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DEEP NEURAL NETWORKS AS A TOOL FOR ENHANCING
THE EFFICIENCY OF PLASTIC WASTE SORTING

Abstract

In the recycling industry, there is an urgent need for high-quality sorted material. The problems of sorting
centers related to the difficulties of sorting and cleaning plastic leads to the accumulation of waste in landfills
instead of recycling, emphasizing the need to develop effective automated sorting methods. This study proposes
an intelligent plastic classification model developed on the basis of a convolutional neural network (CNN) using
architectures such as MobileNet, ResNet and EfficientNet. The models were trained on a dataset of more than 4,000
images distributed across five categories of plastic. Among the tested architectures, proposed EfficientNet-SED
demonstrated the highest classification accuracy — 99.1%, which corresponds to the results of previous research in
this area. These findings highlight the potential of using advanced CNN architectures to improve the efficiency of
plastic recycling processes.

Key words: plastic sorting, classification, dataset, deep learning, convolutional neural network (CNN).

Introduction

Sorting garbage, including plastic bottles, and their subsequent recycling are of great importance
for Kazakhstan and other countries in the context of sustainable development and environmental
protection. Plastic bottles are one of the main sources of plastic waste, which can have a serious impact
on nature and living organisms. Micro-plastic and nano-plastic particles penetrate the food chain of
animals and humans. Proper sorting and recycling of plastic bottles helps to reduce environmental
pollution and conserve natural resources.

There is a need to develop intelligent systems capable of efficiently sorting plastic waste.
Current plastic sorting methods face a number of problems, such as low classification accuracy,
dependence on the human factor and high operating costs. It is important to create a system that can
automatically classify various types of plastic, determine their condition (by type, shape, color, and
the presence of residues inside the bottle) and direct waste to appropriate recycling. Solving this
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problem will improve the efficiency of the recycling process and reduce the likelihood of errors,
which is extremely important in the context of growing volumes of plastic waste and the need for
sustainable development.

Literature Review

In Kazakhstan, plastic recycling is being tested, but much work remains to be done to increase
the level of sorting. Each year, Kazakhstan produces 4.3—5 million tons of solid household waste.
The share of recycled and disposed solid waste in 2022 was 25.41%, and only 20% of this amount
is plastic waste [1]. Plastic is sorted in major cities and regional centers and processed at factories
in Shymkent and Zhanaozen, as well as at small and medium-sized businesses. The government is
encouraging plastic collection and recycling by introducing extended obligations for manufacturers.
The Ministry of Ecology and Natural Resources of the Republic of Kazakhstan is also implementing
the concept of Kazakhstan’s transition to a green economy.

Assessing the environmental impact of automated plastic waste sorting systems is critical to
assessing their sustainability. Life cycle assessment (LCA) of plastic products was carried out to
analyze the overall environmental impact [2,3,4].

There are numerous examples of research on the sorting and classification of plastic wastes
using NIR spectroscopy and a hyperspectral visualization system, including optical sorting, magnetic
separation and other methods.

NIR spectroscopy has been extensively applied in the field of waste management, particularly for
sorting plastic materials. Masoumi et al. (2012) investigated the identification and classification of
plastic resins using near-infrared reflectance spectroscopy. Their study highlighted the technology's
precision in distinguishing various plastic resins, facilitating more accurate and efficient sorting in
recycling operations [5].

Similarly, Wu et al. (2020) demonstrated the effectiveness of NIR spectroscopy in auto-sorting
commonly recovered plastics from waste household appliances and electronics. Their research
provided significant insights into the application of NIR technology in identifying and separating
different plastic polymers, which is crucial for recycling processes [6].

The advancement in hyperspectral imaging systems has further revolutionized the sorting of
plastic waste. Zheng et al. (2018) developed a discrimination model using NIR hyperspectral imaging
to sort waste plastics. This system proved to be effective in accurately identifying and classifying
different types of plastic materials, showcasing the potential of hyperspectral imaging in enhancing
waste management practices [7].

The integration of hyperspectral imaging with machine learning algorithms has also been
explored to improve the sorting accuracy of plastic waste. Zhu et al. (2019) introduced a plastic solid
waste identification system that combines near-infrared spectroscopy with support vector machine
algorithms, indicating a significant improvement in the identification and classification of plastic
materials [8].

