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Abstract

Lung cancer represents a significant health challenge both in Kazakhstan and globally, standing out as one of the
most fatal forms of cancer. Diagnosis of lung cancer is challenging as symptoms often remain undetectable in the early
stages. Furthermore, lung cancer shares clinical features with various other pulmonary conditions, complicating its
accurate identification. Accurate diagnosis typically involves lung puncture for subsequent biopsy, a highly invasive
and painful procedure for the patient. Therefore, it is crucial to distinguish false positive cases in the diagnostic stage
of computed tomography scans. We conducted a comparative analysis of five machine learning models (Logistic
Regression, Decision Tree, Random Forest, SVM, and Naive Bayes Algorithms) based on radiological features
extracted from annotated computed tomography scans. We opted for classical machine learning methods because
their decision-making process is easier to control compared to neural networks. We evaluated the models in terms
of binary and multi-class classification to determine whether a given nodule is related to calcifications or cancers,
as well as its classification according to Lung-RADS, enabling the management of whether further biopsy or only
routine monitoring is necessary. We used Precision to evaluate the number of False Positive predictions in the binary
classification task. Precision emerged as a pivotal metric in our assessment, offering insights into the number of
false positive predictions specifically in the binary classification task. For the multi-class classification aspect, we
turned to Quadratic Kappa, a robust measure that accounts for the ordinal nature of the Lung-RADS classes. Our
analysis was underpinned by a combination of local Kazakhstani data and the publicly available LIDC-IDRI dataset,
underscoring our commitment to leveraging diverse data sources to bolster diagnostic capabilities.

Key words: lung cancer classification, radiological feature extraction, ordinal data, medical image processing,
computer vision, machine learning.

Introduction

Lung cancer stands as the deadliest form of cancer in Kazakhstan and all over the world [1].
The diagnosis of lung cancer is complicated by the fact that it is difficult to identify in its early
stages and can resemble other pulmonary diseases. Additionally, symptoms of lung cancer often
do not manifest in the early stages, further complicating the diagnostic process. However, the late
onset of lung cancer symptoms is not only one reason of is not the only reason for the difficulty
of diagnosis. Lung cancer shares similar signs and symptoms with several other conditions. The
diagnostics of lung cancer are separated into three main steps. First, the abnormal area is indicated
on the X-ray image. The next step is computed tomography. In cases of suspected lung cancer, a
biopsy is often recommended. Biopsy procedures are highly invasive and carry a number of negative
health consequences. Therefore, reducing the number of false positive results is an important task in
medical data processing. In this current article, we explored the potential application of clustering
based on the depth and area of nodules for both calcifications and tumors according to the Lung-
RADS system.
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Literature review

Convolutional neural networks are widely used for lung cancer classification on CT images.
The authors of Lung-EffNet [2] proposed a transfer learning framework based on EfficientNet
architecture [3] for the classification of lung CT according to normal, adenocarcinoma, large cell
carcinoma, and squamous cell carcinoma. The authors of the next observed article proposed DL-
CAD [4] for the detection of missed lung cancer after CT screening. The algorithm utilized the
DenseNet [5] architecture for image classification into cancer and non-cancer classes. The authors
exclusively examined cases that were missed during the previous CT screening to evaluate the DL-
CAD. LR3, according to Lung-RADS, was employed as a positive indicator. Another way of lung
cancer detection is an application of Generative adversarial neural networks for cancer detection. The
authors of MTL-MGAN [6] proposed an application of a modified generative adversarial network
(MGAN) and transfer learning. MGAN has been used to create is to create two intermediary domains
that act as connectors between the source and target domains which allows an increase in lung cancer
classification quality. The authors of the next observed article [7] proposed an application of an
Optimized Ensemble of Hybrid RNN-GAN Models for lung nodule classification for cancer and
non-cancer cases.

Although deep neural networks demonstrate high performance in medical image processing,
their application is complicated by several factors:

1. The need for significant computational resources. Generally, networks with a large number
of training parameters yield better results [8].

2. The requirement for a large volume of training data is challenging in medical data processing
tasks due to ethical and privacy concerns. Additionally, medical data needs to be pre-annotated by a
team of experienced clinician experts.

