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COMPUTING THE DEGREE-4 INVARIANT
POLYNOMIAL BASIS FOR 7 QUBITS

Abstract

Understanding the complexity of entangled states within the context of SLOCC (stochastic local operations and
classical communications) involving several number qubits is essential for advancing our knowledge of quantum
systems. This complexity is often analyzed by classifying the states via local symmetry groups. Practically, tthe
resulting classes can be distinguished using invariant polynomials, but the size of these polynomials grows rapidly.
Hence, it is crucial to obtain the smallest possible invariants. In this short note, we compute the basis of invariant
polynomials of 7 qubits of degree 4, which are the smallest degree invariants. We obtain these polynomials using
the representation theory and algebraic combinatorics.
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Introduction

Entanglement is a very important idea in quantum information theory, and it is necessary to
understand and measure entanglement in quantum states [1]. It is considered a crucial part of quantum
information, and it has become a major area of research [4, 5]. In recent years, polynomial functions
that do not change under stochastic local operations and classical communication (SLOCC) have been
studied a lot [2, 3, 12, 13, 14]. These functions are sometimes used to measure entanglement [13].

SLOCC is an important concept that helps classify entangled states by looking at how they can be
changed using local operations and classical communication. This classification is important because
it shows which quantum states can be changed into each other using local operations, helping us
understand the basic structure of quantum entanglement and its importance for quantum information
processing. In the SLOCC framework, the complexity of entangled states, especially in systems with
d quantum units (qunits, with n states), is a key area of study. The main challenge is to efficiently
categorize these states to understand their potential uses in different quantum information tasks.

This paper deals with the challenge of classifying entangled states under SLOCC for 7 parties,
each having a single qubit. Similar job has being done by the author in [6] for 3 and 5 parties with
qubits and qutrits. An improved method for deriving invariant polynomials of the smallest degrees
were introduced, which is useful for efficiently identifying SLOCC classes of entangled quantum
states [2, 3, 12, 13, 14, 15].

The theory beyond the introduced method was developed in [8, 9, 10, 11]. Using Schur-Weyl
duality and representation theory of a symmetric group and general linear group, the spanning set of
the space of invariant polynomials of fixed degree is obtained.

Apart from its fundamental significance, it is useful in the task of distinguishing the orbits of
quantum states. That is, if two quantum states X and Y are given, if the evaluation of some invariant
polynomial P on these states (tensors) is different, then it implies that X and Y are in different SLOCC
orbits.

128



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI Ne 3(70) 2024

To address this problem, we reframe it within a mathematical framework. Quantum states are
considered as elements of ¥V = C* & --- & C" (repeated d times) scaled to unit norm. With a fixed

basis, each state is represented by a d-dimenisonal hypermatrix {Aii,,,i d}. Stochastic local operations
correspond to elements of the group G = SL(n) X --- X SL{n) (repeated d times), where each group
instance independently acts on the corresponding tensor component via left multiplication. Here
SL(n) is the group of n X n matrices of a determinant 1. Consequently, SLOCC classes are exactly
the orbits of a group action.

The polynomial P defined over the vector space ¥ is considered G-invariant f it remains
unchanged on the orbits of the G-action, i.e., P(gv) = P(v). Distinguishing tensor orbits (state
classes) can be achieved by assigning different evaluations to an invariant polynomial. Thus, creating
such polynomials is a key task in quantum information theory.

In general, most tensor problems are NP-hard, as shown in [22], making it unrealistic to expect
quick solutions to tensor-related problems.

Our primary contribution is the computation of the basis of degree 4 invariant polynomials of
7 qubits. This paper is continuation of the paper [6] where we did the similar job for d = 3,5 and
n = 2,3. This problem is rooted in Computer Science, as it involves creating an algorithm based on
the structure of the underlying tensor space. The techniques and results can also be utilized in other
fields of computer science that use tensors, as they reveal the symmetries of a tensor space in relation
to the natural group action. We provide the basis for invariant polynomials of degree 4 of 7 qubits.

Literature review

Invariant polynomials are essential for classifying quantum states. These polynomials allow for
efficient characterization and measurement of entangled states’ complexity under local operations
and classical communications (SLOCC). This short review covers the foundational theories, practical
uses, and computational techniques related to invariant polynomials, highlighting their importance in
various fields of study.

