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ENHANCED ALGORITHM FOR COMPUTING
CAYLEY’S FIRST HYPERDETERMINANT

Abstract

Combinatorial hyperdeterminant DET — is the homogeneous polynomial in the entries of a hypermatrix of
even number of indices, which is also a unique SL-invariant of minimal degree. It was first studied by Cayley in the
middle of 19-th century. Given its fundamental nature, the computation of this polynomial is an important task. For
fixed d and a cubical hypermatrix X of length Il Barvinok introduced an algorithm of computing hyperdeterminant
in Q(224pn9-1). Since the problem of deciding whether for the given hypermatrix X the hyperdeterminant DET(X)
is equal to zero is NP-hard, it is essential to develop efficient algorithm for computing hyperdeterminant, as the
size of problem grows exponentially. We provide enhanced algorithm of computing hyperdeterminant that requires
0(2 n(d-1)pd- 1) arithmetic operations.
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Introduction

The concept of hyperdeterminants has its roots in the study of multidimensional matrices or
hypermatrices, which are generalizations of the conventional two-dimensional matrices to higher
dimensions. The notion was coined by Arthur Cayley in the mid of 19-th century [1, 2], where he
introduced first generalization of ordinary determinant, which is now referred to Cayley’s first or
combinatorial hyperdeterminant. Formally, let T, (n) denotes the space of tensors

T;(n)=C"RC"R ..0 C"

i.e. d — dimensional hypermatrices. See [10] for extensive review. Throughout the paper d regarded
as even positive integer number. Define a function of a hypermatrix {X (i, ... iz)}; ef1.n) = X € Tg(n)
as follows:

1 n
DET(X) = — Z sen(a, ...0,) Hx(al(i),...,ad(i)), 0

0y ESy, 0o ESy....04ESy

where §,, denotes the set of permutations of length .

While determinants of two-dimensional matrices have been extensively studied and utilized
in various mathematical and physical applications, the exploration of hyperdeterminants in the
realm of higher-dimensional arrays is relatively nascent yet profoundly significant. For instance, the
computation of a determinant of an ordinary n X n matrix requires 0(n?) arithmetic operations,
i.e. polynomial time. Some properties of ordinary determinant can be generalized to the context of
hyperdeterminant, such as Binet-Cauchy formula or Laplace expansion. On the other hand, other
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concepts cannot be easily described: the rank of hypermatrix or the zero locus (set of hypermatrices
that nulls) of combinatorial hyperdeterminant.

In [3] Barvinok showed the algorithm of computing hyperdeterminant in 0(2"¢n?) arithmetic
operations, that we refer in this paper as Algorithm 1. In this paper, we provide an enhancement of
that algorithm, that we refer to as Algorithm 2.

Theorem 1. (Main theorem) Algorithm 2 computes the hyperdeterminant of a given d-dimenisonal
hypermatrix A of length 7 in 0(2"@~2n-1) arithmetic operations.

Presented algorithm works faster in 2™ times which is an essential optimization, since the size
of a problem grows exponentially with growth of n or d. Since there is no hope for computing
hyperdeterminant faster than the exponential time (since most tensor problems are NP-hard [4]), any
enhancement of known algorithms can make a difference.

The study ofhyperdeterminants was initiated by Arthur Cayley in the middle of 19-th centure [ 1, 2].
He first discovered combinatorial hyperdeterminant DET (X)), which nowadays referred to as Cayley’s
first hyperdeterminant for even d, along with Cayley’s second hypdeterminant of a 2 X 2 X 2
hypermatrices. In later papers, he refers to any SL(n)¢ invariant polynomial as hyperdeterminant.

In 1990s Gelfand-Kapranov-Zelevinsky introduced generalization of Cayley’s second
hyperdeterminant [5], which possess geometric properties of ordinary determinantand Cayley’s second
hyperdeterminant, which is referred to as geometric hyperdeterminant. Gemotric hyperdeterminant
finds connections in various areas. For instance, it sheds light on the structure of tensors spaces [18].
Nevertheless, from computational point of view, geometric hyperdeterminant is infeasible, since the
degree grows exponentionally as n or d grows. Moreover, no general formula is known.

The general problem of deciding if combinatorial hyperdeterminant vanishes is NP-hard [4], yet
for some classes of (relatively sparse) tensors there are polynomial time algorithms [9]. See also [19]
for exposition on tensors in computations.

In general, study of invariants of tensors is an important problem. For instance, discoveries of
invariant theory may affect the asymptotic of matrix multiplication, see [14], see [16] for review
of the subject. Recent advancements in the complexity of isomorphism problems have provided
new insights into the computational challenges associated with tensor computations. In [11] authors
introduce the concept of tensor isomorphism-completeness, establishing that many isomorphism
problems for tensors are as hard as the general isomorphism problem for tensors.