3. The training process of the model acts as a black box, making it difficult to control the
decision-making process of the neural network. For example, in the paper [9], the process is
described where a neural network mistakenly identified images with band-aids as skin diseases.
Another example illustrating that it is impossible to precisely interpret the decision-making process
of the neural network from the expert side is described in papers [10], [11]. The authors of these
papers demonstrate that the neural network learned to distinguish the race of a person from an X-ray
image.

Due to these limitations, classical machine learning methods are still widely used in computer
vision for medical data processing. The authors of [ 12] proposed an application of Random Forest for
lung cancer classification. The authors used an open-source LIDC-IDRI dataset [13] with lung CT
images. The authors applied median and Gaussian filters to remove noise from the original image. Then
the authors applied a watershed algorithm [14] for nodule segmentation. The nodule was used for the
extraction of radiological features, such as area, eccentricity, mean intensity, centroid, and diameter.
The following values were used as input for the Random Forest classifier (RF) [15]. The authors of
[16] also used an RF for lung nodule classification. The model used the output of the CAD system
for lung cancer detection as an input for an improved Random Forest classifier. RF was improved
by updating the sampling and feature selection process for better performance with imbalanced
data. The authors of [17] applied a support vector machine (SVM) for nodule classification. Otsu
thresholding-based algorithm [18] was used for nodule segmentation. Gabor filter [19] and Gray-
Level Co-occurrence Matrix (GLCM) [20] were used for feature extractions. Extracted features were
fed to SVM for the next classification. Classical machine learning algorithms also were compared
with each other in [21]. The authors compared Bayesian Network, Logistic Regression, J48, Random
Forest, and Naive Bayes Algorithms for binary classification on open source Kaggle dataset with 309
observations and 16 attributed.

For the current research, we also applied classical machine-learning approaches for lung nodule
classification. We provide a comparative analysis of five classical machine-learning algorithms
(Logistic Regression, Decision Tree, Random Forest, SVM, and Naive Bayes) based on the
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radiological features of lesions for multiclass classification according to 5 classes: 4 cancer classes
according to the Lung-RADS System and one non-cancer class (calcification).

Main provision

The main provision of the research could be described as:

1. Extraction of radiological features from the original DICOM image based on Pearson [22]
and Spearman [23] correlation.

2. Classification between lung cancer and lung calcification instead of classification between
cancer and non-cancer areas.

3. The use of the Lung-RADS system for cancer nodule classification.

4. Comparative analysis for binary (cancer, non-cancer) and multi-class (calcification and
Lung-RADS classes) classification of five classical ML algorithms.

5. The use of Kazakstani local data allows to take into account economic and environmental
specification of the region.

We compared algorithms based on Accuracy, Precision, Recall, and F1 for binary and multi-class
classification, and also we compared the number of False Positive and False Negative Predictions.
Additionally, we used Quadratic Kappa for the calculation the quality of multi-class classification
based on ordinal data.

Methods and Materials

We used the dataset with lung cancer CT images of Kazakhstani patients with corresponding
binary masks [24] and supplemented it via calcinate cases. We used a preliminary segmentated area
as an input of the pipeline. Then we extracted radiological features, such as mean, mean of positive
values, the mean value of the circle described around the centroid, square, and square of positive
elements only. We used these features for classification according to 5 classes: four classes according
to the Lung-RADS system and calcinate (non-cancer class). We compared Logistic Regression,
Decision Tree, Random Forest, SVM, and Naive Bayes Algorithms for classification. Fig 1. shows
the overview of the pipeline for lung lesion classification.

Calcification or
cancer class
according to

Lung-RADS

-
Fealure
- L
b } extraction
Lung lesion O O O O

Classification algarithm

Figure 1 — Pipeline of lung lesion classification
Dataset description

We supplemented the dataset with lung cancer CT images via calcification cases. The total
number of images is 1134. The number of images with lung cancer is 972, and the number of images
with calcification is 162. The dataset consists of a CT image, corresponding binary mask, class
according to Lung-RADS system or calcification, and the binary value of cancer existence (0 for
calcinates, 1 for cancer). The distributions between cancer and label classes are shown in Fig 2. We
worked with imbalanced data, predominantly consisting of positive cases.
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Figure 2 — The distribution between (a) cancer and non-cancer classes (b) classes according
to Lung-RADS and calcification

The dataset had two target functions. The first one is the label. It is the class name according to
the Lung-RADS system that includes 4 classes and calcification. A brief description of each class has
been provided in Table 1.

