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PRE-CONDITIONING METHOD FOR SUBSTANTIALLY
SUBSONIC FLOWS

Abstract

The proposed work is a detailed numerical simulation of three-dimensional subsonic turbulent flow in a
channel, with the main focus on symmetric perpendicular jets arising from the walls. The solution of the Favre-
averaged Navier-Stokes equations closed by the turbulence model is carried out using an algorithm based on the ENO
scheme. To accelerate the convergence of the iterative process, a preconditioning method is used and a transition
to a vector of primitive variables is performed. The results of the study are essential for a better understanding of
subsonic turbulent flows and may find applications in various fields, including engineering and scientific research.
The relevance of the work is highlighted by the development of efficient numerical algorithms capable of solving
subsonic three-dimensional Navier-Stokes equations using high-order accuracy schemes, as well as the application
of robust turbulence models to analyze supersonic multicomponent flow. The scientific novelty of the work is the
successful use of the preconditioning method to accelerate the convergence of the iterative process.
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Introduction

One of the peculiarities of modelling low-speed flows using the compressible form of the Euler
or Navier-Stokes equations is the instability of the numerical solution and the slowing down of the
convergence rate of the iterative process due to the small difference between the velocities of acoustic
and convective waves [1-4]. The application of preconditioning allows us to modify the difference
equations in such a way that the eigenvalues of the Jacobian (wave propagation velocity) of the
modified system of equations have comparable orders of magnitude. The use of the preconditioning
method [5-14] mainly leads to the improvement of convergence of stationary solutions of the
establishment schemes.

When approximating spatial derivatives, central-difference methods or, as in the case of the
scheme in [3], methods with special approximations are usually used. The main objective of this
work is to develop a numerical algorithm for solving the problem of blowing subsonic jets from
circular holes located symmetrically on the upper and lower walls of the channel perpendicular to
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the flow of a low-velocity perfect gas using the preconditioning method. The solution of the original
Favre averaged Navier-Stokes equations is performed using an algorithm based on the ENO scheme.

Based on the analysis, it can be noted that most authors studying flows at low Mach numbers
and using the preconditioning procedure to solve the equations use Turkel matrices [7], which are
suitable for preconditioning both the Euler and Navier-Stokes equations

The analysis of methods for solving the Navier-Stokes equations for flows with small Mach
numbers shows that the most common way of eliminating computational difficulties is the application
of the preconditioning method, which allows to solve in a unified way the problems characterized
by the velocity change, mainly leads to acceleration of convergence of the stationary solution of the
establishment schemes.

Main Provisions

The initial system is a system of three-dimensional Favre averaged Navier-Stokes equations for
a compressible turbulent gas written in Cartesian coordinate system in conservative form:

au  8(E-E,) 8(F-F,)  9(G-G,) _
E—F dx + ay * oz =0 0

U = (p, pu, pv, pw, E)T @)

Expressions for convective E, F, G and diffusive Ev, Fv, Gy flux vectors are given in [15].
The initial system (1) is written in dimensionless form. The input parameters are taken as defining

parameters gy, Poo, T, pressure and total energy are related to the value of 0, uﬁj , the characteristic
length dimension is the diameter of the jet's circular orifice.
The flow parameters are given at the inlet and also as initial data:

u=Lv=0w=0p=1T=1 x=00=y=H,0=z<H,

Initial data for the parameters k , @ are determined on the assumption of equality of turbulence
generation and its dissipation

P, = [ pwk
Then

Utp_1. Py
k = k., where koo = = W= w
" ® pReB |1y’ o’

pk 2 2
. = — Ut (6w) 4 (Bw)
where oo , = =||— —— .
uep-1 Re P Re ( dx + 3\9z

Here, the algebraic Baldwin-Lomax model is used to determine the value of the turbulent viscosity

coefficient. Near the wall (0 = Z = &), the turbulent viscosity coefficient has the following form
pe = pl?|0 |

-
where 121 —vorticity, | = kz |1 —e 2 /A | — mixing path length, k = 0.4 1 — Karman constant,
A= 26. Away from the wall (z > §;) is accepted
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i, = 0.0168pV, L,

where Vo = (Fmax, 0. 25q§1fmeax) Ly =1. 6Zmax1k’ Fpax = max (|02 |H(}
Qaif —max(|V|) min (||V|D V= \/uz +v2 4+ W2

Z
max consistent with mﬂx

I* = [1+5.5(0.32/ Zmax) ] — Klebanov's limiting multiplier [16]. This is the time durmg
which turbulent flow is observed at a given point, related to the total measurement time. In almost
all algebraic turbulence models, the Klebanov intermittency coefficient is used as a multiplier to the
turbulent viscosity in the outer region.

on the bottom wall:
arP

u=0v=0w=0 ——0,5—U,z=U,U£x£Hx,U<_iy<_iHy,
The following boundary conditions are specified for the parameters J — ¢ of the turbulence
model on the wall

bu

k=0w= 0.075p(Ay,)?

