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COMPLETE CLASSIFICATION 
OF QUADRATIC IRRATIONALS WITH PERIOD TWO

Abstract
This article presents a comprehensive investigation into the classification of quadratic irrationals with period 

two in their continued fraction representations. Building upon foundational results in Number Theory, particularly 
in the context of continued fractions and Pell's equation, the study reveals intricate relationships between quadratic 
irrationals and their periodic structures. The main object of study is  and properties of its continued fractions. 
While it is well-known that continued fractions of  is periodic with periodic part being palindrome, the distribution 
of the lengths of the periodic parts are far from being complete. Our main goal will be to focus on the period two 
case and provide a complete characterization. The research's proved theorems clarify the conditions under which the 
period length is exactly two and give an insight into the underlying algebraic features. Additionally, it delves deeper 
by offering numerical analysis and illustrations demonstrating the distribution of period lengths among quadratic 
irrationals. This research opens up new paths for future studies on quadratic irrationals and how they're shown as 
continued fractions.
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Introduction

The theory of continued fractions is a rich branch of Number Theory that considers the 
representation of real numbers  by infinite sequences of fractions:

Continued fractions have a wide range of applications, including in numerical stability and special 
function representation [1], number-theoretic computations [2] and special functions in various 
fields [3]. They are also used in convergence criteria, three-term recurrence relations, hypergeometric 
functions, Pade approximants, and zero-free regions [4]. These applications highlight the versatility 
and importance of continued fractions in various mathematical and computational fields.

In this work, we consider quadratic irrationals and study the lengths of their periods when 
represented as continued fractions. We say that an irrational numbers is quadratic irrational if it is a 
root of a quadratic polynomial with integer coefficients. For simplicity we write  
for the continued fraction representation. One of the important results in the theory of continued 
fractions is due to Lagrange which states that for any quadratic irrational number, the continued 
fraction expansion eventually becomes periodic, for a proof see e.g. [5]. A special case of quadratic 
irrationals is the square roots of integers . An amazing result due to Galois states that the periodic 
parts of such fractions for quadratic irrationals manifest as palindromes [6]. To me more precise, for 
any square free positive integer  there exist positive number  such that

where the overlined is the periodic part that repeats in the continued fraction representation. One 
interesting research direction is to investigate the distributional properties of the quadratic irrationals. 
For any square free  we let   denote the length of the periodic part of the continued fraction 
for the quadratic irrational . In this line of research, a recent work [7] shows that that for any 
square free  the sequence

has infinitely many limit points in discrete topology. While this result is a moderate contribution 
to the research area, there are still many interesting questions to investigate. In particular, their result 
is not constructive in the sense that it is not clear which periods appear infinitely often. This is a 
delicate question and to address one needs to classify the numbers with certain periods. 

In this work, we aim to classify all the square free positive integers  such that  By 
employing the fundamental relationship between the length of the periodic part and Pell's equation, 
this research aims to bridge the gap between historical insights and contemporary research. It seeks to 
affirm the presence of an infinite set of positive integers for which the period length in the continued 
fraction representation of quadratic irrationals is exactly two, thereby contributing to the broader 
discourse on Number Theory and the intricate beauty of mathematical structures.

We now state our main results. The core of this work is encapsulated in a series of theorems that 
shed a light on the intricate relationship between quadratic irrationals and their continued fraction 
representations. The following result provides a criterion for a square root of a number to have 
period 2.

Theorem 1. The length of the period for the continued fraction of the quadratic irrational  is 
 if and only if there are positive integers  satisfying

such that  is divisible by , but . 
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To illustrate the theorem, for example, we may take  then all the conditions of the 
theorem are satisfied and for  we see that the continued fraction expansion satisfies 

 giving  As another example, we may take  
then  and .

The next result deals with those members of the sequence  for which the period  
length is 2. 

Theorem 2. Let  be a square free positive integer. Then, the length of the period for the continued 
fraction of the quadratic irrational  is  if  satisfies the Pell’s equation

for some integer . In particular, there exist infinitely many  such that 
As a corollary to Theorem 2 we deduce the following distribution result.
Corollary 3. Let  be a square free positive integer. Then, the natural number  such that 

 satisfies

These findings not only deepen our understanding of mathematical properties of quadratic 
irrationals but also establish a connection with Pell's equation, highlighting a significant intersection 
between different areas of Number Theory.

Collectively, these theorems illuminate mathematical intricacies of continued fractions for 
quadratic irrationals, bridging historical insights with contemporary mathematical inquiries. They 
demonstrate the rich interplay between algebraic forms, periodicity, and Diophantine equations, 
paving the way for future research in the field. Through detailed proofs and illustrative examples, this 
research underscores the enduring allure and complexity of continued fractions, inviting a further 
exploration into the mysteries of mathematical structures.

In the next section we review background and related works. Section 3 is devoted proving the 
main results. The paper ends with conclusion and future directions.