Table 1 — Dataset label description

Name N samples Description
Calcification 162 Calcification refers to the accumulation of calcium salts in tissues or organs,
often observed as white spots on medical imaging such as X-rays or CT scans.
It can occur in various parts of the body and may indicate underlying conditions
such as infections, trauma, or metabolic disorders.
LR2 142 LR2, or Lung-RADS category 2, is a classification system used in lung cancer
screening to categorize pulmonary nodules as benign based on specific imaging
features. Nodules in this category typically have low suspicion for malignancy
and require routine surveillance.
LR3 138 LR3, or Lung-RADS category 3, is a classification used in lung cancer screening
to identify nodules with intermediate suspicion for malignancy. These nodules
may require additional imaging or follow-up to assess for changes over time.
LR4A 177 LR4A, or Lung-RADS category 4A, indicates nodules with a moderate level of
suspicion for malignancy. These nodules often require further evaluation, such
as biopsy or PET-CT imaging, to determine if they are cancerous.
LR4B 515 LR4B, or Lung-RADS category 4B, represents nodules with a high suspicion
for malignancy. These nodules are more likely to be cancerous and typically
warrant prompt evaluation and management, such as biopsy or surgical
resection.

The calcification and cancer areas have big differences in density distribution but could have
similar forms and locations in the lungs. The calcification has much more density in Hounsfield Units
(HU) which is shown in Fig 3.
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Figure 3 — Histogram of the density distribution of HU
of (a) LR2 (b) calcification from the dataset for one CT image
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Feature extraction

First, we calculated the Region of Interest (Rol) by multiplication the binary mask with the CT
image, as in (1). This Rol will be used for all of the next calculations as an affected area.

Where CTimg is an original CT image,
mask is a binary mask of cancer or calcification area,
i,j are indexes
The density is the key feature for classification between cancer and calcification. So first we
calculated three mean values of the Rol: Average mean (2), Mean of positive (3).

Zi,j CTlmgl‘] X maSki'j

Mean = 2
avg Zi,j maski_j ( )
%4, CTimg, ; x mask; ; x (CTimg; ; > 0)

Mean =
pos Y jmask;; x (CTimg;; > 0)

(3)

Where CTimg is an original CT image,
mask is a binary mask of cancer or calcification area,
[,j are indexes

Additionally, we tried to simulate the approach the clinicians used. We calculate a mean value of
the area near the centroid, as in (4) — (7)

Y mask

R = round Tﬂ 4)

Where R is the Radius of the area which will be used for mean calculation,
mask is a binary mask of cancer or calcification area

(e ye) = (%Zx%Zy) ©

Where (x.,V.) are the coordinates of the centroid,
7 is the number of vertices,
(x;,v;) are the coordinates of the i-th vertex

Circle;; = {1' if (i = xc)? -l(; U-—y)*<R ©)

Where Circle is the binary mask with circle area which will be used for the next calculation
(x.,¥.) are the coordinates of the centroid
(i,]) are the pixel coordinates
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>.i i CTimg;; X Circle; ;
J ij ij
Mean, g ng =

(7)

Zi,j CirClei’j

Where CTimg is an original CT image,
Circle is the binary mask with circle

While density is the main difference between cancer and calcification, classes according to the
Lung RAGS System have differences in size. We proposed to use the square of the affected area, as
in (8), and the square of positive pixels from the affected area (9).

Sau = Z mask (8)

Spos = Z CTimg;; X (CTimg;; > 0) 9)
i

After the following calculations, we received an updated dataset with the radiological features
described the lung cancer. The overview of the dataset has been provided in Table 2.

Table 2 — Updated dataset description

Name Type Description
Category id ID Unique ID of one patient
Mean Real The mean value of affected are in HU
Mean positive Real non-negative The mean value of positive pixels in affected are in HU
Mean round Real The mean value of area near the centroid of the affected are
S Natural positive The square of affected area
S positive Natural non-negative The square of positive pixels in affected area
Label [0: calcinate, 1: LR2, 2: LR3, | The class with ordering according to Lung-RADS System
3: LR4A, 3: LR4B] or calcification
Cancer [1: cancer, 0: non-cancer] Cancer for all LRs, non-cancer for calcification

To ensure that all obtained features have an impact on the target variables, we calculated
correlations between them and the target function. Since cancer and non-cancer are independent
classes, we used Pearson correlation, as in (10), to calculate the correlation between variables and
“cancer”. The “label” values are ordinal. 0 denotes the absence of cancer, 1 denotes small areas,
and so forth. Therefore, we applied Spearman correlation, as in (11). Fig 4. Shows the correlation
between features and target variables.