There is a boundary layer near the wall, the thickness of which is determined by the formula

6, =03 7x(Re)™%2 A wall layer is also specified (10% of the boundary layer) §, = 0.16;. In
this situation, the use of the percent boundary layer thickness does not lead to significant difficulties,
since the calculation results are not sensitive to this parameter. Longitudinal velocity component 1
takes the following form:

u=01(> )+09( )2 0<x<H,0<y<H, 0<z<5,

In a developed turbulent boundary layer, the longitudinal velocity profile is given by a power
law:

u:(i)lﬁ, U{_:x{_:Hx’U‘:_iy‘:_:Hy,él‘:—:Z£52.
&

Depending on the velocity distribution, the temperature and density values will take the form of:

T=T,+u(1-T,) p=-

rne T, = (1 +7r (}' 2 M2 ) — temperature on the wall, ¥ = 0.88;

on the stream:
u=0v=0T=0.6w=+TM,/M, Py =nP, z=0 M,|x2+y?| =R.

the symmetry condition is set on the upper boundary:

u dw
W=05 =05 =05 =0T =032=0,_p g<x<p, 0=y=<H,
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on the lateral borders:

Bu_av_aw Elp dk _ dw ~0
ay ady ady ay ady ady y=00=x=H,0=z=H,

where Hy - length, Hy. height, H y - design area width, R - radius of round hole; the non-
reflection condition is set on the output boundary.

Materials and methods

In [15], an ENO scheme is constructed and the applicability of the scheme to the solution of the
problem of supersonic flow of a multicomponent gas in a channel with blowing perpendicular jets is
shown. In accordance with this, mesh densification is introduced in the boundary layer, near the wall
and at the jet level, with the help of transformations [15] for a more accurate account of the flow:

E=¢@n=1@ =) o
In this case the system of equations (1) in generalised coordinates is written in the form:

oU 8E OF 9C _ 9E,, 0F,, 0Fy,  0Fm 3Gy  0Cum

ot Tan "¢ T ar TTag Tam "o Tar Tag @
where ﬁ:%ﬁ:g (?)E F:(})ﬁ E (Ex) _)vz,gvm:(i_x)gvm,

ﬁin - (?Il'_rz) ﬁvZ. ﬁwm (?}z) ‘F{ﬂm GvZ (( ) v2, évm (?) Gv'm’
here | = 0.0

d(x,y.z)
second derivatives.

In order to eliminate the problem associated with the system of equations (1), where M — 0

- Jacobian transformation, Evm, EvZa diffusion terms containing mixed and

the method of preconditioning is used. For this purpose, let us consider the system of equations for
compressible fluid flow in linearised form in three-dimensional formulation

dE aF a6 .
where A = — B = B_y’ C= 9z Jacobi matrix, and the vector of primitive variables has the

form Q = (p,u,v,w,S}-

The Jacobi matrices are defined as:

u pc2 0 0 0 v 0 pc> 0 0 w 0 0 pc2 0
/1 ooo\ 0 v 0 0 0 0w 00 0
P 1 0 0 0 0
a=| » | B=| 20 wv oo | c=[s0M™
\OOOHO/ 000 v O \P /
0 0 0 0 u 000 0 v 0 0 0 0 w
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The idea of the method is to modify the system of equations (5) by multiplying the terms with

time derivative by the matrix P _1:
10 d d d
pm1224 422, poe, ¢
dx dy

5, — 0 (6)

dat

multiplied by p-, the system of equations (6) is rewritten in the form:

aQ aQ aQ aQ

at—l—PAax—FPBay—l—PC Py 0 (7
The main purpose of building a preconditioning matrix p~' s to make the eigenvalues of the

matrices P4 and PB, PC have the same order of magnitude. It is assumed that the matrix P~

positive and as vector parameters  different independent variables can be used (p, u, v w, P, T, S).