In turn, combinatorial hyperdeterminant is of minimal degree ™ (i.e. multi-linear function) and
has a simple formula. In 20-th century, some research were established to lift proprties of ordinary
determinant to hyperdeterminant. In particular, due to its linear nature, several properties were
obtained [6, 7], such as Laplace Expansion, Minor summation formula and Binet-Cauchy formula.

This hyperdeterminant has wide range of applications. Luque and Thibon [7] explored
hyperdeterminants within the context of Selberg’s and Aomoto’s integrals, using purely algebraic
methods to evaluate hyperdeterminants of Hankel type. This work highlighted the broader applicability
of hyperdeterminants in multidimensional integrals and reinforced their role in mathematical
physics. In [15], within the context of SYK model with one time point, half~-wormhole contribution
in factorization of decoupled systems is expressed through a hyperpfaffian (which is closesely related
to hyperdeterminant) of the tensor of SYK couplings. It is also related to characteristic polynomials
of hypergraphs [20].

In combinatorics, in attempt to extend Kasteleyn theory for hyperdeterminants, Lammers [12]
expressed number of perfect matchings of a hypergraph as hyperdeterminant of Kasteleyn
hypermatrix, by analogy with d = 2 case. In [13], the author expresses so called Alon-Tarsi number
as hyperdeterminant evaluated at Levi-Cevita tensor, i.e. the signed sum over Latin squares, which is
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realted to famous Alon-Tarsi and Rota-Basis conjectures. Matsumoto shown that hyperdeterminant
has nice applications it algebraic combinatorics [21].

In quantum mechanics, hyperdeterminants (in general sense) have applications in characterizing
multipartite entanglement. In [17] the authors show, that in some sense, hyperdeterminant shows the
measure of entanglement of even number of qubit state.

Hyperdeterminants have applications in proving lower bounds on tensor ranks. In [8] it was
demonstrated that nonzero hyperdeterminants imply lower bounds on certain types of tensor
ranks. This result applies certain ranks of tensors, providing upper bounds on some generalizations
of colored sum-free sets based on constraints related to order polytopes. An appealing feature of
hyperdeterminants is that they are explicit and can be a good algebraic tool allowing computations
using various operations, which also includes methods for constructing tensors with nonzero
hyperdeterminants, see [8].

Main provisions

We denote [n] = {0, ..., n — 1}. We call the set [n]% box and refer to elements of the box [1]¢
as cells. A slice of [n]? is a subset of all cells with fixed i-th coordinate (called direction) for some

i € [d]. A diagonal of the box [n]? is a subset of size ™ with no two cells lying in the same slice. Then
the sum (1) of hyperdeterminant runs over diagonals of a box [n]®.

Let V = (C™)®9 be the space of tensors (state space). Elements of V written in a fixed basis
correspond to hypermatrices (X;, ;) indexed by (i,...,ig) € [n] X ... X [n4] and we shall
identify tensors in V' with corresponding hypermatrices by the following:

X= Z X(ill"'lid)eii ®‘...®‘ Bl-d. (2)
_ ) iy,mmigeln] ] d
For given hypermatrix X € T, (n) and k-element subsets d-tuple (1, ..., I;) € ( i, ) we denote X;

the subhypermatrix resulting in restricting set of indices in r-th direction to I, and hyperdeterminant
of X; we call I-minor.

The group G = SL(n)*¢, of d —tuple of matrices of determinant equal to 1, naturally acts on the
space of tensors V = (C™)®¢ by

[:All"'!‘qd)tjl @ ®‘ Vg = Alvl @ ®‘ Adl?d (3)

for A; € SL(n),v; € C" and extended multilinearly.

Polynomial P(X) with argument X € T;(n) is called G-invariant (we will simply write
invariant) if P(g - X) = P(X) for any g € G. Then the combinatorial hyperdeterminant (we will
simply write hyperdeterminant) is the unique G-invariant polynomial of degree 1 on tensors T; (1) [7].
Hyperdeterminant possess the following defining property, similar to the ordinary determinant.

Proposition 2. (Defining properties) Let F: T,(n) — C be the function that satisfy:
(a) (Multilinearity) F is multilinear in slices in each direction, i.e. for first direction
FX+tae, @Y +Pe, R®ZI)=aFX+e QYY) +BFX +¢, RY)
where X is tensor with i-th slice equal to zero and Y, Z € T,_, (n), and similar for other directions.
(b) (Skew-symmetry) If two slices in fixed direction of tensor X coincide, then
F(X) = 0.
(c) (Normalization) F(I,,) = 1.
Then F = DET.
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Materials and Methods

We first introduce the result of Barvinok. For that, we need the following lemma. For simplicity
of notation, let us denote the set difference between d-tuples of sets: if 4, B S [n]? then define
A\\B 1= A;\B; X ..x A;\B,.

