensionality reduction. 
Gaussian Mixture Models (GMM) of gene expression dataset

Figure 9 – Heatmap of the term-topic distribution for the top 10 terms in each topic. 
Latent Dirichlet Allocation (LDA) of gene expression dataset

Figure 10 – Histogram Document-Topic Distribution (Topic Proportions for Genes). 
Latent Dirichlet Allocation (LDA) of gene expression dataset
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ГЕНЕТИКАЛЫҚ ДЕРЕКТЕРДІ ӨҢДЕУГЕ, АЛДЫН АЛА ӨҢДЕУ 
МЕН КЛАСТЕРЛІК ТАЛДАУҒА АРНАЛҒАН ҚҰРАЛДАРҒА, 

ӘДІСТЕМЕЛЕР МЕН ӘДІСТЕРГЕ ШОЛУ

Аңдатпа
Ген экспрессиясын талдау – жасушалардың әрекеттерін, ауру механизмдерін және дәрілік реакцияны 

түсінудің негізгі құрамдас бөлігі. Жоғары өнімді секвенирлеудің, әсіресе бір жасушалы РНҚ секвенирлеуі-
нің (scRNA-seq) пайда болуы жасушалық гетерогенділікті бұрын-соңды болмаған деңгейге дейін зерттеу 
мүмкіндігін кеңейтті. Ұқсас экспрессиялық профильдері бар гендер немесе жасушаларды топтастыру 
үшін қолданылатын кластерлеу алгоритмдері осы технологиялар арқылы алынған үлкен деректер жиынын 
талдау барысында баға жетпес құралға айналды. Бұл мақалада гендік экспрессия деректерін талдауда, 
әсіресе бір жасушалы РНҚ секвенциясына негізделген зерттеулерде қолданылатын әртүрлі кластерлеу 
әдістері қарастырылды. Талдау иерархиялық кластерлеу мен k-means сияқты дәстүрлі әдістерді, сондай-
ақ үлгіге негізделген кластерлеу, машиналық оқыту және терең оқыту тәсілдері сияқты жетілдірілген әдіс-
терді қамтиды. Негізгі міндеттерге жоғары өлшемді деректерді өңдеу, шуды азайту және үлкен деректер 
жиынын тиімді масштабтау жатады. Сонымен қатар мульти-омикалық деректерді біріктіру, терең оқытуға 
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негізделген кластерлеу және федеративті оқыту сияқты жаңа жетістіктер гендік экспрессияны зерттеудегі 
кластерлеу қосымшаларының дәлдігі мен биологиялық маңыздылығын арттыруға мүмкіндік береді. Мақала 
кластерлеу алгоритмдерінің күрделі гендік экспрессия деректерін өңдеудегі болашақ бағыттарын талқылап, 
биологиялық түсініктерді жақсарту жолдарын ұсынады.

Тірек сөздер: кластерлеу әдістері, биоинформатика, машиналық оқыту, терең оқыту, бір жасушалы 
РНҚ секвенциясы, гендік экспрессиялар.
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ОБЗОР ИНСТРУМЕНТОВ, МЕТОДОЛОГИЙ И МЕТОДОВ ОБРАБОТКИ, 
ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ И КЛАСТЕРНОГО АНАЛИЗА 

ГЕНЕТИЧЕСКИХ ДАННЫХ

Аннотация
Анализ экспрессии генов стал ключевым компонентом в понимании поведения клеток, механизмов 

заболеваний и реакции на лекарства. Появление высокопроизводительного секвенирования, в частности 
секвенирования РНК отдельных клеток (scRNA-seq), расширило наши возможности изучения клеточной 
гетерогенности до беспрецедентного уровня. Алгоритмы кластеризации, необходимые для группировки 
генов или клеток со схожими профилями экспрессии, стали бесценными для анализа огромных наборов 
данных, генерируемых этими технологиями. В этой статье рассматриваются различные методы кластери-
зации, применяемые к данным об экспрессии генов, в частности секвенирования РНК отдельных клеток. 
Анализ охватывает традиционные методы, такие как иерархическая кластеризация и k-means, а также более 
продвинутые подходы, такие как кластеризация на основе моделей, методы на основе машинного обучения 
и глубокого обучения. Основные проблемы включают обработку многомерных данных, снижение шума и 
достижение масштабируемости для больших наборов данных. Более того, новые достижения, такие как 
интеграция данных мультиомики, кластеризация на основе глубокого обучения и федеративное обучение, 
предлагают потенциальные улучшения точности и биологической значимости для приложений кластери-
зации в исследовании экспрессии генов. Обзор завершается обсуждением будущих направлений развития 
алгоритмов кластеризации для обработки все более сложных данных об экспрессии генов для получения 
более точных биологических пониманий.

Ключевые слова: методы кластеризации, биоинформатика, машинное обучение, лубокое обучение, 
секвенирование РНК отдельных клеток, экспрессия генов.
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