Selection of primitive vector parameters QO is dictated only by convenience in the construction of

preconditioning matrices. Turkel's preconditioning matrix [7] was used in this work:

‘0004

1000
b PP
12010 0

Pp

X001 0

P

0 00 0 1

and correspondingly its inverse matrix:

B B
o000 -Fs
C C
au au
-1 00 %o
pc pc
P:

—ﬂz 010 ﬂzé
pc pc
—ﬂz 00 1 ﬂza
pc pc
0 000 1

constructed for the vector of independent variables, O =(p,u,v,w,S )T , here S=h (p/ ﬁﬁ) —
entropy. Then products of matrices P4 u PB, PC will take the form

2
pupp 00 L
2 2
l(l—‘“ﬁj (—an 0 0 %2
pL e pe
PA= oavu oavud
-— -av  u 0 .
pe pe
SO e 0w O
pe pe
0 0 00 u
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2 2
ﬁzv O pﬂZ 0 _ﬂ:}&
c c
avu avuod
-—; 11 0 .
pc pc
_ 2 2
PB= 1[1—‘”2j 0 (-ap 0 22
P c pc
O R
pc pc
0 0 0 0 %
2 2
c c
auw awuod
-— w 0 —au .
yos pc
PC = _avvzv 0w —an avw:é
pc pc
2 2
l(l—‘”jj 0 0 (-ayw 29
P c pc
0 0 o0 0 w

Let us calculate the eigenvalues of the matrix PA. For this purpose we solve the system of
homogeneous equations of the form: (P4 — AI)=0 with respect to the unknown variables

A, i=1.4.
Zzu,

1 u’
A, =- zuF . |z°u’ +4p° —— | >
- 262|: \/ P 02]

2 2
where z:l—a+ﬂ— (ifa:1+ﬂ ,whenz=0,T10 A, :1«/,8231—M2 ).

¢? ¢?

Thus, as a result of preconditioning in the case of M<<1, in selecting B = u’ +v’ +w all ei-
genvalues of the Jacobi matrix P4 will have the same order u. Moreover or 8 =c? all A. become
eigenvalues of the original Jacobi matrix A.

The eigenvalues of the matrices PB and PC are determined similarly. Then, according to the
calculated eigenvalues of the matrices, the eigenvectors from the solution of the following system of
homogeneous linear equations are determined:

(PA-W, —AW,)=0,

where W, i=1...5 — components of eigenvectors corresponding to the eigenvalue 4, i=1...5,
The matrices of eigenvectors (right eigenvectors) will take the form:
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P’ pE* 0.0 0
AP Py g M
c c oc
A A
R =| &% D10 0
! u—A, u—A~
yl A
ave. A 10
u—A, u—A~
0 0 00 1
pp* 0 pp* 0 0
oA, 1 Ui 0 0
v—A, v—A_
2 2
R={2 LY o1 LYoy ¥
c c oc
yl
awk oy Ay
v—A4, v—A
0 0 0 0 1
AP 00 pB° 0
oui, | oud
w—A4, w—A4
Ro| XA o @
w—A4, w—A4_
2 2
AP g g g B o
c c pc
0 0 0 0 1

The inverse matrices or left eigenvectors will be written in the following form:

- = Bu 1
¢’ o=y +2) —y+A
A+ pu 1
Bl p(=y+A) —y+A
=| (—yc2/1+ﬂ2u2)av avu

CPpu-u—-2)  (w-p)u-2)
A+ pru’ B awu
cZﬂzp(uO—yxu—z) (u—yg(u—a)

o
¢ pl=y+2)
-
¢ pl-y+2)
oovu’
¢ plu=y)u-A)
oowu’

c* plu=y)u-2)
0 0 I
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-’ + By 0 1 0 0 - o
¢’ B p(—y +2) —y+4 pl-y+2)
~ (3 + B2v? Jau 0 . owu 0 dauv*
¢’ B2 p(v=y)(v—A) v=-n=2)  pv-pv-2)
R'=| A+ 1 0 S
B p(—y+2) —y+A ¢ pl-y+4)
B (—7c22+,6’2v2)aw _ awd ! dawv?
B p(v=y)(v-2) v=-7-1) ¢ pv=y)v—-2)
0 0 0 0 1
-’ + fPw 1 Sw
0 0 -
B p(-y+A) —y+A ¢ pl-y+2)
_ (—yczﬂ,+ﬂ2w2)au L o0 - oauw Souw’
¢’ B p(w=y)(w=2) w=nw=2) plw=7y)w=2)
R'=| (=)’2+pw | avw Savw’
¢’ B p(w=y)(w=A) w=n)w=2) ¢ pw=y)w-2)
—Ac’ + BPw 1 ow
YT 00 B PEDN AR
B p(—y +A) y—A pl-y+2)
0 0 0 0 1

