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Abstract

Gene expression analysis has become a key component in understanding cellular behavior, disease mechanisms,
and drug response. The advent of high-throughput sequencing, particularly single-cell RNA sequencing (scRNA-
seq), has expanded our ability to study cellular heterogeneity to an unprecedented level. Clustering algorithms needed
to group genes or cells with similar expression profiles have become invaluable for analyzing the massive data sets
generated by these technologies. This article reviews various clustering methods applied to gene expression data,
particularly single-cell RNA sequencing. The analysis covers traditional methods such as hierarchical clustering and
k-means, as well as more advanced approaches such as model-based clustering, machine learning-based methods,
and deep learning methods. The primary challenges encompass handling high-dimensional data, mitigating noise,
and achieving scalability for large datasets. Moreover, new advancements such as multi-omics data integration, deep
learning-based clustering, and federated learning offer potential enhancements in accuracy and biological relevance
for clustering applications in gene expression research. The review concludes with a discussion of clustering
algorithms in handling increasingly complex gene expression data for more accurate biological insights.

Key words: Clustering methods, Bioinformatics, Machine Learning, Deep learning, single-cell RNA
sequencing, Gene expressions.

Introduction

Gene expression analysis has become a cornerstone of modern molecular biology, providing vital
information about cellular functions [1], disease mechanisms [2], and drug responses [3]. The advent
of high-throughput sequencing technologies, particularly single-cell RNA sequencing (scRNA-seq),
has transformed our ability to conduct gene expression research [4] . As we delve into the complex
world of cellular heterogeneity and function, clustering algorithms are becoming indispensable tools
for making sense of the vast and complex datasets generated by these technologies.

Using clustering, an unsupervised machine learning technique, researchers can categorize genes
or cells by similar expression patterns, which helps reveal underlying structures in the data [5].
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As the field of genomics continues to evolve, the importance of robust and efficient clustering
algorithms cannot be overstated. The aim of this review is to provide a comprehensive overview of
the current state of clustering methods in gene expression analysis, with a particular focus on their
application to single-cell RNA-seq data.

The Rise of Single-Cell RNA Sequencing. Single-cell RNA sequencing has emerged as a powerful
tool in genomics, offering unprecedented insights into cellular heterogeneity and function. Unlike
bulk RNA sequencing, which provides an average expression profile across a population of cells,
scRNA-seq captures the transcriptomes of individual cells, revealing true diversity in seemingly
homogeneous populations [6].

Identifying Complex and Rare Cell Types. One of the main applications of scRNA-seq is the
identification and characterization of rare cell populations that may be masked in bulk sequencing
approaches. By studying the transcriptomes of individual cells, researchers can detect subtle changes
in gene expression that define different cell types or states.

Elucidating Gene Regulatory Networks. The high-resolution data provided by scRNA-seq enable
the construction of detailed gene regulatory networks. By studying gene co-expression patterns in
individual cells, researchers can infer regulatory relationships and build models of gene interaction
networks. This approach has led to the discovery of new regulatory mechanisms and improved our
understanding of how gene expression is coordinated at the cellular level [6].

Assessing Developmental Trajectories. scRNA-seq has revolutionized the study of developmental
biology by allowing researchers to track the developmental trajectories of individual cell lineages.
By analyzing gene expression profiles of cells at different stages of development, scientists can
reconstruct the molecular pathways that direct cellular differentiation and maturation [7].

Revealing Cell-to-Cell Variations in Disease. In the context of disease research, scRNA-seq has
proven invaluable in identifying cell-to-cell variations in various disease states. The technology has
been particularly effective in cancer research, where it has shed light on tumor heterogeneity and the
existence of rare cell populations that may contribute to drug resistance or disease progression [§].

Applications in Drug Discovery and Development. scRNA-seq has applications that reach
fundamental research, playing a crucial role in drug discovery and development. This technology
allows for more precise and effective drug discovery strategies by offering in-depth insights into how
individual cells respond to drugs [9].