With the development of deep learning and computer vision, more accurate and faster methods
for recognizing and classifying objects based on images have become possible, making machine
learning an ideal tool for automating the sorting of plastic waste. Carrera et al. (2022) focus on the
application of machine learning algorithms such as neural networks, the support vector machine and
deep learning algorithms for the recognition and classification of plastic materials. These studies
emphasize the importance of selecting suitable features for model training and developing effective
classification algorithms. [9].

Machine learning algorithms play a vital role in automating the sorting process by classifying
plastic materials based on their composition, color and shape. Choi et al. (2023) uses deep learning
models such as convolutional neural networks (CNN) and recurrent neural networks (RNN), have
demonstrated exceptional performance in image recognition and classification tasks [10].
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Problems in the automated sorting of plastic waste persist. These challenges include the diversity
of plastic materials, the limitations of real-time processing, and the need for reliable algorithms to
handle different waste streams. Abdallah et al. (2022) proposed innovative solutions, such as ensemble
learning methods and transfer learning, to improve the adaptability and accuracy of machine learning
models in real-world sorting scenarios [11].

Recent studies, such as by Kumar et al. (2021), explore deep learning approaches for waste
segregation, notably using the YOLOvV3 algorithm within the Darknet framework. This method,
tailored for object classification, has shown effectiveness in classifying various waste types, including
plastics. Deep learning, especially convolutional neural networks (CNNs), alongside techniques like
Support Vector Machines (SVM) and Multilayer Perceptrons (MLP), are increasingly applied in
waste management for their accuracy in classifying and segregating waste materials [12]

The research conducted by Bobulski and Kubanek (2021) introduces an advanced classification
system for plastic waste, utilizing deep learning methodologies, with an emphasis on the development
and evaluation of models capable of identifying various categories of plastic [ 13]. Their work utilized
several deep neural network architectures (AlexNET, MobileNET) to achieve good classification
accuracy (comparing across epoch), but in alignment with other studies [14, 15], their focus was aimed
at the classification relevant to specific types of plastic materials (PET, PP, PS etc.). Furthermore,
these models were additionally employed to identify various categories of municipal solid waste
(MSW), including plastics, glass, metals, or alternative refuse [16, 17].

In our study, we conduct a deeper analysis of the application of deep neural network architectures
to classify plastic bottles with different levels of residual contamination, including dairy and chemical
liquid bottles. The main goal of our work is to improve sorting processes in real-world settings,
where plastic waste often contains contamination. This makes the classification task more complex
and important for ensuring an efficient recycling process.

Material and methods

In this study, we compared the architectures of deep convolutional neural networks:
MobileNet 0.35, ResNet-34, and EfficientNet-B1/SED. These architectures were chosen as a
backbone and due to their proven effectiveness in computer vision and image classification tasks, as
their performance and ability to identify the most suitable architecture are key for automated plastic
sorting.

MobileNet

In the research work of Howard et al. (2017), MobileNet is described as an efficient architecture
for mobile devices that uses deep-separated strands and width multipliers to optimize computing
resources, providing a balance between accuracy and efficiency, making it suitable for computer
vision applications in computing power-limited environments [18].

MobileNet 0.35, a variant of the MobileNet architecture, is designed to operate with a reduced
width multiplier of 0.35. This model maintains the use of depthwise separable convolutions, which
significantly decrease the number of parameters and computational cost. The architecture starts with
an initial full convolutional layer followed by a series of depthwise separable convolutional blocks.
Each block comprises a depthwise convolution layer for filtering input channels independently,
followed by a pointwise convolution that combines these channels. The stride is adjusted in certain
blocks to reduce spatial dimensions, facilitating a reduction in computational load. The architecture
concludes with global average pooling and a fully connected layer, terminating with a softmax
activation function for classification.

ResNet

In the paper, He etal. (2016) first described the concept of residual blocks and ResNet architecture,
which enables deep neural networks with hundreds of layers to be trained, solving the problem of
disappearing gradients. The ResNet-34 architecture is notable for its ability to transmit information
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directly through skip connections, improving learning and providing high accuracy in computer
vision tasks [19].

ResNet-34, part of the Residual Network family, is a deep CNN characterized by its use of residual
blocks. These blocks incorporate skip connections that enable the direct flow of gradients, effectively
addressing the vanishing gradient problem in deep networks. The architecture commences with a
large kernel-sized convolutional layer, followed by a max-pooling layer to decrease dimensionality
early in the network. The bulk of the network comprises residual blocks with two convolutional
layers each, interspersed with batch normalization and ReLU activations. As the network progresses,
the number of filters doubles, and the feature map size is halved, providing a pyramidal structure.
The final stages include an average pooling layer leading to a dense layer that produces the output
via softmax.