Lemma 3. (Laplace Expansion) Let X be a tensor in T;(n) and J € [1] fixed. Then

DET(O = ) (~1)F=+ X (D) - DET(Kgay @

i=(f.igmmigleln]ld

where i is regarded both as the set {i;} X ... X {iz} and a cell (i1, -, ig).

See [7] for proof of this result. In other words, we expand hyperdeterminant along J-th slice in
the first direction, similar to Laplace expansion for ordinary determinant. Here the choice of the first
direction

This lemma is crucial in the following algorithms as it provides a recursive formula of calculation
of a hyperdeterminant.

A. Barvinok Algorithm
Input: a natural number @ and n, d-dimensional tensor X of length 1

X =(X(y ) ig):l < iy, ig < 1)

Output: the number DET (X).
Algorithm: Use the dynamic programming based on recurrence (4). Iterate over tuple subsets

I=(,..,1;) € ([:])d in increasing order of k = 2, ..., n and compute the I-minor DET (X;). The
base case k = 1 is hyperdeterminant of single entry hypermatrix, hence for I; = {i,},...,1; = {iz}
has initial value DET (X,) = X (i, ..., iz). Consequently, assume all size k — 1 minors are computed,
and we are to compute size k minor I. Let ¢.(i), for ¢ € [d],i € [k], denote the i-th element of I..
Then by Lemma 3:

DET(R) = ) (DMt X(p(0) - DET (X)) @
i=(1ig..iglelk]d
where ¢ (i) = (¢, (i1), @2 (i2), -, $a(ia)). ,
Time and memory complexity: there are Zp=1(}) = 0(2™) states and for the state of cardinality
k we compute the value in 0 (k9-1) time, hence the total time complexity is 0(2"¢n%"1).

B. Improved algorithm

The algorithm essentially optimizes the number of states we need to visit. Since Laplace
expansion formula offers expansion of the hyperdeterminant along any slice, we will proceed by
calculating minors in the first k slices of first direction, i.e. I, = {1, ..., k} at k-th step.

Input: a natural number d and 1, d-dimensional tensor X of length n

X =Xy, ig):l =iy, ig =1}

Output: the number DET (X).

Algorithm: iterate over k = 1,..,n and fix I, = {1, ...,k}. Iterate over all possible subsets
I, ..., I; € [n] such that |I.| = k. As before, assume all minors of size k — 1 with set of indices in
the first direction I; equal to [k — 1] = {1, ..., k — 1} are computed and we are to compute /-minor.

61



HERALD OF THE KAZAKH-BRITISH
No. 3(70) 2024 TECHNICAL UNIVERSITY

Let ¢:1 = [k]¢ be as above. By Laplace expansion, we expand I-minor of X along the last slice to
obtain:

DET(Xgan) ), X@-DET(Xi i) (5
i=0igigle[ k4]

Since the terms in the sum are size-(k — 1) minors of X with indices of the first direction
restricted to the set [k — 1], the algorithm is correct.

Time complexity: we reduce number of states in 2™ times, hence we require 0(2nld-pd-1y
arithmetic operations and 02"y of space.

Results and Discussion

In this section we show compative results of improved algorithm. While the asymtotic behaviour
of number of operations involved is still exponential, for fixed d, the improvement provides dramatic
increase in performance, allowing to compute hyperdeterminant of a tensor for n = 20 in reasonable

time on a standard computer.

Table 1 — Comparison of performance of original and improved algorithms for d = 4

Algorithm 1 Algorithm 2

n Number of operations Estimated time Number of operations Estimated time
1 8 8 ns 4 4 ns

2 256 256 ns 64 64 ns

3 4,608 4.608 us 576 576 ns
4 65,536 65.536 us 4096 4.096 ps
5 819,200 819.200 ps 25600 25.600 ps
6 9,437,184 9.437 ms 147456 147.456 ps
7 102,760,448 102.760 ms 802816 802.816 us
8 1,073,741,824 1.1s 4194304 4.2 ms
9 10,871,635,968 11s 21233664 21 ms