Main Provisions

The study of continued fractions, integral to mathematics, relies on historical achievements 
for advancement. Originating over two millennia ago, their formal foundations were laid in the 
late 17th and early 18th centuries. The genesis of continued fractions is often linked to Euclid’s 
Algorithm, initially devised for finding the greatest common denominator  of two numbers 
but also applicable algebraically to derive the simple continued fraction representation of a rational 
number [8].

Euclid’s method, when applied to find the  of 27 and 129, reveals a continued fraction 
representation through algebraic manipulations. This method highlights the reciprocal relationship 
between the fractions in successive equations, leading to a continued fraction representation. This 
early connection to continued fractions underscores their historical significance in approximating 
quadratic irrationals and contributions by mathematicians like Fibonacci.

During the Renaissance, mathematicians including Rafael Bombelli and John Wallis contributed 
significantly to the formal concept of continued fractions. Bombelli, in his treatise "L’Algebra" 
(1572), discussed square roots' representation as infinite continued fractions, providing a foundational 
approach later elaborated in his second edition of "L’Algebra Opera" (1579) [9]. Wallis introduced a 
continued fraction notation in "Arithmetica Infinitorum" (1655), using it to approximate square roots 
and other irrational numbers, thus coining the term continued fraction [9, 10].

The 18th and 19th centuries witnessed substantial advancements in continued fractions by 
Euler, Lagrange, and Gauss. Euler’s work, "De fractionibus continuis" (1737), proved that every 
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real number has a unique simple continued fraction representation and explored continued fractions 
for rational and irrational numbers, including the representation of e as a continued fraction [10]. 
Huygens applied convergents in continued fractions for practical uses, like gear ratio approximations 
in his mechanical planetarium construction [10, 11].

Lagrange's "Théorie des fonctions analytiques" (1798) established the periodicity of continued 
fractions for quadratic irrationals, known as Lagrange’s theorem, which significantly influenced the 
development of periodic continued fractions [12]. The 19th century saw applications of continued 
fractions in Number Theory and Diophantine approximation by Cauchy and Sylvester, enhancing the 
understanding of partial quotients and approximation properties.

In 1972, P. Chowla and S. Chowla explored periodic continued fractions, raising questions 
about finding infinite sets of positive integers  with a given length of the periodic part 
, conjecturing an affirmative answer [13]. Christian Friesen (1988) provided a positive proof, 
establishing results on palindromic sequences that led to Friesen's corollary addressing the original 
question posed by Chowla and Chowla [14].

Franz Halter-Koch (1989) refined Friesen's theorem, adding conditions related to the prime 
factorizations of , offering a deeper understanding of the integers satisfying the palindromic 
sequence condition [15]. Recent studies by Balková and Hrusková compiled findings on continued 
fractions for quadratic numbers, investigating equations linking  to values of , contributing 
to the broader understanding of continued fractions in Number Theory [14].

Rada and Starosta explored the Moebius transformation’s effect on the period length of continued 
fraction expansions, setting bounds for  based on ,

enriching the mathematical exploration of continued fractions [16]. Building on the work of 
Gawron and Kobos, this dissertation extends the analysis of Moebius transformations applied to 
quadratic irrationals, particularly focusing on their limit points in the sequence 

, highlighting the infinite nature of these limit points and posing new research directions  . 

Materials and Methods

Proof of Theorem 1. Assume that . By utilizing the definition of continued fractions 
and leveraging Galois' result which states that the periodic part of continued fractions for quadratic 
irrationals is a palindrome, we can represent   as follows:

We notice that to avoid period 1 case, we must have . Now, let's add the integer  to both 
sides of the expression and introduce a new equation:

Since , it follows that

From this equation we can derive the quadratic equation in the following form:

By solving this quadratic equation, we obtain two roots and derive the formula for the integer :
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Since , we see that . Solving for  we arrive at

Therefore, we deduce that  if and only if  and  is a positive integer divisible 
by 

We now turn in proving Theorem 2.
Proof of Theorem 2. Let a square free  be given. For  to have period 2 we know from 

Theorem 1 that there must exist  such that  and  is a positive integer divisible by  and 

Let us take  and  where  is yet to be determined. Then, the above equation takes 
the form  Cancelling out  we arrive at

This is a well-known Pell’s equation and it has infinitely many solution pairs  [17]. 
Therefore, for any such  we have that  This finishes the proof of Theorem 2.

Proof of Corollary 3. We notice that once the fundamental solution  to the Pell’s equation 

is found, the other solutions  can be found iteratively from

Since  we get

Thus, for  there are at least  integers  satisfying  Hence,

Results and Discussion

In this section we carry numerical analysis and visualize distribution of lengths of periods to 
certain generality.

In the first instance, we consider all square-free positive integers up to one million and consider 
how the lengths of periods of under the square root function is distributed. 
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Figure 1 – Distribution of lengths of periods for square root 
of numbers up to one million

For most square-free  we have . For this reason, we have only 
considered those lengths that are at most 1000 to make the graphics readable. 

In Figure 2, we consider the distribution of  for various  and values for  up to 1000. 
The distribution of periods is  generated when .