As we delve into the world of clustering algorithms for gene expression analysis, it is critical to
remember the profound impact these computational tools have on our ability to extract meaningful
biological insights from the wealth of data generated by single-cell RNA sequencing. The following
sections will explore various clustering approaches, their strengths and limitations, and their
applications to deciphering the complexities of gene expression data.

Materials and Methods

Clustering is a fundamental technique in gene expression analysis, enabling researchers to group
genes or samples based on their expression profiles. This facilitates the identification of patterns and
relationships, aiding in the understanding of complex biological processes. Various clustering methods
have been developed, each with its strengths and limitations. Traditional methods like hierarchical
and k-means clustering offer simplicity and efficiency, while model-based approaches provide
flexibility and statistical rigor. This section explores several clustering techniques, highlighting their
applications, advantages, and limitations in the context of gene expression analysis.

Traditional Clustering Methods. Traditional clustering methods are widely employed due to
their straightforward implementation and interpretability [10]. Hierarchical clustering is particularly
popular for its ability to uncover relationships at multiple levels of granularity. By constructing a
dendrogram, hierarchical clustering provides a visual representation of nested clusters, making it
intuitive for biological interpretation [11]. Its flexibility allows researchers to explore data without
specifying the number of clusters in advance. However, it has significant computational demands,
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with a time complexity of O(n3)O(n"3)O(n3), and is sensitive to noise and outliers, which can distort
the clustering structure.

K-means clustering is another widely used method, known for its computational efficiency and
simplicity [12]. It partitions data into kkk clusters by minimizing within-cluster variance, making it
well-suited for large datasets. K-means is easy to implement and adapts to various distance metrics,
enhancing its flexibility. Nonetheless, it requires the number of clusters to be predefined, which can
be a challenging task. Additionally, the algorithm is sensitive to the initial placement of centroids
and assumes that clusters are spherical, which may not always align with the actual data structure.

K-medoids clustering addresses some of k-means’ limitations by using medoids — actual
data points — as cluster centers, which improves robustness to outliers [13]. This method offers
better interpretability, as medoids are representative of the data. K-medoids allows for the use of
various distance metrics, making it possible to analyze mixed data types; nevertheless, it is more
computationally intensive than k-means and still requires the number of clusters to be specified in
advance.

Model-Based Clustering Methods. Model-based clustering operates on the assumption that data
are produced from a combination of probability distributions, making it especially suitable for gene
expression data, which frequently display complex statistical characteristics [14].

Gaussian Mixture Models (GMM), one of the most commonly used model-based approaches, fit
data as a mixture of multivariate Gaussian distributions [15]. This allows for flexible cluster shapes
and probabilistic assignments, enabling the handling of overlapping clusters. However, GMMs are
sensitive to initialization and can overfit in high-dimensional spaces.

Latent Dirichlet Allocation (LDA), originally developed for text analysis, has been adapted for
gene expression studies to identify latent functional groups of genes [16]. LDA assigns genes to
multiple groups with varying probabilities, offering a nuanced view of gene relationships. While it
can reveal biologically meaningful patterns, LDA requires careful interpretation and may not capture
all expression data complexities.

Clustering remains a cornerstone of gene expression analysis, with traditional and model-
based methods offering complementary strengths. Traditional methods like hierarchical, k-means,
and k-medoids clustering are prized for their simplicity and efficiency, though they face challenges
with large datasets and noisy data. Model-based approaches, including GMMs, LDA, and DPMMs,
provide greater flexibility and adaptability to complex data structures but come at the cost of higher
computational complexity. The choice of clustering method depends on the specific goals of the
analysis, data characteristics, and available computational resources. Together, these methods provide
arobust toolkit for exploring and interpreting the rich information embedded in gene expression data.

Results

RNA-seq Data Analysis Pipeline. The RNA-seq data analysis pipeline shown in Figure 1 is a
critical process for extracting meaningful biological information from raw sequencing data [17—-19].
This pipeline consists of several key steps, each of which plays an important role in transforming raw
reads into interpretable gene expression data. Understanding this pipeline is necessary to appreciate
the context in which clustering algorithms are applied.