Yim (i =0 —y)

Ty = = = (10)
VI G — 02X, (v — 7)?
Where 7y is the correlation coefficient between variables X and ¥,
X; and Y: are the values of variables x and ¥ for the i-th observation,
X and ¥ are the means of variables X and ¥,
7 1S the number of observations.
63 d?
=1-— 11
p 2= 1) (11)
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Where d; is the difference between the ranks of corresponding values in the two variables.
1 is the number of observations.
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Figure 4 — Correlation matrixes (a) Pearson correlation between radiological features and cancer (b)
Spearman correlation between radiological features and label

We randomly split the dataset to train and test sets. However, we worked with CT slices with
calcinate or cancer. So the dataset contains continuous slices from one patient. So we split data by
category ID to avoid the situation, when the CT images from one patient are in the train and test sets
at the same time. We worked with imbalanced data with the prevailing cancer class. The distribution
between classes in train and test sets is shown in Fig. 5.

200

LR2 LR3 LRaa LR4B calcinate LR2 LR3 LR4A LR4B8 calcinate
Label Label
a b

Figure 5 — The distribution according to the number
of images per label in the dataset (a) in the train set (b) in the test set

Machine learning models for lesion classification
We compared several commonly used machine learning algorithms to analyze radiological

features of the lung, including logistic regression, decision tree, random forest, support vector
machine (SVM), and Naive Bayes classifier.
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Logistic regression, although a linear algorithm, has demonstrated good performance in binary
classification problems that require predicting the probability of belonging to a particular class. It
also has the advantage of interpretable results, making it useful in clinical research.

A decision tree is a nonlinear classification algorithm that allows the construction of a tree
structure where each node represents a decision based on a feature. This method is easy to interpret
and can handle both numeric and categorical data.

Random forest is an ensemble method consisting of multiple decision trees. It creates a “forest”
of trees trained on different subsets of data, which improves classification quality and reduces the
risk of overfitting.

Support Vector Machine (SVM) is well suited for classification problems with linear and
nonlinear relationships between features. It finds the optimal hyperplane separating classes, making
it effective in solving complex classification problems.

The Naive Bayes classifier, despite its simplicity, performs well in real-world applications,
especially text classification and spam filtering. It is based on the assumption of feature independence,
which makes it computationally efficient and easy to implement.

Metrics for model evaluation

We compared the models according to binary (cancer, non-cancer) and multi-class classification
(Lung-RADS classes and calcification). We used standard metrics for the evaluation of classification,
such as Accuracy, as in (12), Precision, as in , Recall, and F1 score. As we work with imbalanced
data in the medical image processing field, the model with the minimum number of False Positive
predictions is the most applicable for us. In case the number of False Positive decreases, the precision
grows up.

A B TP + TN (12)
Curasy = Ip 1IN L FP N
Precision = TP—-I-FP (13)
Recall = P (14)
e = TP+ FN
Precision X Recall
F1=2xX (15)

Precision + Recall

Where TP (True Positive) is the number of correctly predicted positive instances,

TN (True Negative) is the number of correctly predicted negative instances,

FP (False Positive) is the number of incorrectly predicted positive instances,

FN (False Negative) is the number of incorrectly predicted negative instances.

We used the same metrics for multi-class and binary classification, however, multi-class
classification has been ordered, as calcification is accurate for non-cancer class, LR2 is a small and
less dangerous lesion, and so on. So we additionally calculated the Quadratic Kappa for classification
with ordical data, as in (16).

Where ¥w is the weighted quadratic kappa,
Wij are the elements of the error weight matrix,
Ni; is the number of observed agreements between class i and class j,

exy | . ,
N is the expected number of agreements between class i and class j that would occur by
chance.
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Results and discussion

The results of binary classification for cancer and non-cancer target values have been provided
in Table 3. The confusion matrix for binary classification has been provided in Fig. 6.