EfficientNet

EfficientNet-B0, described in Tan and Le (2019), implements composite scaling, optimizing
network depth, width and resolution. This provides high efficiency and accuracy, making B0
fundamental for subsequent EfficientNet models and showing the way to improving the performance
of deep neural networks [20].

EfficientNet-B1 is an optimized version of the base model, EfficientNet-B0, which is scaled
using a compound coefficient to balance the dimensions of network width, depth, and resolution.
The architecture employs MBConv blocks, an advanced version of inverted residual blocks with
squeeze-and-excitation optimization, which recalibrates the feature maps adaptively. Unlike other
architectures, EfficientNet applies a systematic approach to scaling all dimensions of the network.
The B1 model enhances the baseline design with increased depth and width, alongside a higher
resolution, leading to improvements in accuracy. The concluding layers of the network resemble
traditional CNNs with global average pooling followed by a fully connected layer and softmax
activation
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Figure 1 — CNN Architecture

EfficientNet-SED

We investigated three well-known models MobileNet, ResNet, and EfficientNet to assess the
success of several backbone architectures for our aim. By means of layer and block experimentation,
we created EfficientNet-SED, a new design based on EfficientNet. Following the backbone choice,
we included Generalized Average Pooling (GA pooling) and Squeeze-and-Excitation (SE) blocks
to improve feature representation. Dropout was used at each layer to provide robust generalization
and avoid overfitting. A Fully Connected (FC) layer finishes the network design and allows softmax
activation function to enable categorization (Fig. 1). Combining modern pooling and excitation
methods with the strengths of every backbone, this methodical approach maximizes the model for
higher accuracy and performance.

Data collection

For the purposes of the study, a specialized dataset of images of plastic waste was selected,
available on the Kaggle platform called "Bottle Plastic Waste" with 80% for train set and 20% for
test set and 200 images were additionally collected manually for the test set. This dataset includes
a variety of plastic images, including bottles with contamination from both dairy and chemical
(Table 1).
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Inthe process of collecting the database, it was necessary to include several different classifications.
The main type of most recyclable plastic in demand today is polyethylene terephthalate (PET) bottles.
In order to become a secondary product, plastics undergo several stages of differentiation processes
in sorting centers. Among them, plastic is distinguished from general waste products, and then sorted
by type of plastic and the level of harmful waste. To obtain a high-quality secondary plastic product,
it is necessary to have a bright/transparent color. If the bottle is of a dark color, used for dairy
products, used for household chemicals, etc., then it is in the category that the bottle is not suitable
for recycling.

Table 1 — Illustration of sample images with their respective class

i
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Class1: Bottle
transparent & clean

Class2: Bottle Dark
color

Class3: Bottle
from dairy and oil
products

Class4:Bottle from
Chemical products

Class5:Bottle
from harmful
contamination

According to the above classification, cameras, special visual sensors, mobile devices with
cameras are used to obtain images of plastic waste. Visual data is collected to classify plastic waste
using machine learning models.

Table 2 — Description and statistics of Bottle images in the dataset

Class (Type) Items *Recyclable Quantity

Class 1 (PET) Clean and empty bottles from different brands + 1,512
Class 2 (PET) Colored bottles (black, brown, dark purple, etc) - 805
Class 3 (PET, PP, HDPE) Bottles from milk products and oil, souse, etc - 634
Class 4 (PET, PP, HDPE, | Bottles from houschold chemical products - 630
PVC, LDPE) (shampoo, gel, medical containers, etc)

Class 5 (PET) PET bottles, but used for storing hazardous - 452

liquid (gasoline, antifreezes, domestos, etc)

*Recyclable. In fact, all the plastics shown in the table are recyclable. However, there are some problems with
collection. It is not profitable for dedicated sorting centers to collect other types of plastic and non-ferrous, dairy
and contaminated products, since factories accept large volumes of tons for the production of secondary products.
Another reason has to do with the quality of the plastic and, obviously, the price of it. In this regard, it is important
to separate PET plastics (class 1) from other plastics (classes 2, 3, 4, 5).
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Pre-processing

The following pre-processing process was performed before training the models:

Data normalization. All images were scaled to a single standard size corresponding to the input
size of the neural network. Further, the pixel values of each image were adjusted to the range [0.1],
which is standard practice to improve learning convergence [21].