The following relations must be satisfied for the constructed matrices:
—1 —1 -1 . . .
R xR =1, Ry ny =1, RxR =1 unit matrices.

RAR'=PA> RAR'=PB RAR'=PC- 8)

X° XX

Let us make a transition from the system of equations (5) in primitive variables to the system of
equations (1) in conservative variables. Then equation (1) is rewritten in the form:
U _ 00, 3U QU 3Q ,,0U 0U  3Q ,. U aU
ot oU 00 ox oU oQ oy oU 0Q oz

©)

Moreover, the transition matrix has the form:

iz 0 0 0 i

C C

= e 0 0 %

C C

00 v v
ol = 0 0o -—
aU CZ p cZ
w w

P .
M -
PR
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The inverse of it will be written as follows:

The matrix of preconditioning in conservative variables in the x direction taking into account (5)
is as follows:

According to the principle of ENO scheme construction, the original system of equations is
formally represented as follows:

_1 2 2 2
%(M v +w)  =(-u (- —(y-Dw y-1
_u 1 0 0 0
P P
6_U: _8 0 1 0 0
o0 P p
P p
Pl v ew )= (= —(r=1p (-1 p-1

The matrix of preconditioning in conservative variables in the x direction taking into account (5)

is as follows: 5 ou o oU
Q py Q pigr oY (10)

ou 00 oU RoAR, 00
According to the principle of ENO scheme construction, the original system of equations is
formally represented as follows:

U au U U
—+ (AT +47)A +(B*+B)B,,—+(C"+C)Cp—=
at ) 66 ( ) DT an ( ) T 6(
_ 0(Ey + Epm) N d(E,, + E,p) N (Gyp + Gym)
a¢ an a¢
(£++A“—)@—(B + B )En—“’v) (6+ + ¢-) 2E2D)
a& a¢
_ 00,00 5 _ 00 _0pe U
here Ap = BUPA 30 Bp,, PB 30 C.p.,, aUPC 30 Jacobi matrices,
o A 1 lisign(z’l,f] 1 5+ _ 1 1+sign(An )\ -1
A* =R AR, =R, (f R;! B* = R,A, Ry = R, ()R

lisignl:Aq)

C* = R AR = R, (F

)Rz_l Eng-i-gg"—ﬁg FmZﬁ—l—En-i-En

modified flows at nodal points (i,j.k), consisting of initial convective vectors (E , EF , G") and high-

order precision additive terms (E £ D £ E??’ D?J" Eg, E(), described in detail in [17].

After factorisation of the one-step finite-difference scheme for time integration of equation (11),
the following equality is obtained:
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. @ d a1 ]
{I+ﬂ.t (A++A_)H—A?-——ﬁga—€r- }x

- |
{I+At (B++B_)n%B"-—i~ a1 }x
ot an O o 011~
jU"+At[ . +a§f2+%(21§3m—Eﬁrﬁl)+%(zﬁv’r‘n—er‘{l)+
o7 (26 — G ]— At [(A+ + A7) 55 (B + D) + (B +B7) 5 (B, + D) +

~ ~ N0 n
(Q* +0Q7) 57 (. + D)) (12)
where A; = ¢, A, B, =n,B,Q; =0, moreover At + A~ = I, I - unit matrix fs =
peE ook oo BG

Re?Fn =R p B T ke , o .
The following operator is used to approximate the derivatives in the convective terms:

g “"Ti_ﬂfz(fiﬂj —fij) + ﬁ?—lfz(fij ~ fi-15)
0¢ AS

The approximation of the terms containing additive vectors of high order is performed as in [18].

0E}, n 0Fy,
0¢

(A~ + A*

flij =

Results and discussion

A splitting method is applied to solve the system of equations (11), using matrix run vector. A
turbulence model is introduced to equilibrate the system of equations (1), and a precondition method
k — @ is implemented to overcome the stiffness of the original system.