Table 3 — Evaluation of binary classification among cancer and non-cancer

Model name Accuracy Precision Recall F1
Logistic Regression 0.9962 0.9962 1 0.998
Decision Tree 0.9888 0.9886 1 0.9942
Random Forest 0.9925 0.9923 1 0.9961
SVM 0.9925 0.9923 1 0.9961
Naive Bayes 0.9776 0.9961 0.9808 0.9884
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Figure 6 — Confusion matrixes for binary classification
according to cancer and non-cancer cases for (a) Logistic Regression (b)
Decision Tree (¢) Random Forest (d) SVM (e) Naive Bayes

The results of multi-class classification according to Lung-RADS and calcification with target
values label (classes according to Lung-RADS and calcification) have been provided in Table 4.
Fig. 7 shows the confusion matrix for all of the classes.
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Table 4 — Evaluation of multi-class classification among calcification and classes in Lung-RADS

Model name Accuracy Precision Recall F1 Quadratic Kappa
Logistic Regression 0.6765 0.5391 0.6088 0.5558 0.7432
Decision Tree 0.684 0.5767 0.5922 0.5654 0.7554
Random Forest 0.684 0.5665 0.5899 0.5562 0.746
SVM 0.6579 0.5737 0.6593 0.5823 0.6653
Naive Bayes 0.5501 0.5536 0.5313 0.4628 0.6254
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Figure 7 — Confusion matrixes for multi-class classification according to Lung-RADS classes
and calcification for (a) Logistic Regression (b) Decision Tree (c)
Random Forest (d) SVM (e) Naive Bayes

We worked with data preliminarily labelled by doctor-clinicians according to the Lung-RADS
System and calcification. The dataset also stored binary masks of damaged areas and CT scan values
in Hounsfield units. We used annotated binary masks and their corresponding images to obtain regions
of interest. Regions of interest represent areas affected by cancerous formations or calcifications. The
obtained regions of interest were examined to extract radiological features characterizing the area,
such as mean, mean positive, mean around centroid, area, and positive area.

We conducted a comparative analysis of five classical machine learning models working with
vector data based on the obtained radiological features, mimicking the work of a clinician. We
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compared Logistic Regression, Decision Tree, Random Forest, SVM, and Naive Bayes in the context
of binary and multi-class classification tasks based on Accuracy, Precision, Recall, and F1 for both
classification tasks and supplemented with Quadratic Kappa for the multi-class classification task.

We separately solved the problem of binary classification according to cancer or non-cancer,
where calcinate was considered non-cancerous. And the multi-class classification tasks according
to the Lung RADS classes and calcifications. We consider Precision metric as the most effective for
evaluating the quality of binary classification since its increase signifies a reduction in the number of
false positive predictions, which is particularly important in medical tasks, especially when dealing
with imbalanced data. Thus, logistic regression performed the best in the binary classification task. In
the multi-class classification task for ordinal data, we find the Quadratic Kappa metric most suitable
as it takes into account the class order. According to our experiments, the decision tree performed
the best.

Several limitations are associated with this study. Firstly, we worked with a limited dataset
that only included two possible types of anomalies: cancer and calcification. However, many other
different lesions have a similar shape and location. Also, the presence of calcifications in the lungs
may indicate a potentially existing condition. Secondly, increasing the size of the train set could
significantly increase the quality of classification. Last but not least, we take into account only
radiological features, but the doctor takes into account clinical features as well. However, we do not
have this information because of ethical and privacy reasons.

Conclusion

Our study leveraged radiological features extracted from CT scans, alongside binary masks
indicating areas of interest, to explore the performance of classical machine learning models in
classifying lung abnormalities. The results indicated that logistic regression excelled in binary
classification, demonstrating its potential for identifying cancerous and non-cancerous regions.
Furthermore, the decision tree model showcased superior performance in multi-class classification
tasks, particularly with ordinal data.
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'KazakcTan-bpuran TeXHUKaIBIK YHUBEPCUTETI, AMaThl K., KasakcraH,