Pixel Value
Normalized Pixel Value = —— (1)

255
In addition to scaling pixel values, standardization of data was applied, where the average of
each pixel of the image is subtracted from the whole data set and the result is divided into a standard
deviation.
Pixel Value — p

Standardized Pixel Value = 5 2)

where p is the average pixel value over the dataset, ¢ is the standard deviation of the pixel over the
dataset.

Data augmentation was used to increase the amount of data and improve the generalizing ability
of models. This included random image transformations such as rotations, offsets, scaling, and
horizontal reflections [22].

The data were divided into training, validation and test samples in standard proportions, allowing
the model to be evaluated with unprecedented data and avoiding retraining.

The given methodology of preliminary data processing creates equal conditions for comparison
of performance of studied architectures of neural networks, providing accuracy and objectivity of
experimental analysis.

The training process

Images are split so that 20% of each class is used for testing. The training process involved the
use of stochastic gradient descent (SGD) with an initial learning rate of 0.01, which decreased by
an order of magnitude after every two epochs. The training took place over 7 epochs with a package
size of 32 samples. Categorical cross-entropy (formula 3) with the addition of L2 regularization with
a coefficient of 0.0001 was used as a loss function to prevent overfitting. Data augmentation was
applied on the fly using random horizontal reflection and random cropping of images. Dropout was
applied with a probability of 0.5 before the last fully connected layer.

CE = — ¥ t;log(s;) 3)
where:

C — the number of classes;
t — the true label, encoded as a one-hot vector (i.e., ¢, =1 if the true class is i, otherwise #,.=0);
s.— the predicted probability of the class 7, output by the model.

Evaluation metrics

The following metrics were used to evaluate the performance of the models:

The accuracy of the model is calculated using formula (4), where for each sample in the test
dataset, the predicted class is compared with the true one. The duration of the model training was
recorded from the initiation to the completion of the training procedure, encompassing all epochs,
while the duration of model inference was quantified as the mean processing time of a single sample
from the testing dataset [23].

A Number of Correct Predictions
ceuracy = Total Number of Predictions “)
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The total number of model parameters P is calculated as the sum of the parameters of each layer
(5) and calculated using the following formula:.

L
P= > (KCuniCours + Cours) )
where: =1

P — the total number of parameters,

L — the total number of layers,

K; _ the kernel size of the package for the i-th layer,

Cini — the number of input channels in the i-th layer,

Cout.i — the number of output channels (or neurons) in the i-th layer.

This formula takes into account the parameters of convolutional layers and fully connected
lavers without taking into account offsets. To include offsets in the calculation, you just need to add
Cout.s for each layer to the total number of parameters.

To estimate the computational complexity, the FLOPs metric was used, which represents the
total number of multiplication and addition operations required to perform one inference of the
model [24].

L
FLOPs = Z (2 KEC- 'Hout,iwout,icout,i) (6)
i=1

in,l

where:

K?— the size of the convolution core in layer i, squared, which indicates the number of weights
in the filter,

Cin.i — the number of input channels for the i-th layer,

H,.t i Woue i— height and width of the output feature map of the i-th layer,

Cout.: — the number of output channels for the i-th layer.

Results and discussion

The results are compared based on the metrics obtained to identify the advantages and
disadvantages of each architecture. The analysis includes a discussion of how differences in the
structure and complexity of models affect their performance and applicability in different scenarios.

Below is a comparative analysis of these three models and the result obtained where x axis
shows number of epoch and y axis shows loss.

Train Loss

Train Acc Valid Acc

Figure 2 — Comparative analysis of training models
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The results of evaluating the training process on the validation data set after seven epochs,
providing data on the loss on the training set, loss on the validation set, the error rate and the time
spent on each training epoch are shown in the Table 3. Changes in these metrics reflect the model's
adaptation during training, highlighting variations in the algorithm's performance as it is optimized.

Train Loss is the average value of the loss function for all samples in the training dataset. For
cross-entropy, which is often used for classification tasks, this is calculated as:

1 N C
Train Loss = —EZZ Vielog(¥; o)

i=1 =1
where:

N — the number of samples in the training dataset.
C — number of classes.

Yic — the true class c label for sample i.
Vie - predicted probability of class ¢ for sample i.