The study of invariant polynomials trace back to Arthur Cayley [15, 16] in the middle of 19-
th century. He introduced the combinatorial hyperdeterminant — simpliest generalization of the
ordinary determinant for even d, which is also refferred to as Cayley’s first hyperdeterminant.
Later he also introduced Cayley’s second hyperdeterminant det, .y, which is SL(2)3-invariant of
2 X 2 X 2 hypermatrices of degree 4. Later, this invariant were generalized to so called geometric
hyperdeterminant by Gelfand-Kapranov-Zelevinsky in their ground breaking paper [17]. Later on,
many research were conducted on this matter. Biirgisser and Ikenmeyer [8] identified fundamental
invariants and explored their role in orbit closures within algebraic geometry. Biirgisser et al. [9, 11]
studied scaling algorithms and the null-cone problem from the perspective of invariant theory.
Their work demonstrated the computational efficiency of these algorithms in determining invariant
polynomials. Later, this work were developed in [10].

Luque and Thibon [2, 3], building on this foundation, extended the scope of polynomial invariants
to systems with four and five qubits, see also [14]. Their research provided explicit descriptions
and formulas for these invariants, aiding in the classification of more complex quantum states. By
deriving these invariants, they enabled more efficient characterization of SLOCC classes, advancing
the practical applications of these tools in quantum computing.

The foundational work by Diir, Vidal, and Cirac [1] identified different ways three qubits can be
entangled, establishing a basis for understanding polynomial invariants in quantum systems. Their
research uncovered two inequivalent classes of entangled states, each distinguished by different sets
of polynomial invariants. This work underscored the role of local symmetry groups in classifying
entangled states, a key aspect of quantum information theory. Miyake [7] extended the classification
of multipartite entangled states by employing multidimensional determinants, closely related to
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polynomial invariants. This approach allowed for a deeper understanding of entanglement in higher-
dimensional quantum systems, connecting abstract mathematical theory with practical quantum
computing applications. Maria [19] provided a fixed parameter tractable algorithm to compute
quantum invariants of links presented by planar diagrams, including the Reshetikhin-Turaev
invariants derived from simple Lie algebras. Neural networks and machine learning techniques
were used to compute invariant polynomials in Haddadin [20]. Raith et al. [21] developed advanced
visualization techniques for tensor fields using fiber surfaces of invariant spaces. This method
enhances the visualization and interpretation of complex tensor fields, with practical applications in
scientific visualization and data analysis.

Main provisions

A. Tensors and invariants

We denote [2] = {0,1}. Let V = (C™)®¢ be the space of tensors (state space). Elements of V
written in a fixed basis correspond to hypermatrices (Xii,...,id) indexed by (i,,...,iz) € [n] X ... X [n]
and we shall usually identify tensors in ¥ with corresponding hypermatrices.

The group G = SL(n)*¢ naturally acts on the space of tensors V = (C")®¢ by
(g1, 9271 @ . Q vy = 9111 Q .. & GaVsa (1)
for g € SL(n),v, € C* and extended multilinearly. Let PInv,(n) be the ring of G-invariant
polynomials that inputs elements of 7. It is known [2, 3] that the degree of any polynomial in PInv; (1)
is a multiple of n. By PInv,(n, k) we denote the homogeneous degree nk part of PInv;(n), which
provide the grade decomposition:

Plnvd(n) =$k30 Plnvd {:nl k) (2)

The dimensions of the grades are counted by rectangular generalized Kronecker coefficients
ga(nk):= gn X k,...,n X k) (repeated d times). The (generalized) Kronecker coefficients are
structural constants of tensor products of irreducible symmetric group representations. It is the major
problem to give a combinatorial interpretation for these numbers; this problem sometimes referred
to as last open problem in algebraic combinatorics. Decision problem of positivity of Kronecker
coefficients is known to lie in NP class.

In [10], the authors studied dimension sequences via Kronecker coefficients. it was obtained the
lower bound for smallest k for which dim PInv;(n, k) > 0. Denote

6" ;(n) = min{k | dim PInv;(n, k) = 0}. (3)

It is known, that §' ;(n) = 1 for even d and there is a unique polynomial invariant of that degree
called Cayley’s first hyperdeterminant [15, 16]. For odd d situation is completely different. The
following theorem sheds light to odd d case. It is known, that for odd d:

[ndTll] =6,;(n) =mn, (4)

and this lower bound is sharp in certain cases, see [10]. By computing the Kronecker coefficients
we know the dimensions of the grades by g, (n, k) = dim PInv,(n, k). See the figure in the results
section for dimension sequences.