OKHNEJEI'T KAJIbBIIN®UKANMAJIAP MEH OBBIPAbI LUNG-RADS
KYUECIHAE PAAUOJOTIUAJBIK EPEKIHIEJIKTEP HETI3IHJAE KIKTEY

Angarna

Oxki1ie 00bIpbI Kazakcrania xoHe oJIeM/Ie IeH CayIIbIK CAKTay CalaChIHAAFbI eIIeyIli Maceneaepain oipi. by aypy
eJIiMre 9KeJIETIH KaTeplli iCiKTep KarapblHaa. OKie oObIPBIH epTe JUarHOCTUKaIay KUbIH, ce0e0i OHBIH OacTarkbl
Ke3eHJIepiH/ie KIIMHHUKAIBIK Oenrinepi Oaiikanmaiiapl. COHbIMEH Karap, oKIle OOBIPBIHBIH 0acKa OKIle aypyJapbIMEeH
yKcac KIIMHUKAJIBIK KOpPiHicTepl OHBIH JaJ JHAarHOCTHKAChIH KUBIHAATaAbl. J[oCTYpii IMarHOCTHKAIBIK diCcTep,
MBICAJIBI, OKTICHI TECiIl, OMOTICHS XYPTi3y, MHBAa3HBTI KOHE HayKac YIIIiH aysIp mpoueaypaiap. OcbiraH OailyIaHBICTHI
kommbroTepitik Tomorpadus (KT) HerisiHme kairaH OH JKargaiaapapl a3aiTy IHarHOCTHKA CalachlH jKaKcapTyda
MaHbI3[bl POINl aTKapajbl. by 3eprreyae aHHOTAIMSUIAHFAH KOMIIBIOTEPIK ToMoTpadusuiapiaH allbIHFaH
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PaIMONIOTHSIIBIK €PEKIICTIKTepre Heri3/iereH 0ec MalMHaMeH OKBbITY MOACTiHIH (JIOTHCTHKAJIBIK PETPECCHs, HICIIIM
aralllbl, Ke3/1eiiCOK OpMaH, BEKTOpJIap/ibl KOJIAay 9J1ici sxoHe baiiecTiH aHFas ajJropuTMi) CabICTBIPMaIbl Tajiaybl
Kyprizingi. Kimaccukanslk Mojenbaepai Tapaay oiapblH MICHIiM KaObUIaay MpoLeciH HEWPOHIBIK KeIIepMeH
CaANBICTBIpFaHa KEHUT OaKpUIayFa OONATHIHIBIFBIMEH TYCIHAipiTeni. Momenbaep OWHApIBI KOHE KOIKIACCTHI
JKIKTEy TYpFBICBIHAH OaraiaHipl. BUHAPIE KikTey OapbICHIHIA HAKTHI TYHIHHIH KalbIU(UKAIMAIApMEH HEMece
00bIpMeH OaliTaHBICTHI €KeHIH aHBIKTAY )KOHE OMOTICUSHBIH KQKET €KeHIH, TYPAKThI OaKbIIayIbIH KETKITIKTI €KeHiH
mrenry yuiiH Precision MeTpuKachl KOJJaHbUIIBL. AJl KONKIaccThl kikrey yiiiH Lung-RADS kiactapblH perTik
cunartbeiH eckeperin Quadratic Kappa ceHimainik eimeMi maianaHbUIIbL. 3ePTTEY JKEPriliKTi Ka3aKCTaHIBIK
nepexrep MeH xanmbira KoypkeTiMai LIDC-IDRI nepexTep *KUBIHTHIFBIHBIH KOMOMHAIMSACHIHA HET13eIreH. OpTypii
JepeKKe3aepai OipiKTipy TUArHOCTUKAIBIK MYMKIHIIKTEeP/Ii KCHEUTYTE JETCH YMTHUTBICTHI KOPCETE]II.

Tipek co31ep: okme OOBIPHIH JKIKTEY, PaIUOIOTHSUTBIK ePEKIIETIKTePl aly, PeTTiK AepeKTep, MeIUITNHATIBIK
OcliHenepi OHICY, KOMITBIOTEPIIIK KOPY, MAIIMHAMCH OKBITY.
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KJIACCHO®UKAIUS KAJTBIUOUKAIIAN U PAKA JIETKOI'O
B CUCTEME LUNG-RADS HA OCHOBE PAJHOJIOI'MYECKUX ITPU3HAKOB