Valid Loss is estimated in a similar way to Train Loss, but for a validation dataset:

1 M C
Valid L = ——ZZ i 108 (Vi
alid Loss i Vielog(¥; o)

where: i=1 c=1
M — the number of samples in the validation dataset. The other designations are similar to Train
Loss.
Error Rate is the proportion of incorrectly classified samples in a dataset:
N

Error Rate = —%Z 1(¥ =y,
where: i=1
1 - an indicator function that is equal to 1 if the predicted class ¥; does not match the true class
y;, and 0 otherwise;
N — the number of samples in the dataset (training or validation).

Table 3 — Results of training on validation set

Epoch Train_loss Valid loss Error rate Time
1 1.341781 0.431466 0.123658 00:58
2 0.658234 0.388225 0.145486 00:50
3 0.756324 0.441112 0.098811 00:48
4 0.635198 0.587563 0.140456 00:47
5 0.763405 0.775234 0.278936 00:47
6 0.775418 0.735139 0.2145763 00:47
7 0.603471 0.635423 0.103846 00:47

Table 3 demonstrates the training results of the model over seven epochs, highlighting key
metrics such as training loss, validation loss, error rate and time spent per epoch.

Table 4 — Model performance comparison

Methodology Model Performance (average acc.)
MobileNet 035 81,33%
ResNet-34 95,55%
EfficientNet-B1 98,5%
EfficientNet-SED 99,1%
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Table 4 compares the performance of three deep convolutional neural network architectures as
measured by the classification accuracy metric. The results show that the EfficientNet-B1 architecture
achieves the highest accuracy of 98.5%, indicating its superiority in the context of classification task
compared to others. These findings highlight differences in the performance of architectures and their
suitability for specific computer vision applications.

Figure 3 shows the curves in training and validation accuracy for the suggested EfficientNet-
SED model. The model showed a strong learning capacity over the training procedure based on
the routinely high accuracy values. With a final training accuracy of 0.996 the model clearly learnt
the patterns in the training data. With an outstanding value of 0.991, the validation accuracy also
demonstrated the great generalizing capacity of the model to unmet data. These findings show how
well the EfficientNet-SED design maximizes performance while preserving great accuracy on the
validation and training sets.
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Figure 3 — EfficientNet-SED results
Conclusion

The article analyzes the use of deep neural networks, especially convolutional neural networks
(CNN), to improve the sorting of plastic waste, where traditional methods are ineffective, leading
to the accumulation of waste in landfills. Tests on a database of more than 4,000 images of plastic
waste showed that the EfficientNet-SED architecture achieved the highest accuracy of 99.1%,
demonstrating its potential to optimize recycling processes. This study highlights the importance of
using advanced CNN architectures to improve plastic sorting accuracy, which is key to environmental
sustainability and efficient use of resources. The results of the work allow us to determine the most
suitable architecture for computer vision tasks, offering a systematic comparison of models for an
objective assessment of their effectiveness.

Although the algorithms used in the study are well known, the significance of our contribution
lies in their adaptation and application to specific conditions of classification not only by types,
but also by colors and different classes are shown in Table 2. The scientific novelty of the study is
demonstrated in the comparison of the performance of different CNN architectures under conditions
where plastics have different levels of contamination.
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Future work

This work is a part of the main scientific project sponsored by the Science Committee of the
MSHE of the RK, which is divided into 3 stages. The results presented in this paper focused on the
use of a dataset of images captured by the camera. The next stage in the process is to analyze the
spectral data of different types of plastic obtained using the NIR spectrometer, which will allow for
more accurate classification into categories in the context of waste recycling. The third stage plans
to use hyperspectral imaging technologies that will provide the ability to more accurately identify
plastic bottles containing hazardous substances inside the bottles.

Information on funding

The research data was sponsored by the Science Committee of the Minister of Science and
Higher Education of the Republic of Kazakhstan (Grant No.76 of the research fund AP22685518).
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TEPEH HEMPOH/ABIK KEJLJIEP NJIACTUKAJBIK KAJJIBIKTAPIbI
CYPBITNITAY TUIMIIIITTH APTTBIPY KYPAJIBI PETIH/IE