Preprocessing. Preprocessing is an initial and critical step in the RNA-seq data analysis process.
This step aims to ensure the quality and integrity of the raw sequencing data before further analysis.
The main goals of preprocessing include:

1. Quality Control: The overall quality of the raw data is assessed using tools such as
FastQC [20]. At this stage, various metrics such as per-base sequence quality, GC content, sequence
length distribution, and overrepresented sequences are checked.

2. Adapter Trimming: Sequencing adapters, which are artificial sequences added during library
preparation, are removed using tools such as Trimmomatic [21] or Cutadapt [22].
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Alignment. Alignment, also known as mapping, is the process of determining the genomic
origin of each sequence read. This step is fundamental to RNA-seq analysis because it allows one
to determine which genes are expressed in a sample. Aligners such as STAR [23], HISAT2 [24], or
TopHat2 [25] are used to handle reads that span exon junctions.

Preprocessing
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Figure 1 — Gene expression analysis pipeline

Quantification. Quantification is the process of assessing gene or transcript expression levels from
aligned RNA-seq reads. This step converts the mapped reads into meaningful expression values that
can be used for comparative analysis. Quantification tools such as HTSeq [26] or featureCounts [27]
are used to count the number of reads that map to each gene’s exons.

Normalization. Normalization is a critical step to remove systematic bias and ensure comparability
between samples. Without proper normalization, differences in sequencing depth, gene length, and
other technical factors can obscure true biological differences.

Differential Expression. Differential expression analysis aims to identify genes that show
statistically significant differences in expression levels between experimental conditions. This
process typically involves tools such as DESeq2 [28], or edgeR [28] use statistical models to test for
differential expression.

Clustering. Clustering is a powerful technique used to group genes or samples with similar
expression patterns. This step is essential for detecting co-expressed genes [29], uncovering new cell
or tissue subtypes, and gaining insights into the overall structure of gene expression data.

Various clustering algorithms can be employed (Table 1). We compared six clustering algorithms
using the R programming language, providing plots that demonstrate their applications and
interpretability. All analyses were conducted using an open-access dataset from NCBI (PRINA736095;
GEO: GSE176415), following a comprehensive preprocessing workflow up to the extraction of the
gene expression set, utilizing the Galaxy Project platform [30], with clustering performed exclusively
on the gene expression dataset. In this table, we aimed to highlight the advantages and limitations
encountered during our analysis.
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Comprehending this pipeline is vital for evaluating the context in which clustering algorithms
are utilized, along with the various factors that can affect their performance and interpretation. In
the sections that follow, we delve into specific clustering methods used in gene expression analysis,
examining their advantages, limitations, and role in interpreting complex gene expression data.

Conclusion

The application of clustering algorithms to gene expression data has transformed our understan-
ding of biological systems, which allow researchers to uncover complex patterns, identify co-
expressed genes, and classify cell types with unprecedented accuracy. This review explored a wide
range of clustering methods, from traditional approaches to cutting-edge machine learning methods,
each offering unique strengths in gene expression data analysis. The challenges and future directions
in clustering gene expression data highlight the intricate nature of modern genomic datasets and the
increasing need for clustering algorithms that are scalable, interpretable, and biologically meaningful.
Addressing the limitations of high dimensionality, data integration, and scalability will be critical
to the continued success of clustering in gene expression analysis. Additionally, emerging trends
such as deep learning, automated clustering pipelines, and federated learning hold great promise
for advancing the field and enabling new biological discoveries. With the shift toward larger, more
complex, and multimodal datasets, it will be crucial to develop advanced clustering methods capable
of handling these challenges to deepen our understanding of gene regulation, cellular diversity, and
disease mechanisms.

