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ENHANCED ALGORITHM FOR COMPUTING 
CAYLEY’S FIRST HYPERDETERMINANT

Abstract
Combinatorial hyperdeterminant  – is the homogeneous polynomial in the entries of a hypermatrix of 

even number of indices, which is also a unique SL-invariant of minimal degree. It was first studied by Cayley in the 
middle of 19-th century. Given its fundamental nature, the computation of this polynomial is an important task. For 
fixed  and a cubical hypermatrix  of length  Barvinok introduced an algorithm of computing hyperdeterminant 
in . Since the problem of deciding whether for the given hypermatrix  the hyperdeterminant  
is equal to zero is NP-hard, it is essential to develop efficient algorithm for computing hyperdeterminant, as the 
size of problem grows exponentially. We provide enhanced algorithm of computing hyperdeterminant that requires 

 arithmetic operations.
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Introduction

The concept of hyperdeterminants has its roots in the study of multidimensional matrices or 
hypermatrices, which are generalizations of the conventional two-dimensional matrices to higher 
dimensions. The notion was coined by Arthur Cayley in the mid of 19-th century [1, 2], where he 
introduced first generalization of ordinary determinant, which is now referred to Cayley’s first or 
combinatorial hyperdeterminant. Formally, let  denotes the space of tensors

 

i.e.  – dimensional hypermatrices. See [10] for extensive review. Throughout the paper  regarded 
as even positive integer number. Define a function of a hypermatrix  
as follows:

(1)

where  denotes the set of permutations of length . 
While determinants of two-dimensional matrices have been extensively studied and utilized 

in various mathematical and physical applications, the exploration of hyperdeterminants in the 
realm of higher-dimensional arrays is relatively nascent yet profoundly significant. For instance, the 
computation of a determinant of an ordinary  matrix requires  arithmetic operations, 
i.e. polynomial time. Some properties of ordinary determinant can be generalized to the context of 
hyperdeterminant, such as Binet-Cauchy formula or Laplace expansion. On the other hand, other 
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concepts cannot be easily described: the rank of hypermatrix or the zero locus (set of hypermatrices 
that nulls) of combinatorial hyperdeterminant. 

In [3] Barvinok showed the algorithm of computing hyperdeterminant in  arithmetic 
operations, that we refer in this paper as Algorithm 1. In this paper, we provide an enhancement of 
that algorithm, that we refer to as Algorithm 2.

Theorem 1. (Main theorem) Algorithm 2 computes the hyperdeterminant of a given -dimenisonal 
hypermatrix  of length  in  arithmetic operations.

Presented algorithm works faster in  times which is an essential optimization, since the size 
of a problem grows exponentially with growth of  or . Since there is no hope for computing 
hyperdeterminant faster than the exponential time (since most tensor problems are NP-hard [4]), any 
enhancement of known algorithms can make a difference. 

The study of hyperdeterminants was initiated by Arthur Cayley in the middle of 19-th centure [1, 2].  
He first discovered combinatorial hyperdeterminant , which nowadays referred to as Cayley’s 
first hyperdeterminant for even d, along with Cayley’s second hypdeterminant of a  
hypermatrices. In later papers, he refers to any  invariant polynomial as hyperdeterminant. 

In 1990s Gelfand-Kapranov-Zelevinsky introduced generalization of Cayley’s second 
hyperdeterminant [5], which possess geometric properties of ordinary determinant and Cayley’s second 
hyperdeterminant, which is referred to as geometric hyperdeterminant. Gemotric hyperdeterminant 
finds connections in various areas. For instance, it sheds light on the structure of tensors spaces [18]. 
Nevertheless, from computational point of view, geometric hyperdeterminant is infeasible, since the 
degree grows exponentionally as  or  grows. Moreover, no general formula is known. 

The general problem of deciding if combinatorial hyperdeterminant vanishes is NP-hard [4], yet 
for some classes of (relatively sparse) tensors there are polynomial time algorithms [9]. See also [19] 
for exposition on tensors in computations. 

In general, study of invariants of tensors is an important problem. For instance, discoveries of 
invariant theory may affect the asymptotic of matrix multiplication, see [14], see [16] for review 
of the subject. Recent advancements in the complexity of isomorphism problems have provided 
new insights into the computational challenges associated with tensor computations. In [11] authors 
introduce the concept of tensor isomorphism-completeness, establishing that many isomorphism 
problems for tensors are as hard as the general isomorphism problem for tensors.

In turn, combinatorial hyperdeterminant is of minimal degree  (i.e. multi-linear function) and 
has a simple formula. In 20-th century, some research were established to lift proprties of ordinary 
determinant to hyperdeterminant. In particular, due to its linear nature, several properties were 
obtained [6, 7], such as Laplace Expansion, Minor summation formula and Binet-Cauchy formula. 