Anjgarna
Kaiita eHsiey eHepkaciOiHe canaibl CypbINTaIFaH MaTepHUalFa IIYFbUT KKETTUTK TybiHIayna. Cypbinray
OpTaJBIKTAPBIHBIH MOCceJeci PEeTiHJe IUIACTMACCaHbl CYPBINTAY JKOHE Taszajay KUbIHIBIKTapblHA OaiaHbICTHI
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KaJIJbIKTap, KaiiTa eHJEy/liH OpHbIHA MOJMIOHJAp/Aa XKHHAIyAA. bya THiIMAlI aBTOMATTaHABIPBUIFAH CYpPBINTAY
9/IiCTEpiH JaMBITY KaxeTTUtiriH kepcereni. Ocel 3eprrey skymbicbl MobileNet, ResNet sxone EfficientNet cusikTs
apXHUTEKTypaliap/ibl KOJIJaHa OTHIPHIIT, KOHBOJTIONHMSUIBIK HeHPOHIBIK xkeiire (CNN) HerisnenreH mactMmaccanapabl
JKIKTSYIIH HHTEIICKTYaIbl MOACTIH YChIHAABI. Moaenpaep TUIacTHKTIH Oec caHatsiHa OemiareH 4000-HaH acTam
KEeCKIHHEH TYPAaTBhIH JepeKTep KUBIHTHIFbIHAA OKBITHUIALL. ChIHANFaH apxXuTekTypanapasiH imiage EfficientNet-
SED kmaccupuKanusHbIH €H XKOFapbl JONAIriH kepceTTi — 99,1%, Oyi1 ochl camagarsl aqAbIHFRI 3epTTEYIECPIiH
HOTHOKEJIepiHe colikec Kesei. byl HoTmkenep MmiacTUKTI KaiiTa eHJiey NPpOoLeCcTepiHiH THIMAUTITIH apTThIpy YIIiH
sxeriipiirer CNN apXuTekTypaiapblH MaiiianaHy aJieyeTiH KopceTei.

Tipek ce3aep: IIACTHKAIBIK CYPHINTAY, KIACH(DUKAIINSI, MAITIMETTED KOPbI, TEPEH OKBITY, KOHBOIFOIIHSUTBIK
HelpoHabIK kel (CNN).
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INIYBOKUE HEMPOHHBIE CETH KAK HHCTPYMEHT INOBBIIIEHUA
IPOPEKTUBHOCTHU COPTUPOBKH INTACTHKOBBIX OTXOA0B

AHHOTAIUA

B mHaycTpuu BTOpCHIphsl HAONIOAAETCST OCTPasi MOTPEOHOCTh B KAY€CTBEHHOM COPTHPOBAaHHOM MaTepHalle.
[IpoGemaTrka COPTHPOBOYHBIX LIEHTPOB, CBA3AHHAS C TPYIHOCTSIMUA COPTHPOBKU M OYMCTKH IUTACTHKA, TPUBOANUT
K HAaKOIUICHUIO OTXO/IOB Ha CBAJIKaX BMECTO MX NepepabOTKH, MOAUEPKUBas HEOOXOAUMOCTh pa3BUTHS dPderTrs-
HBIX aBTOMATH3HPOBAaHHBIX METOIOB COPTHPOBKU. B 3TOM HccnenoBanuy npeuiaracTess HHTEIEKTyanbHast MOZIENb
KiIaccu(hUKaIMK TUTACTHKOB, pa3paboTaHHas Ha OCHOBE CBepTOUHOM HeifponHoi cetr (CNN) ¢ HCIOIp30BaHHEM
TaKUX apxuTeKkTyp, kak MobileNet, ResNet u EfficientNet. Mozenu 6buti 00yueHbl Ha HAOOpe JaHHBIX, COCTOSIIEM
u3 Oosnee yem 4000 n300paXKeHUH, pacrpeseeHHbIX 110 MSTH KaTeropusM ruiactuka. Cpean mpoTecTHPOBAHHBIX
apxutektyp EfficientNet-SED nponemoHcTpupoBana caMmylo BBICOKYIO TOYHOCTh Kiaccupukanmu — 99,1%, uro
COOTBETCTBYET pe3yibTaTaM NPEAbIIYIINX HCCIEI0BAHUN B 3TOM 0071acTH. DTH pe3ynbTaThl MOAYEPKUBAIOT MO-
TEHIIMAJ CTIOTh30BaHI MepeaoBhIX apxuTekTyp CNN msis moBsieHns 3(h(EeKTHBHOCTH MPOIIECCOB MePepadbOTKH
TUIACTHKA.

KuioueBble ¢J10Ba: IIIACTUKOBAsI COPTUPOBKA, KiIacCU(HKAIHsI, HAOOP JaHHBIX, NTYOOKOe 00yUYeHUE, CBEPTOU-
Has HeriponHas ceth (CNN).
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