The diversity of available clustering methods reflects the complexity and heterogeneity of gene
expression data. Although traditional methods like hierarchical clustering and k-means are still
widely utilized, advanced machine learning and deep learning techniques are being increasingly
adopted to tackle the challenges of high-dimensional and noisy data. As the field of gene expression
analysis continues to evolve, integrating these methods with biological knowledge and leveraging
the strengths of each approach will be critical to uncovering new insights into gene regulation and
cellular function.

To sum up, the field of clustering algorithms for gene expression analysis is advancing swiftly,
propelled by breakthroughs in sequencing technologies and computational methods. With the move
toward more complex, large-scale, and multimodal datasets, developing sophisticated, scalable,
and biologically interpretable clustering algorithms becomes crucial. These advancements hold the
potential to enhance our understanding of gene regulation, cellular diversity, and intricate biological
systems, ultimately fueling progress in areas from developmental biology to personalized medicine.

Dendrogram of Filtered Gene Expression Data

Genes
hclust (*, "complete”)

Figure 2 — Dendrogram. Hierarchical clustering of gene expression dataset
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K-means Clustering of Gene Expression Data (UMAP Visualization)
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Figure 3 — UMAP. of Hierarchical clustering of gene expression dataset

Table 1 — Comparisonal table of, mostly known clustering algorithms used in searching similar pattern

on gene expressions. The given code on R is set of examples to run these clustering algorithms

Ne Name Input Output, plot and interpretations. Advantages and limitations | Reference
Sample.
1 | Hierarchical |Gene Plot: Dendrogram plot. Advantages: [11]
clustering expression | Output: Dendrogram showing ¢ Provides a detailed
data hierarchical structure of clusters. hierarchical structure,
Interpretation: The hierarchy in allowing exploration of
clusters allows identifying nested clusters at different levels.
subgroups within the data, providing | ¢ Does not require pre-
insight into relationships among gene | specifying the number of
expression patterns and potential clusters, making it flexible
biological processes or cell types. for exploratory analysis.
Sample: The dendrogram (Figure 2) | ¢ Useful for identifying
displays three primary clusters when | nested clusters and
cut at a height of 0.8, each indicating |understanding complex
a broad category of gene expression | relationships within data.
similarity. Limitations:
¢ Computationally intensive
for large datasets, as in
samples.
2 | K-means Gene Output: Cluster centroids and Advantages: [12]
clustering expression |assignment of data points to clusters. | Efficient and
data Plot: Scatter plot with cluster computationally fast for large
boundaries or bar chart of cluster sizes | datasets, as in samples.
on UMAP. Limitations:
Interpretation: Each cluster centroid | e Requires specifying
represents a gene expression pattern, | the number of clusters in
helping to identify dominant advance, which may not
expression profiles that may always be known.
correspond to biological functions.
Sample: To make this example
relevant, we focused on three
clusters (Figure 3), where each
group may exhibit shared functional
characteristics or biological pathways.
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3 |K-medoids |Gene Output: Medoids of clusters with each | Advantages: [13]
clustering expression | data point assigned to a medoid. ¢ Less sensitive to outliers
data Plot: Similar to K-means, often scatter |than K-means, as medoids
plots UMAP or heatmaps are more representative of
Interpretation: Medoids provide cluster centers.
robust representative profiles of each | ¢ Does not require spherical
cluster, which can reduce sensitivity | clusters, allowing for
to outliers and reveal distinct gene flexibility in cluster shapes.
expression patterns. Limitations:
Sample: The clear separation of ¢ Slower and more
clusters (Figure 4) in the plot indicates | computationally intensive
distinct gene expression profiles, than K-means, especially for
where each group may correspond large datasets as in samples.
to different biological functions or ¢ Requires specifying
pathways. Output is very similar to the | the number of clusters in
output of K-means clustering. advance, similar to K-means.
4 | Model- Gene Output: Probability of each data point | Advantages: [14]
Based expression | belonging to a specific cluster. + Allows for overlapping
Clustering |data Plot: Probability density plots or clusters, capturing complex
Methods cluster assignment visualizations on | relationships in the data.
UMAP. + Provides probabilities,
Interpretation: This probabilistic adding statistical confidence
approach allows for understanding to cluster assignments.
overlapping clusters and provides Limitations:
statistical confidence in gene + Computationally intensive,
expression group assignments. especially for large datasets,
Sample: The UMAP plot (Figure 5) as in samples.
displays nine distinct clusters of gene | ¢ Requires assumptions
expression profiles generated using about the data distribution,
Model-Based Clustering. which may not always be
accurate.
5 | Gaussian Gene Output: Mean and covariance of each | Advantages: [15]
Mixture expression | Gaussian component in the mixture. | ¢ Allows for overlapping
Models data Plot: Contour plot or ellipses clusters, which is suitable
(GMM) representing cluster densities. for complex gene expression