This hyperdeterminant has wide range of applications. Luque and Thibon [7] explored 
hyperdeterminants within the context of Selberg’s and Aomoto’s integrals, using purely algebraic 
methods to evaluate hyperdeterminants of Hankel type. This work highlighted the broader applicability 
of hyperdeterminants in multidimensional integrals and reinforced their role in mathematical 
physics. In [15], within the context of SYK model with one time point, half-wormhole contribution 
in factorization of decoupled systems is expressed through a hyperpfaffian (which is closesely related 
to hyperdeterminant) of the tensor of SYK couplings. It is also related to characteristic polynomials 
of hypergraphs [20]. 

In combinatorics, in attempt to extend Kasteleyn theory for hyperdeterminants, Lammers [12] 
expressed number of perfect matchings of a hypergraph as hyperdeterminant of Kasteleyn 
hypermatrix, by analogy with  case. In [13], the author expresses so called Alon-Tarsi number 
as hyperdeterminant evaluated at Levi-Cevita tensor, i.e. the signed sum over Latin squares, which is 
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realted to famous Alon-Tarsi and Rota-Basis conjectures. Matsumoto shown that hyperdeterminant 
has nice applications it algebraic combinatorics [21].  

In quantum mechanics, hyperdeterminants (in general sense) have applications in characterizing 
multipartite entanglement. In [17] the authors show, that in some sense, hyperdeterminant shows the 
measure of entanglement of even number of qubit state.  

Hyperdeterminants have applications in proving lower bounds on tensor ranks. In [8] it was 
demonstrated that nonzero hyperdeterminants imply lower bounds on certain types of tensor 
ranks. This result applies certain ranks of tensors, providing upper bounds on some generalizations 
of colored sum-free sets based on constraints related to order polytopes. An appealing feature of 
hyperdeterminants is that they are explicit and can be a good algebraic tool allowing computations 
using various operations, which also includes methods for constructing tensors with nonzero 
hyperdeterminants, see [8]. 

Main provisions

We denote . We call the set  box and refer to elements of the box  
as cells. A slice of  is a subset of all cells with fixed -th coordinate (called direction) for some 

. A diagonal of the box  is a subset of size  with no two cells lying in the same slice. Then 
the sum (1) of hyperdeterminant runs over diagonals of a box . 

Let  be the space of tensors (state space). Elements of  written in a fixed basis 
correspond to hypermatrices  indexed by  and we shall 
identify tensors in  with corresponding hypermatrices by the following:

(2)

For given hypermatrix  and -element subsets -tuple  we denote  
the subhypermatrix resulting in restricting set of indices in -th direction to , and hyperdeterminant 
of  we call -minor. 

The group , of tuple of matrices of determinant equal to 1, naturally acts on the 
space of tensors  by

				     		  (3)

for  and extended multilinearly. 
	 Polynomial  with argument  is called -invariant (we will simply write 

invariant) if  for any . Then the combinatorial hyperdeterminant (we will 
simply write hyperdeterminant) is the unique -invariant polynomial of degree  on tensors  [7]. 
Hyperdeterminant possess the following defining property, similar to the ordinary determinant.

Proposition 2. (Defining properties) Let  be the function that satisfy: 
(a) (Multilinearity) F is multilinear in slices in each direction, i.e. for first direction
		

where X is tensor with -th slice equal to zero and , and similar for other directions.
(b) (Skew-symmetry) If two slices in fixed direction of tensor X coincide, then
					   
(c) (Normalization) 
Then 
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Materials and Methods

We first introduce the result of Barvinok. For that, we need the following lemma. For simplicity 
of notation, let us denote the set difference between -tuples of sets: if  then define 

.
Lemma 3. (Laplace Expansion) Let  be a tensor in  and  fixed. Then

(4)

where  is regarded both as the set  and a cell .
See [7] for proof of this result. In other words, we expand hyperdeterminant along -th slice in 

the first direction, similar to Laplace expansion for ordinary determinant. Here the choice of the first 
direction 

This lemma is crucial in the following algorithms as it provides a recursive formula of calculation 
of a hyperdeterminant. 

A.	 Barvinok Algorithm
Input: a natural number  and , -dimensional tensor  of length 

Output: the number .
Algorithm: Use the dynamic programming based on recurrence (4). Iterate over tuple subsets 

 in increasing order of  and compute the -minor . The 
base case  is hyperdeterminant of single entry hypermatrix, hence for  
has initial value . Consequently, assume all size  minors are computed, 
and we are to compute size  minor . Let , for , denote the -th element of . 
Then by Lemma 3:

(4)

where .
Time and memory complexity: there are  states and for the state of cardinality 

 we compute the value in  time, hence the total time complexity is . 

B.	 Improved algorithm
The algorithm essentially optimizes the number of states we need to visit. Since Laplace 

expansion formula offers expansion of the hyperdeterminant along any slice, we will proceed by 
calculating minors in the first  slices of first direction, i.e.  at -th step. 