10 1107,374,182,400 2 min 104857600 105 ms

11 1,039,382,085,632 17 min 507510784 508 ms

12 19,895,604,649,984 3hr 2415919104 25s

13 92,908,732,547,072 1 day 11341398016 11s

14 862,017,116,176,384 10 days 52613349376 53s

15 17,916,483,719,987,200 92 days 241591910400 4 min

16 72,057,594,037,927,936 2.3 years 1099511627776 18 min

17 650,770,146,155,036,672 20 years 4964982194176 1.4 hr

18 5,836,665,117,072,162,816 186 years 22265110462464 6.2 hr

19 52,025,582,895,383,969,792 1650 years 99230924406784 1.2 days
20 461,168,601,842,738,790,400 14623 years 439804651110400 5 days

See Table 1 for comparison of time performance. The values taken in the table are estimations
given that the standard computer performs 10? operations per second. Also see Figure 1 that displays
the same information graphically.
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Figure 1 — Comparison of arithmetic operations between algorithms for d =4

Note that on Figure 1 we have a log base 10 scale of y-axis, so the result looks almost linear.
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K2WJIW BIPTHINI TMITEPAETEPMUHAHTBIH ECENTE YIH,
AKETIJIAIPIJITEH AJITOPUTMI

Angarna

KomoOunaropusik runepaerepmunant DET— 0Oy xkyn nHaekcTep cansl 6ap runepmarpuiia xasoanapbl OOHbIHIIA
OipTeKTI KenMYyIIle, COHIali-aK 0J1 €H TOMEHT] Iopekei )KanFbl3 SL-uHBapuanThl. by Ty KbIpeiMab! anram per 19
FachIpablH oprackiHaa Kaiimu 3eprrereH. OHBIH ipreii cunarbiHa OaiaHbICT OyIJ1 KONMYIICHIH ece0iH IbIFapy
MaHBI3IBI Mocesere aitHanapl. bapBuHOK Oenrimi 6ip d skoHE Y3BIHIBIFEI N 0OJATHIH KYOTHIK TUTIepMaTphiia X YIIiH
THNEPAETePMUHAHTTHI ecenTeynid () (2 ndd-1 ) anroputMiH yeeiHARL. DET(X) runepaerepMuHaHTHIHBIH OepiareH
runepmarpuia X yIiH Hesre TeH 6oy mocesect NP-katepii OoJFaHIbIKTaH, TUIIEPASTEPMHUHAHTTHI THIM/II €CenTey
QITOPUTMIH aHBIKTay KaXeT, ce0eOl ecenTiH KeyieMi SKCIOHEHIMAIAbl TypAae oceai. bi3 rumepaerepMuHaHTTHI
CCeITeY/IiH JKaKCapThUIFaH aarOpUTMIH yebiHamMbI3, o 02 n(d-1)pd- 1) apudmernkabix onepanusIapab Kaket
eTei.

Tipek ce3aep: NHBapUAHTTHI KOIIMYIIIETEp, KBAaHTTHIK TyHicy, SLOCC.
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VAYUIIEHHBINA AJITOPUTM BBIYUCJEHUSI IEPBOTO
I'MINEPAETEPMHUHAHTA K2JIU

AHHOTALUA
Komounaropusiit runepaerepmudant DET — 310 oqHOpo/HbI MHOTOYIEH OT JIEMEHTOB THIIEPMATPHILBI C
YETHBIM YHCIIOM HHIEKCOB, KOTOPBIH ABIIAETCS €AMHCTBEHHBIM SL-MHBApHAHTOM MUHMUMAJILHON CTENEHH, KOTOPBIH
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BrepBble cTan u3ydarb Komm B cepeamue XIX Beka. YuuTbhiBas ero (yHIaMEHTAIbHYIO HPUPONY, BBIYUCICHUE
3TOr0 MHOTOUJIEHA SABJISETCS BAXKHOM 3aj1aueii B pasHbIX pasaenax Hayku. s ¢puxcuposansoro d u kyouueckoit
runepmarpuribl X BapBHHOK TIPEJUTOXKIIT aTOPHTM BEIYHCIEHUs THIEpieTepMUHanTa, nerossys O(229nd—1)
apumerrueckux onepamumii. [lockonbky 3amada onpenenenns, pasen i runepaerepmunant DET(X) nannoit
runepmarpuisl X Hyto, sesercs NP-TpyaHoi, kpaiine BakHO paspaborars Hanbosee d(GeKTHBHBINH alIrOpHT™,
TaK Kak pasMep 3aJadd pacTeT SKCIOHEHIHAJIbHO. MBI NpeanaraeM YIy4YIICHHBIH aJTOPUTM BBIYHCICHUSL
TUIepAeTePMUHAHTA, KOTOPBIH TpeOyeT 0(2 n{d-1)pd- 1) apu(pMETHYECKHIX OTEPALH.

KuroueBsle cnoBa: nepsslil runepaerepmuHant Kamu, SL-unBapuant, pasnoxenue Jlamnaca.
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