Interpretation: GMM reveals the
continuous distribution of gene
expression clusters, allowing insight
into clusters with potential overlap in
biological function.

Sample: The contour plot (Figure

6) shows the density distribution

of gene expression clusters, where
contour levels indicate regions of
higher probability for gene expression
profiles. In the UMAP (Figure 8)
visualization, eight clusters are
color-coded, revealing complex
relationships in gene expression
patterns with some degree of overlap.
The classification plot (Figure 7)
shows clusters with ellipses, indicating
the covariance structure of each
Gaussian component, highlighting
both the central tendency and spread
of each cluster. Together, these

plots suggest that GMM clustering
successfully identifies overlapping
clusters, providing insights into genes
with mixed expression patterns across
biological functions.

data.

+ Captures the variance
within clusters, providing
insight into cluster shape and
spread.

+ Provides probabilistic
assignment, adding statistical
confidence to cluster
membership.

Limitations:

¢ Computationally intensive
for large datasets due to
complex calculations.
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Continuation of table 1
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Figure 4 — UMAP. of K-medoids clustering of gene expression dataset

6 |Latent Gene Output: Topic distribution per gene Advantages: [16]
Dirichlet expression | or sample, with topics representing + Effective for revealing
Allocation | data clusters. hidden structures within
(LDA) Plot: Topic distribution histograms or | complex data.

heatmaps. ¢ Provides a thematic
Interpretation: LDA treats clusters as | categorization, useful for
“topics” of gene expression, revealing | understanding gene functions
latent structures and allowing for and pathways.
thematic categorization of gene Limitations:
functions or pathways. * Requires pre-specifying
Sample: The document-topic the number of topics, which
distribution histogram (Figure 10), may not always match the
showing the proportions of each true structure of the data.
topic (gene expression pattern) across | ¢ Computationally intensive,
genes. Peaks in blue, red, and green especially for large datasets.
highlight dominant topics, suggesting
prevalent expression themes. A term-
topic heatmap (Figure 9), illustrates
the relationship between specific
gene terms and topics, with darker
colors indicating higher relevance.
This heatmap provides insight into the
gene features strongly associated with
each topic, useful for understanding
gene functions. Together, these graphs
demonstrate LDA’s ability to capture
the latent structure of gene expression
patterns, offering a thematic
categorization of gene functions and
pathways.
K-medoids Clustering of Gene Expression Data (UMAP Visualization)
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Model-Based Clustering of Gene Expression Data (UMAP Visualization)
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Figure 5 — UMAP. Model-Based Clustering Methods of gene expression dataset
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Figure 6 — Probability Density for each Gaussian component in the GMM.
Gaussian Mixture Models (GMM) of gene expression dataset
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Figure 7 — Classification (Cluster Assignment) with Ellipses representing Gaussian Components.
Gaussian Mixture Models (GMM) of gene expression dataset
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Gaussian Mixture Model (GMM) Clustering with UMAP Visualization
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Figure 8 - UMAP on the clustering data for dimensionality reduction.
Gaussian Mixture Models (GMM) of gene expression dataset
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Figure 9 — Heatmap of the term-topic distribution for the top 10 terms in each topic.
Latent Dirichlet Allocation (LDA) of gene expression dataset
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Figure 10 — Histogram Document-Topic Distribution (Topic Proportions for Genes).
Latent Dirichlet Allocation (LDA) of gene expression dataset
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IFEHETUKAJIBIK AEPEKTEPAI OHAEYTE, AJIIbIH AJIA OHAEY
MEH KJACTEPIIK TAJIJAYFA APHAJIFAH KYPAJIIAPT A,
OJAICTEMEJIEP MEH 9AICTEPI'E L1OJ1Y