Input: a natural number  and , -dimensional tensor  of length 

Output: the number .
Algorithm: iterate over n and fix  Iterate over all possible subsets 

 such that . As before, assume all minors of size  with set of indices in 
the first direction  equal to  are computed and we are to compute -minor. 
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Let  be as above. By Laplace expansion, we expand -minor of  along the last slice to 
obtain:

(5)

Since the terms in the sum are size-  minors of  with indices of the first direction 
restricted to the set , the algorithm is correct.

Time complexity: we reduce number of states in  times, hence we require  
arithmetic operations and  of space. 

Results and Discussion

In this section we show compative results of improved algorithm. While the asymtotic behaviour 
of number of operations involved is still exponential, for fixed , the improvement provides dramatic 
increase in performance, allowing to compute hyperdeterminant of a tensor for  in reasonable 
time on a standard computer.

Table 1 – Comparison of performance of original and improved algorithms for d = 4

Algorithm 1 Algorithm 2
n Number of operations Estimated time Number of operations Estimated time

1 8 8 ns 4 4 ns
2 256 256 ns 64 64 ns
3 4,608 4.608 µs 576 576 ns
4 65,536 65.536 µs 4096 4.096 µs
5 819,200 819.200 µs 25600 25.600 µs
6 9,437,184 9.437 ms 147456 147.456 µs
7 102,760,448 102.760 ms 802816 802.816 µs
8 1,073,741,824 1.1 s 4194304 4.2 ms
9 10,871,635,968 11 s 21233664 21 ms
10 107,374,182,400 2 min 104857600 105 ms
11 1,039,382,085,632 17 min 507510784 508 ms
12 9,895,604,649,984 3 hr 2415919104 2.5 s
13 92,908,732,547,072 1 day 11341398016 11 s
14 862,017,116,176,384 10 days 52613349376 53 s
15 7,916,483,719,987,200 92 days 241591910400 4 min
16 72,057,594,037,927,936 2.3 years 1099511627776 18 min
17 650,770,146,155,036,672 20 years 4964982194176 1.4 hr
18 5,836,665,117,072,162,816 186 years 22265110462464 6.2 hr
19 52,025,582,895,383,969,792 1650 years 99230924406784 1.2 days
20 461,168,601,842,738,790,400 14623 years 439804651110400 5 days

See Table 1 for comparison of time performance. The values taken in the table are estimations 
given that the standard computer performs  operations per second. Also see Figure 1 that displays 
the same information graphically.
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Figure 1 – Comparison of arithmetic operations between algorithms for d = 4

Note that on Figure 1 we have a log base 10 scale of y-axis, so the result looks almost linear.  
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КЭЙЛИ БІРІНШІ ГИПЕРДЕТЕРМИНАНТЫН ЕСЕПТЕУДІҢ 
ЖЕТІЛДІРІЛГЕН АЛГОРИТМІ

Аңдатпа
Комбинаторлық гипердетерминант DET – бұл жұп индекстер саны бар гиперматрица жазбалары бойынша 

біртекті көпмүше, сондай-ақ ол ең төменгі дәрежелі жалғыз SL-инварианты. Бұл тұжырымды алғаш рет 19 
ғасырдың ортасында Кэйли зерттеген. Оның іргелі сипатына байланысты бұл көпмүшенің есебін шығару 
маңызды мәселеге айналды. Барвинок белгілі бір d және ұзындығы n болатын кубтық гиперматрица X үшін 
гипердетерминантты есептеудің  алгоритмін ұсынды. DET(X) гипердетерминантының берілген 
гиперматрица X үшін нөлге тең болу мәселесі NP-қатерлі болғандықтан, гипердетерминантты тиімді есептеу 
алгоритмін анықтау қажет, себебі есептің көлемі экспоненциалды түрде өседі. Біз гипердетерминантты 
есептеудің жақсартылған алгоритмін ұсынамыз, ол  арифметикалық операцияларды қажет 
етеді.

Тірек сөздер: инвариантты көпмүшелер, кванттық түйісу, SLOCC.
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УЛУЧШЕННЫЙ АЛГОРИТМ ВЫЧИСЛЕНИЯ ПЕРВОГО 
ГИПЕРДЕТЕРМИНАНТА КЭЛИ

Аннотация
Комбинаторный гипердетерминант  – это однородный многочлен от элементов гиперматрицы с 

четным числом индексов, который является единственным SL-инвариантом минимальной степени, который 
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впервые стал изучать Кэли в середине XIX века. Учитывая его фундаментальную природу, вычисление 
этого многочлена является важной задачей в разных разделах науки. Для фиксированного  и кубической 
гиперматрицы  Барвинок предложил алгоритм вычисления гипердетерминанта, используя  
арифметических операций. Поскольку задача определения, равен ли гипердетерминант  данной 
гиперматрицы  нулю, является NP-трудной, крайне важно разработать наиболее эффективный алгоритм, 
так как размер задачи растет экспоненциально. Мы предлагаем улучшенный алгоритм вычисления 
гипердетерминанта, который требует  арифметических операций.

Ключевые слова: первый гипердетерминант Кэли, SL-инвариант, разложение Лапласа.
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