Our aim is to describe the minimal possible invariants. For that we require a few combinatorial
definitions.

B. Magic sets and its signature function

Magic sets. We refer to elements of the box [k]¢ as cells. A slice of [k]? is a subset consisting
of all cells with a fixed i-th coordinate (referred to as the direction) for some i in [d].
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A magic set is a subset of [k]? that has an equal number of elements in every slice of [k]%,
and this number is called its magnitude. A magic set T can be represented as a magic hypermatrix,
with 1 at the cells corresponding to elements of T and 0 elsewhere. A magic hypermatrix is a natural
generalization of (0,1)-magic squares. The set of all magic sets in [k]¢ with magnitude n is denoted
as B;(n, k).
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Figure 1 — Example of a magic set in 3x3x3 cube of magnitude 3

Each magic set T in [k]¢ of magnitude n and cardinality m = nk can be represented as a d X m
table with entries in [1] as follows: iterate over the cell I = (iy,...,iz) of [k]% in lexicographical
order and add column I to the table whenever T; ;. = 1. We refer to the resulting table as the magic
table T. For instance, for d=3 and k=3, assume Tppq = 1, Tyoy = 1, T30 = 1, and T34, = 1, with
zeros elsewhere. Then, the corresponding table is:

0011
T = (OD 1 1) (5)
0101/,

We identify magic sets and their corresponding tables. Note that if T is in By(n, k), then the
corresponding magic table is of size d x nk, and each row consists of letters from [k], each appearing
n times. Since T;_, ;. 18 in {0,1}, the columns of the magic table do not repeat.

Signature function. For each magic set, let us introduce a 'filter' for (noncommutative) monomials
involved in polynomials of PInvz(n) of degree nk. For the map o: [nk] — [n]¢, denote the
monomial X, as the product X, = [T7%; X, . The map o can also be regarded as a d X nk table,
with the i-th column being @ () and each row containing letters from [n], each appearing k times.

For the magic table T € B;(n, k), define the sign function sgn(o) € {—1,0,1} as follows:
overlay table ¢ on table T and consider all symbols in table @ that lie in the same row and have the
same underlying symbol from T. Denote the resulting sequence as @ = (@, ...,a@y,). If it forms a
permutation, then sgn () is multiplied by the sign of this permutation; otherwise, set sgn () to 0.

For example, let s = 112231132, then

sgn.(121213423) = sgn(1234)sgn(12)sgn(12) = +1,

sgn.(233211421) = sgn(2314)sgn(321)sgn(12) = —1,

sgn.(243511421) = sgn(2414)sgn(351)sgn(12) = 0.

not permutafions

131



HERALD OF THE KAZAKH-BRITISH
No. 3(70) 2024 TECHNICAL UNIVERSITY

In other words, sgn¢(a) is determined by overlaying ¢ on T, where we expect each block
of equal letters within the same row of T to be covered by a permutation, and the product of all
signatures of the resulting permutations gives the value of sgn (o).

C. Spanning set of invariant polynomials
For a magic set T € B;(n, k) define the polynomial

Ar = Z sgn(o) ﬁ Xs ) (6)
i=1

Fi[nk]—[n]?
where sum runs over all possible such[ m]ap[s ]a. In turns out, that these polynomials are enough to
span PInv,(n, k), see Theorem 1.
We note that the polynomials {4r} may and will be linearly dependent. Also, the size of B;(n, k)
is still much larger than the dimension of Plnv,(n, k), but in the next chapter we provide several
optimizations on search of B;(n, k) by means of representation theory.

Materials and methods

In this section we decribe optimizations to generate the basis of PInv;(n, k). efficiently. We
know that the set {47 | T € B;(n, k)} linearly spans PInv,(n, k).

Theorem 1 [10]. Polynomial 47 is SL(n)%-invariant of tensor space (C™%)®¢. Moreover, the set
{Ar} where T ranges in B;(n, k) is the spanning set of PInv;(n, k).

The size of the set B;(n, k) grows exponentially fast, the rough upper bound would be

B;,(n, k) < GD The following fact helps to enhance the search of smaller spanning set. We call
aword w = (Wy,...w,,) € [k]™ lattice if for each { = 1,...,m the number of occurences of / in the
word (W1, -, W;) is at least as the number of occurrences of j + 1 in (wy, ..., w;) for each/ =1,...,k

Let By (n,k) € B;(n, k) be the subset of magic sets called lattice magic sets, if each row of a
corresponding magic table is a lattice word.