Angarna

I'eH sKcTIpeccHsIChIH Tajiay — JKacylanap/blH SPEKeTTEPiH, aypy MEXaHU3MJIEPiH XKoHE JOPUIIK peaKInsHbI
TYCIHY/IIH Herisri Kypamaac Oediri. JKorapbl eHiMal ceKBEeHMpIIEY/iH, acipece Oip xacymansl PHK cexBennpieyi-
HiH (sScRNA-seq) maiina Ooxysl jkacylIaliblK TeTepOreHIUTIKTI OYpBIH-COHIBI OONMaraH JIeHIreire JIeiin 3epTrey
MYMKIHIITIH KeHeWTTi. ¥Kcac SKCIpecCHsUTbIK mpodmibaepi O0ap TeHIep HeMece >KacyllajapAbl TONTACTHIPY
YILIIH KOJJIaHBUIATBIH KIJIACTEPIIey alrOpPUTMACPi OCBHI TEXHOJIOTHsIIAp apKBUIbI aJIbIHFaH YIIKSH JICPEKTep SKUBIHBIH
Tajnay OapbIChIHAA Oara jKeTmec KypajFa aifHanmpl. byn mMakamama TeHAIK JKcIpeccus IepeKTepiH Tailaayna,
acipece 0Oip sxacymansl PHK cexBeHIMsICbIHA HETI3AEIreH 3epTTeyaepAe KOJIIAHBUIATBIH OPTYPIi KiIacTepliey
omicTepi KapacThIpbUiAbl. Tanmay MepapXusuIblK KIacTepiiey MEH k-means CHUSKTBI TOCTYPIl 9ICTepi, COHIail-
aK YJrire HeTi3/leNreH KiacTepiey, MallMHAIBIK OKBITY K9HE TePEH OKBITY TICULAEPI CHSKTHI KETIIPIIAreH aic-
Tepai KaMTHABL. Herisri MiHZeTTepre >KoFapbl eJIIeMIl JepeKTepli oHAeY, LIyAbl a3aiTy JKoHE YIKEH JepeKTep
JKUBIHBIH THIMII MacmTa0Tay skatansl. COHBIMEH KaTap MYJIBTH-OMHKAJBIK ACPEKTepi OipiKTipy, TepeH OKBITYFa
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HETI3/IeNIeH KilacTepliey sKoHe (eepaTHBTI OKBITY CHSKTBI )KaHa KETICTIKTep I'eH/IK DKCIPECCHSHBI 3epTTEyIeT]
KJIacTepiiey KOChIMIIAIapbIHbIH JIJIAIr MEH OMOJIOTHSIIBIK MaHbI3IbUIBIFBIH apTThIPYyFa MYMKIHJIIK Oepeni. Makaia
KJIacTepliey ajJropuTMIEPiHiH KYPEi TeH/IiK SKCIpeccust IepeKTepiH oHIeyaeri Oonamak 0arbITTapblH TaIKbUIAI,
OHMOIIOTHSUITBIK TYCIHIKTEPIi JKaKCcapTy KOIIAPBIH YCHIHAIEL.