AHHOTALMA

Pax sierkux npezcTasisier co00l 3HAYUTENILHYIO TPOOJIEMyY ISl 3[paBooXpaHeHus kak B Kazaxcrane, Tak u B
MHUpe, SBIISISICh OJJHOM U3 CaMbIX CMEPTENbHBIX (opM paka. JInarHocTika paka JISTKUX CJIOXKHA, TaK KaK CHMITOMBI
YacTO OCTAlOTCS HE3aMETHBIMH Ha PaHHMX CTaausx. boiee TOro, pak JETKUX HMeEET O0IHMe KIMHHUYECKHE
MIPU3HAKK C PA3IMYHBIMH JPYTHUMH JIETOUYHBIME 3a00I€BAaHUSAMH, YTO YCIOKHSET €ro TOYHOE BhIIBICHNE. TouHas
JMarHOCTHKA OOBIYHO TPeOyeT MPOKOJIa JIETKOTO IS MOCJIEAYIOmel OHOTICHH, YTO SIBISAETCS BHICOKOMHBA3UBHON
1 0OJIe3HEHHOW TpoIeaypoit i mamuenTta. [1oaTomMy KpaiiHe BaKHO OTIMYATH JIOKHOTIOJIOKUTENBHBIE CIIydan
Ha JTare JUArHOCTHKU C UCIIOJIb30BAaHHEM KOMIBIOTEPHOH Tomorpaduu. Mbl IpOBENN CpaBHUTEIbHbIN aHAIN3
ISTH MOJIeNIed MalIMHHOTO O0y4eHHs (JOTMCTHYECKasl PEerpeccHs, pelaoliee JepeBo, ClydalHbI Jiec, MEeTo]
OIIOPHBIX BEKTOPOB M HAWBHBII 0alleCOBCKMI allrOPUTM) Ha OCHOBE PaJMOJIOTHYECKUX NPU3HAKOB, H3BJICUCHHBIX
13 aHHOTHPOBAHHBIX KOMITBIOTEPHBIX TOMOTpaduil. Mbl BEIOpaNN KJIACCHYECKHE METOABI MAIMHHOTO 00y4eHHs,
MIOTOMY YTO MX HPOLECC MPUHSITUS PEIICHNH JIerde KOHTPOJINPOBATh 10 CPAaBHEHHUIO C HEHPOHHBIMU CETAMHU. Mbl
OLICHUJI MOZENHU C TOYKU 3peHUs OMHApHOM M MHOTOKJIACCOBOI KiIacCH(HMKALMU, YTOOBI ONPENeInTh, CBI3aHO
JM JaHHOe o0pa3oBaHME C KalblM(UKAIMEH WM PakoM, a Takke ero kiaccudukanuio corinacHo Lung-RADS,
YTO MO3BOJISICT PELIUTh, TPEOYETCs JIM JlaJIbHEWIIast OUOIICHS WM JI0CTaTOYHO TOJIBKO PYTHHHOTO HAOIIONCHMSI.
MBI Bcnonb30Baial METpHUKy Precision U OLIEHKH KOJHYECTBA JIOXKHOIOJIOKHUTEIBHBIX TPECKa3aHui B 3a/1aue
OunapHOl kimaccudukamyuy. Precision cran KiaroueBoil METPHUKOI B Hallel OIEHKE, MPEJOCTaBIsIsl HHHOPMAIUIO
0 KOJIMYECTBE JIOKHOTIOJIOKUTEJIBHBIX MPECKa3aHNi NIMEHHO B 3a7ade OMHapHOW Kiaccudukanuu. [is acmekra
MHOT'OKJIACCOBOU Kiaccu(pukauu Mbl oopaTrinch k Quadratic Kappa, Hage:KHON Mepe, YIUTBHIBAOIICH MOPSIKO-
BbII xapakrep kiaccoB Lung-RADS. Hair aHanmi3 0CHOBBIBAJICS HA KOMOMHAIIMK MECTHBIX Ka3aXCTAaHCKUX JIAHHBIX
u obuenoctynHoro Habopa naHubix LIDC-IDRI, noquepkuBast Hairy mpuBep>KEHHOCTb UCIIOJIb30BAaHUIO Pa3HO-
00pa3HBIX UICTOYHUKOB JAHHBIX JUISl YJTyUIICHHUS AUArHOCTHYECKUX BO3MOKHOCTEH.

KaioueBble ciioBa: kiaccuduKkaiys paka JICTKUX, W3BJICUCHHE PAJAUOIOrHYEeCKUX MPU3HAKOB, MOPSIKOBbIE
JaHHbIe, 00pa0dOTKa MEAMIIMHCKUX H300paKeHNH, KOMIIBIOTEPHOE 3PEHUE, MAIIMHHOE 00yYeHHE.
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