Figure 1 shows a comparison of the exact and numerical solutions for the profile of the longitudinal
component of velocity in the section at x=6.6. The velocity profile converges to the exact solution.
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Figure 1 — Comparison of numerical results with exact solution for Poiseuille flow calculation: velocity
profiles " " - initial velocity; "- - - - - - " - exact solution; "........ " - numerical solution
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The velocity profiles (Figures 2-3) quickly approache the exact solution as shown in Figure 1 [19].
Accurate results are ensured by the boundary conditions. The pressure plot (Figure 4) shows a
constant pressure gradient (Figure 4) in most channels, which is 0.998(dp®**“t /dx,). The boundary
layer behaviour is not evident in the longitudinal velocity profiles (Figure 2) or in the temperature
regime (Figure 5).

It can be concluded that, the convergence rate of the solution is high enough, strong pressure and
temperature gradients are formed near the outflow, and a boundary layer appears in the temperature
contours.

Conclusion

Based on the analysis of the existing literature, the state of the problem of numerical solution of
the full Navier-Stokes equations for compressible turbulent viscous gas at small Mach numbers is
studied. It is known that the main problem in solving finite-difference equations is numerical instability
leading to the problem of convergence of the iterative process. The main ways of eliminating the
arising problems are studied. It is obtained that, to date, there are two main approaches in solving the
initial equations. The Density-based method, where the full Navier-Stokes equations are used and
pressure, temperature and entropy are solved directly using the basic parameters. It was found that
within the Density-based method, the most common way to eliminate computational difficulties at
small Mach numbers is to apply preconditioning of the initial equations, which allows the difference
equations to be modified in such a way that the eigenvalues of the Jacobi matrix (wave propagation
velocity) of the modified system of equations are of the same order. It is revealed that the main
advantage of the preconditioning method is that it allows to solve flow problems with both small and
moderate Mach numbers in a unified way.

The mathematical formulation of the problem of turbulent air flow with transverse jet induction
in a substantially subsonic regime with the use of the preconditioning method has been formulated.
The main advantage of using the procedure of preconditioning when solving the original Favre-
averaged Navier-Stokes equations is the possibility of modifying the difference equations in such
a way that the eigenvalues of the Jacobian (wave propagation velocity) of the modified system of
equations have the same order. A numerical method for solving the problem is developed, in which
the Turkel preconditioning matrix for primitive variables is used. The transition to conservative
variables is performed using transition matrices, and the right and left eigenvectors are calculated for
the system of three-dimensional preconditioning matrices.
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KBIJIAAMABIFbI IbIBbIC KbIJIIAMJIBIFAHAH TOMEH AFbIH/IAP
YIIIH IAPTTSBI TYPIEHAIPY 9 AICI

Anjarna
Y CHIHBUIBII OTBIPFaH XXYMbIC KaObIpFaja maiga OoiFaH CHMMETPUSUIBIK NEPIeHIMKYIAp arblHIapra Hazap
ay/liapa OTBIPBII, apHAJAFbl YII OJIIEM/Ii KbUIIAMJIBIFbI JbIOBIC JKbIJIIAM/IBIFBIHAH TOMEH TypOyineHTTi arbin/{bl
MYKUST cannslk Mozpenbaeyre apHairad. TypOyJneHTTUTK MojeniMeH Tyiibikrainran DaBp-opraiiaiaHraH
Hasne-Croke Tenaeynepi ENO cxemachlHa HeTi3ieNreH ajaropuTM apKbUIbl menriieni. Mrepanusuiblk ypaicTiH
KOHBEPTEHIMSICHIH JKbIIIaM/IaTy YIIiH MIApTTHl TYPIACHAIPY S/ici KONJaHbIIa bl XKOHE KapaOalblp aifHbIMaIbIIAp
BEKTOPBIHA KOIITy )KY3€Te achIphIIaIbl. 3epPTTEY HOTIDKENIEPi ABIOBICTHIK TypOYICHTTI aFbIHIAPIBI XKAKCHIPAK TYCIHY
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YIIH MaHBI3/IbI KSHE OPTYPIIl cajanap/a, COHbIH IMIiHAEe MHXEHEPIIK KOHE FHUIBIMHU 3€PTTEYNIepAe KOJNaHbLTYbI
MYMKiH. JKYMBICTBIH ©3€KTUIIrl OFapbl PeTTi JRJIK CXeMalapblH IaljangaHa OThIpbI, yml esmremai Hasbe-
CTOKC TeHAeyNIepiH HIenryre MyMKIH/IIK OEpeTiH THIM/II CaH/IBIK aJITOPUTM/IEPAL 931pJIeyMeH, COHIai-aK IbIObICTaH
JKOFapBl KOIT KOMIIOHEHTTI aFbIH/IBI TANAAY YIIiH CEHIMAI TYpOYICHTTIIIIK MOJICTbICPiH KOMTaHyMEH CPEKIICICH/I.
JKYMBICTBIH FBUIBIMU JKaHAJIBIFBI HTEPALMSIIBIK IPOLIECTIH KOHBEPTeHIMSCHIH JKEACIACTY YILiH LIapTThl TYPICHIIpY
SJIICIH COTTI KOJIJIAHYBIHIA KATBIP.