Theorem 1 provides a method of generating such polynomial invariants. In practice we can
dramatically reduce the size of search space of T from Bz(n, k) to Bi (n, k). This can be done with
simple backtracking algorithm.

As soon as the space of tables obtained, we calculate coefficients of each polynomial using
algebraic combinatorics hidden beneath. Further, we collect it into the matrix and do simple Gauss
elimination algorithm to compute the basis. But there are 11712 possible monomials. To make
computations feasible, as it turns out, we do not need all possible monomials, we are enough to
restrict ourselves only on a subset of the monomials and sice the rank of a matrix is small, the basis
can be obtained using only coefficients at around 50 monomials.

To sum up, our method of computation relies on the following optimizations:

¢ Optimization 1. Instead of considering entire space B;(n, k) we consider only the lattice part
of it B (n, k). It may be not enough, but in fact, the set {A;} where ranges in By (1, k) actually
forms a spanning set of the space PInv,(n, k). Even if we do not know that, we can consider only
these tables — if it turns out (and it will turn out) that the polynomials indexe with these tables span
PInv,(n, k), we will not need this upgraded version of Theorem 1.

Optimization 2. While recovering polynomials Az, we compute coefficients at all possible
monomials. Then we construct the matrix tables X monomials and compute its row basis. But
the number of monomials might be too large, so instead, we can consider only some subset of the
monomials.

Results and discussion

In this section basis for the space of invariant polynomials of minimal degree is obtained. Using
Sage [18] several dimension sequences are presented. In particular, we are interested in the row 2 and
column 2 of the Table I, i.e. degree 4 invariants of 7 qubits.

132



KA3AKCTAH-BPUTAH TEXHUKAJIBIK
YHUBEPCUTETIHIH, XABAPIIBICHI

Ne 3(70) 2024

Table 1 — Dimension sequences of polynomial invariants of degree nk for 7 qunits

kin |1 (2 3 4 5

1 1 |0 0 0 0

2 1 |21 161 3341 64799

3 1 |70 636177 9379255543 215546990657498

4 1 13362 9379321798 220746106806871065 14446465578705208466014240

5 1 162204 |215601786541974 |14446471715159302533654142 |53706401460919731018478972737
59375505

According to the Table 1,

dim C[(C?)®7]

0011
0011
0011
0011 |, T, =
0011
0011
0101

0011
0011
0011
0101 |, T; =
0011
0011
0101
0011
0101
0011
0011 |, Ty; =
0101
0011
0011

4

0011
0011
0011
0011 |, T; =
0011
0101
0101

0011
0011
0011
0101 |,T; =
0101
0101
0011
0011
0101
0011
0101 |, Tz =
0101
0101
0011

0011
0101
0011
0101 |, Ty; =
0101
0011
0011

0011
0011
0101
0101 [, Ty =
0011
0101
0011

sL(2)7

= g-,(2,2) =21. (7)

We present all 21 tables, that form the basis of invariant polynomials:

0011
0011
0011
0011
0101
0101
0011

0011
0011
0011
0101
0011
0011
0101
0011
0101
0011
0101
0101
0011
0011

;1H8==

0011 0011
0011 0011
0011 0011
0011 |,T; = | 0011 |,
0101 0101
0011 0101
0101 0101
0011 0011
0011 0101
0101 0011
0101 |, T, = | 0011 |,
0101 0011
0101 0011
0011 0101
0011 0011
0101 0101
0011 0011
0101 |, Tys = | 0101 |,
0011 0101
0101 0011
0011 0101
0011
0011
0101
0101 |,
0101
0101
0011
0011
0011
0101
0101

0011
0011
0101
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Each polynomial Ay, is of degree 4 and has around 3072 terms. In contrast, geometric
hyperdeterminant det, s x2x2x3x2x2 18 of degree 6816 and has infeasable amount of terms.