The implications of our findings are manifold, extending beyond the immediate scope of 
quadratic irrationals to touch upon broader aspects of number theory and mathematical research. 
The classification of quadratic irrationals with a period of two offers a glimpse into the symmetry 
and patterns inherent in mathematical structures, echoing the palindromic beauty found within the 
periodic parts of continued fractions for quadratic irrationals.

Looking ahead, several avenues for future research have been illuminated by this study. For 
instance, extending the classification to quadratic irrationals with periods greater than two presents a 
challenging yet potentially rewarding endeavor. Additionally, exploring the connections between the 
distribution of period lengths and other number-theoretic phenomena could yield further insights into 
the underlying principles of number theory.

Another intriguing direction is the investigation of the practical applications of these findings. 
The theoretical insights gained from the study of quadratic irrationals and their continued fraction 
representations could have implications for numerical analysis, cryptography, and even quantum 
computing, where the properties of numbers play a pivotal role.



143

ҚАЗАҚСТАН-БРИТАН  ТЕХНИКАЛЫҚ 
УНИВЕРСИТЕТІНІҢ  ХАБАРШЫСЫ № 3(70) 2024

(A) (B) 

(C) (D) 

(E) (F) 

(G) 

Figure 2 – The distribution of  for  and 
.
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Conclusion

This study delved into the realm of quadratic irrationals with period two, illuminating their 
structure through the lens of continued fractions and Pell's equation. Our work not only enriches the 
existing body of knowledge but also draws connections between classical and contemporary number 
theory, highlighting the intricate dance between algebraic properties and periodicity. The theorems 
we've established lay down explicit criteria for when a quadratic irrational will exhibit this unique 
periodic behavior, thereby expanding our understanding and appreciation of these mathematical 
entities.
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ЕКІ ПЕРИОДТЫ КВАДРАТТЫҚ ИРРАЦИОНАЛ 
САНДАРДЫҢ ТОЛЫҚ ЖІКТЕЛУІ

Аңдатпа
Бұл мақалада квадраттық иррационал сандардың жіктелуін олардың үздіксіз бөлшек көріністерінде 

екінші кезеңмен жан-жақты зерттеу ұсынылған. Сандар теориясының негізгі нәтижелеріне сүйене отырып 
тізбекті фракциялар мен Пелл теңдеулерін зерттеу квадраттық иррационал сандар мен олардың периодтық 
құрылымдары арасындағы күрделі қатынастарды айқындайды. Зерттеудің негізгі объектісі –  және 
оның тізбекті бөлшектерінің қасиеттері.  үздіксіз бөлшектері периодты және олардың периодтық бөлігі 
палиндром екені белгілі болғанымен, периодтық бөліктердің ұзындығының таралуы толық зерттелмеген. 
Біздің басты мақсатымыз екінші кезеңге назар аудара отырып, оларға толық сипаттама беру. Зерттеуде 
дәлелденген теоремалар периодтың ұзындығы екіге тең болатын шарттарды нақтылайды және негізгі 
алгебралық белгілер туралы түсінік береді. Сонымен қатар, жұмыс квадраттық иррационал сандар арасында 
периодтық ұзындықтардың таралуын көрсететін сандық талдаулар мен иллюстрацияларды ұсына отырып, 
осы саладағы зерттеулерді тереңдете түседі. Бұл зерттеу болашақта квадраттық иррационал сандарды және 
олардың үздіксіз бөлшектер ретінде көрінуін зерттеуге жаңа жолдар ашады. 

Тірек сөздер: Сандар теориясы, жалғасымды бөлшектер, квадрат иррационалдар, Пелл теңдеуі, период 
ұзындықтары
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ПОЛНАЯ КЛАССИФИКАЦИЯ КВАДРАТИЧНЫХ 
ИРРАЦИОНАЛЬНЫХ ЧИСЕЛ С ПЕРИОДОМ ДВА

Аннотация
В этой статье представлено всестороннее исследование классификации квадратичных иррациональных 

чисел со вторым периодом в их представлениях непрерывной дроби. Основываясь на фундаментальных ре-
зультатах теории чисел, особенно в контексте цепных дробей и уравнения Пелла, исследование раскрывает 
сложные взаимосвязи между квадратичными иррациональными числами и их периодическими структура-
ми. Основным объектом исследования является  и свойства его цепных дробей. Хотя хорошо известно, 
что непрерывные дроби  являются периодическими, а периодическая часть является палиндромом, рас-
пределение длин периодических частей далеко не полное. Нашей главной целью будет сосредоточиться 
на втором периоде и предоставить полную характеристику. Доказанные теоремы исследования разъясняют 
условия, при которых длина периода равна ровно двум, и дают представление о лежащих в основе алгебраи-
ческих особенностях. Кроме того, он углубляется, предлагая численный анализ и иллюстрации, демонстри-
рующие распределение длин периодов среди квадратичных иррациональных чисел. Это исследование от-
крывает новые пути для будущих исследований квадратичных иррациональных чисел и того, как они отоб-
ражаются в виде непрерывных дробей.

Ключевые слова: теория чисел, цепные дроби, квадратичные иррациональные числа, уравнение 
Пелла, длины периодов.
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