Tipek ce3mep: CaHIBIK MOICIBICY, XKbUIIAMIBIFBI JIBIOBIC JKbUIIAM/IBIFBIHAH TOMEH aFbIHIAp, HIeal ras,
mekapaiblk Kadat, HaBre-CToke TeHIEYIEpI.
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METOA INPEAOBYCJIABJIMBAHUA AJ1SA CYIHECTBEHHO
JO3BYKOBbBIX IOTOKOB

AHHOTAIUA

[Ipemiaraemast padboTa MpeaCcTaBisieT cOOOW AeTalbHOS YUCICHHOE MOJACIMPOBAHUE TPEXMEPHOIO JIO3BYKO-
BOTO TypOYJICHTHOTO TCYCHHUS B KaHAJIC C OCHOBHBIM YIIOPOM HAa CHMMETPUYHBIC IIEPIICHINKYIISIPHBIC CTPYH, BO3-
HUKaIONKe y cTeHoK. Pemenne ocpenneHHbIx mo Maspy ypaBHeHnit HaBre-CToKca, 3aMKHYTHIX MOACIBIO TYpOY-
JICHTHOCTHU, OCYIIECTBIISIETCS C MOMOIIBIO ANTOpUTMa, OCHOBaHHOTO Ha cxeme ENO. Jli1st yCKOpeHHUsT CXOMUMOCTH
UTEPALMOHHOTO MPOIIecca UCIONIB3YETCs METO/ P00y CIaBINBaHUs M OCYIIECTBISIETCS IEPEXO01 K BEKTOPY MpH-
MHUTHUBHBIX HepeMeHHBIX. PeSyJ'IBTaTI)I HUCCIICOOBAHUA BAXXHbI HJIA nquero IIOHUMAHUA I[O3ByKOBBIX Typ6yHeHTHBIX
MMOTOKOB U MOTYT HAWTH MPUMEHCHHUE B PA3IUYHBIX 00IACTSIX, BKIIIOUAs MHKCHEPHBIC U HAyYHBIC MCCIICIOBAHMUS.
AKTyaJbHOCTH pa0OTHI IOAYEPKHUBACTCS pa3paboTKol A((PEKTHBHBIX YHCICHHBIX aJITOPHUTMOB, ITO3BOJISIOIINX pPe-
maTh O3BYKOBBIC TpeXMepHBIC ypaBHeHN HaBhe-CTOKCa € HCITONB30BAHUEM CXEM BBICOKOTO TIOPSIIKA TOYHOCTH, &
TaKXKe ¢ MPUMEHEHUEM POoOACTHBIX MOJIENIeH TypOYICHTHOCTH JJIsl aHAJIM3a CBEPX3BYKOBOT'O MHOTOKOMITOHEHTHOTO
TeueHusi. HayuHasi HOBU3HA pa0OThI 3aKIIIOYACTCS B YCIIEITHOM MCIIOJIB30BaHUU METO/Ia TP 00y CIOBIUBAHUS ISt
YCKOPEHHSI CXOJMMOCTH UTCPAIIHOHHOTO ITPOIIecca.

KuroueBble cJI0Ba: 4HCIEHHOE MOJEIUPOBAHUE, TO3BYKOBOE TEUCHUE, UICANbHBIN Ta3, IOrPAHUYHBIN CIIOH,
ypaBHeHust HaBbe-Crokca.
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