Perfomance review. In total, the algorithm time complexity is O(BF (n, k) - A3 (n, k) - ga(n, k)),
due to time complexity of Gauss-Jordan elimination algorithm. Comparing this to the naive approach,
i.e. without using proposed ehancements , we will archive only O (B s (k)-A;(nKk)-g.(n, k))

d

kim
time complexity, which is exponentially worse, at least by a factor of (er[k] et ﬂ) , latter can
be derived by hook-length formula. J

Conclusion

The classification of SLOCC classes is very difficult. This is not only because entanglement
phenomena are complex, but also due to practical issues: the computational problem's size increases
exponentially with the number of parties or the number of possible particle states. Therefore, there is
a need to develop fast and efficient methods. This paper tackles this issue by proposing a method to
derive a basis of homogeneous invariant polynomials of tensors. It introduces an efficient algorithm
for generating invariant polynomials of tensors. The findings also provide a contextual understanding
of tensors concerning symmetries, which is crucial in computer science, as many advanced machine
learning or statistical methods require tensors to be symmetric with respect to some coordinates.
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4 1OPEXEJIl 7 KYBUTTIH NHBAPUAHTTBIK
KOIIMYUWEJIEP BABUCIH ECEIITEY

AHjgaTrna

Kenteren xyourrepai xamtuTeiH SLOCC (cTOXacTHKANBIK JKEPTUTIKTI OIMEparusiap KoHE KITaCCHUKAIBIK
KOMMYHHUKAIMsIap) KOHTEKCTIHJErl IaTacKaH KYWIEpIiH KYpHIEeNUIriH TYCiHy KBaHTTBIK Kyienep Typajbl
O1TiMIMI3L XKETUIIIPY YIIIH MaHb3bL. byl Kypreninik kebiHece Kyiiep/ii )epriuTikTi CHMMETPHSI TONITapbl apKbLIbI
KIKTEYIIH KOMeTIMeH TajlaHajbl. Ic jKy3iH/Je ajbIHFaH KiacTap/bl HHBAPHAHTTHIK KOIIMYIIEJIep/i Naiananbii
aXbIparyra 0onael, 6ipak Oy Kenmyenepain Memmepi Te3 eceni. COHABIKTAaH eH KilIKeHTal HHBAPHAHTTAPbI
airy ete MaHbBI3ABL. OCHI KBICKaIIa jka30ana 6i3 4 mopekerni 7 KyOUTTiH HHBapUAHTTHIK KOIIMYIIIEIEepiHiH 0a3achH
ecenTelMi3, onap eH Kilr Jopekerni nHBapuanTTap. bi3 Oy kenMyrienepai KopceTy TEOPHICH MEH anreOpasbik
KOMOMHATOPUKAHBI KOJIJIAaHA OTHIPBIIT aJlaMbI3.

Tipek ce31ep: MHBapUaHTTHI KOIIMYyIIeNep; KBAaHTTHIK TYHicy, SLOCC.
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BBIYNCJIEHHWUE BASUCA NHBAPUAHTHBIX
MHOTI'OYJIEHOB CTEIIEHMU 4 1J151 7 KYBUTOB

AHHOTAUA

[ToHnMaHWe CIOKHOCTH 3aIyTaHHBIX cocTossHU B KOHTeKcTe SLOCC (CTOXaCTHYESCKHUE JIOKATFHBIC OTIePaIin
¥ KJIaCCHYeCKasi KOMMYHHKAIINS ), BKITFOYAFONTINX HECKOIBKO KYOUTOB, BYKHO ISl TPOIBIYKCHUS HAIIIETO 3HAHUS O
KBAHTOBBIX CHCTEMax. JTa CIIOKHOCTh YaCTO aHAIM3HUPYETCS MTyTeM KIACCH(PHUKALINN COCTOSHUN Yepe3 JTOKaJIbHBIe
TPyl CUMMETpUU. Ha mpakThKe MOyYeHHbIe KJIACChl MOYKHO Pa3jiinyaTh ¢ OMOIIbI0 MHBAPUAHTHBIX MHOTOY-
JICHOB, HO pa3Mep 3THX MHOTOUWICHOB ObICTPO pacTeT. [103TOMY Ba)KHO MOJYYHTh MHBAPUAHTHI HAMMEHBIIICH BO3-
MOYKHOH CTereHu. B 3Tol KOpOTKOM 3aMeTKe MbI BHIYHCIIsICM 0a3MC MHBAPUAHTHBIX MHOTOYWICHOB Uil 7 KyOUTOB
CTENEHH 4, KOTOPHIE SIBIISIOTCS. MHBAPUAHTAMM HAaUMEHbIIEH cTereHr. Mbl oJTydyaeM 3TH MHOTOWIEHBI, UCTIOIb3Ys
TEOPHIO TPEICTABICHUN U alNTeOpaniecKyro KOMOMHATOPHKY.

KuroueBble c10Ba: MHBapHAHTHBIC IOTMHOMBI, KBAHTOBas 3anmyTaHHOCTH, SLOCC.
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