Tipek ce3mep: kiactepiiey daicTepi, OnonH(GOpMaTHKa, MAITUHAIBIK OKBITY, TEPCH OKBITY, Oip KacyIabl
PHK cekBeHIMSChI, TeHIIK SKCIIPECCUsIIAp.
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OB30P UHCTPYMEHTOB, METOIOJIOTUii U METOJOB OBPABOTKM,
NPEJIBAPUTEJBbHOMN OBPABOTKHA U KJIACTEPHOT O AHAJIM3A
I'EHETHYECKUX JAHHBIX

AHHOTALUA

AHanM3 dKCIPECCHH TEHOB CTall KITFOUYCBBIM KOMITIOHCHTOM B TIOHWMAaHHWH TIOBEACHHS KIICTOK, MEXaHM3MOB
3a00JIeBAHUI M peakIMy Ha JiekapcTBa. I10sBICHNE BBICOKONPOU3BOAUTEILHOIO CEKBEHMPOBAHMS, B YaCTHOCTH
cexBenupoBanuss PHK ormensHbix kietok (SCRNA-seq), paciimpuiio HAIld BOSMOKHOCTH M3yUYEHHUS KIETOUHON
reTEPOreHHOCTH JI0 OECIHPEIECHTHOTO YPOBHS. AJITOPUTMbI KITACTEPU3AIMH, HEOOXOAUMBIE ISl TPYMITHPOBKU
TE€HOB WJIM KJIETOK CO CXOXKHMH TIPOQHIISIMH SKCIPECCHH, CTAK OECIIEHHBIMH ISl aHaJIn3a OrPOMHBIX HAOOPOB
JTAHHBIX, TCHEPUPYEMBIX STHUMH TEXHOJOTHSIMH. B 3TO# cTarhbe paccMaTpHBAIOTCS Pa3IHYHbIE METOMBI KIIaCTEPH-
3aIMH, TIPUMCHICMBIC K JIAHHBIM 00 SKCIPECCHH TEHOB, B YaCTHOCTH cekBeHnpoBanus PHK oTaenpHBIX KIIETOK.
AHan3 0XBaThIBAET TPAJAUIMOHHBIE METO/IBI, TAKME KaK HEpapXUUecKas KjacTepu3alus u k-means, a Takxke 6ojee
MPOJBUHYTHIE MOXO/IbI, TAKUE KAK KJIACTEPU3AIMs Ha OCHOBE MOJIEIICH, METO/IbI HA OCHOBE MAIIIMHHOTO O0yYEeHUS
u m1ybokoro oOyueHus. OCHOBHbIE MPOOJIEMBI BKIIIOUAIOT 00PabOTKY MHOTOMEPHBIX JTAaHHBIX, CHI)KCHUE [IyMa U
JOCTHKEHHE MacIITabupyeMOCTH JIIs OONBIIMX HAGOPOB JaHHBIX. boljee TOro, HOBBIE JOCTHIKEHHS, TAaKHE KAk
WHTETPAINS JaHHBIX MYISTHOMHUKH, KIACTEpPU3aIlis Ha OCHOBE TIy0OKOro o0ydeHus u (emepaTruBHOE 00yUeHNe,
TpeTaratoT MOTCHIHATBHBIC YITYUIICHHS TOYHOCTH M OMONOTHYECKON 3HAYUMOCTH ISl IPHIIOKCHHN KITacTepH-
3alUK B UCCIENOBAHUH dKCIpeccuu renoB. O030p 3aBepiuaeTcsi 00CyKIAeHHEM OyayIluX HAPaBIEHUH Pa3BUTHS
QJITOPUTMOB KJTACTEPH3AIIMK JJIsi 00paboTKU Bee Gojiee CIOKHBIX JAHHBIX 00 9KCIPECCHH T€HOB JUTS TONyYEHUS
0oJ1ee TOYHBIX OUOJIOrMYECKUX ITOHUMAHUM.

KuroueBble cjioBa: METOIBI KIacTepH3alnuy, OnomH(OpMaTHKa, MAITMHHOE O0ydeHHe, TyOokoe oOydeHwme,
cexkBeHnpoBanre PHK oTaenbHBIX KIETOK, SKCIpeccHs TEHOB.
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