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FRACTAL GEOMETRY AND LEVEL SETS INCONTINUED FRACTIONS

Abstract
Continued fractions offer a unique representation of real numbers as a sequence of natural numbers. Good's
seminal work on continued fractions laid further research into fractal geometry and exceptional sets. This paper
extends Good's findings by focusing on level sets constructed by restricting the partial quotients with lower bounds.
Using elementary approaches, we establish new bounds on their Hausdorff dimension, providing theoretical
insights and practical estimation methods. Additionally, we offer alternative proofs and corollaries that deepen

our understanding of the relationship between continued fractions and fractal geometry. Continued fractions
provide a distinctive means of expressing real numbers as a sequence of natural numbers, offering
insights into the underlying structure of these numbers. Building upon Good's foundational research
in continued fractions, this paper delves into the domain of fractal geometry and exceptional sets,
exploring the interesting connections between these mathematical constructs. Our focus lies on
investigating the Hausdorff dimension of level sets formed by constraining the partial quotients
with lower bounds. Employing elementary methodologies, we present fresh theoretical bounds on
Hausdorff dimension of these level sets, enriching our understanding of their geometric properties.
Through combining theoretical advancements and practical techniques, this research contributes to
mathematics, providing both deep theoretical insights and practical applications in understanding
continued fractions and their geometric properties.

Key words: continued fractions, number theory, Hausdorft dimension, fractals, numerical ap-
proximation, Newton—Raphson method, Taylor series.

Introduction

Continued fractions are a unique way of representing a real number X in [0,1) as a sequence
(a,,(x)) of natural numbers:

X = 1 or [ay, ay, az, -]
a(x)+ 1
ﬂz(l‘)*-W

They can be obtained through an iterative process of representing a number as the sum of'its inte-
ger part and the reciprocal of the fractional part. This process can be finite or infinite, and it provides
an alternative representation of real numbers, which has connections to various areas of mathematics
such as number theory, hyperbolic geometry, and Diophantine approximation. Continued fractions
have applications in various fields, including the analysis of rational approximations, the study of
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quadratic irrationals, and the computation of irrational numbers like ©. The study of continued frac-
tions also has connections to fractal geometry and dimension theory. Fractals are complex geometric
shapes that exhibit self-similarity at different scales and have a non-integer dimension. The connec-
tion between continued fractions and fractal geometry lies in self-similar properties of certain contin-
ued fractions, which can lead to the exploration of fractal sets with specific dimensions, such as the
Box dimension and Hausdorff dimension [1]. Therefore, the study of continued fractions and fractal
dimension provides a rich and interconnected area of mathematical research, with implications for
diverse fields within mathematics and its applications.

In his work, Good [2] studied the Hausdorff dimension of various exceptional sets arising in
continued fractions and in particular proved the following:

For & = 20, the Hausdorff dimension of exceptional sets
1 1

] 1
3 T aonary < dimy {x €[01] | ay(x) = @V} < S+

log log(a—1)
2log(a—1)

Here we denote [og as the natural logarithm.

Let us define the set F of divergent partial quotients, namely
F={x €[01]|a,(x) > cmasn — oo}
He also showed that
dimy F = —.
H 2

Numerous studies have been undertaken to generalize and build upon the findings since Good
initially published his work. In two consecutive works, Hirst investigated the dimension of sets with
partial quotients satisfying functions a,, = f(n) tending to infinity [3-4]. Specifically, he demon-
strated that the dimension of the set of real numbers with partial quotients satisfying @,, = n? is 1/
(2b). Subsequently, Cusick demonstrated that for given values of a and b greater than 1, the set with
a, = abn for all n has a zero Hausdorff dimension [5]. Later Fan et al [6] obtained a general frame-
work for calculating the dimension of the sets satisfying §,, = @, (x) = N, with any increasing
sequence Sp. Another avenue of generalization involved considering litnsup sets rather than all
statements. In this regard, Moorthy [7] established that the set with a, = abn for infinitely many
n has a dimension of at most 2/(1+b). He hypothesized that the exact dimension should be 1/(1+b),
which was later confirmed by Luczak in 1997 [8]. Additionally, refer to [9] for an alternative proof
of the lower bound. For further results in this area, please consult [ 10—12].

In recent years, there has been a notable increase in research focusing on the dimensions of di-
vergent partial quotients. Particularly, the study of weakly divergent partial quotients was undertaken
in [13]. Additionally, investigations into increasing partial quotients with joint constraints were con-
ducted in both [14] and [15]. In [16—17], various formulas were derived pertaining to the dimension
of sets where the growth rate of partial quotients @,, is comparable to e ‘f’(ﬂ'}, where (1) satisfies
various conditions. Furthermore, in [18], the authors explored exceptional sets wherein the limit in-
ferior and limit superior of log @,,/log N converge to @ and b respectively. They demonstrated
that for positive values of @, the dimension is one half, and it is 1 if a equals zero. Takashi [19] delved
into the study of slowly divergent partial quotients.
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From the literature, it is evident that while numerous works have concentrated on sets with di-
vergent partial quotients, there appears to be a gap in research regarding the dimension of level sets
with lower bounds since Good's work. In this work, we plan to focus on this direction of research.

For any positive @@ we define the following level set

F,={x €[0,1) |a,(x) = a,Vn = 1}.

In this work we consider an elementary approach in estimating the dimension of the level sets F,
and improvement of the Good’s above-mentioned results. Our main result is the following.

Theorem 1. Let @ = 2 be an integer. Let e(a) € (0,1) be a real number such that

e(a) (a— 1)@ >1 (1)

Then, the Hausdorff dimension of [, satisfies
] 1 1
dimy FE, < > + Ee(a).

loglog(a—1) . o iy o
For €(@) = “log(a—1). with ¢ = 20 it is easy to see that the condition (1) is satisfied.

Hence, this theorem can be thought as an improvement of Good’s result. We note that we do not
have any restrictions to ¢¢ other than it being at least 2. Clearly, when @ = 1, the theorem is false, as
in this case F; = [0,1) which has full Hausdorff dimension 1. In fact, it has Lebesgue measure 1.
In the next, we consider various estimates for € (@). Using the Newton—Raphson method we
obtain the following corollary.
Corollary 2. Let @ = 17 be an integer. Then, the Hausdorff dimension of F, satisfies
1 1 (log log (a —1))?+ 1

di E < —+— .
TMafae = 5T 5000 (@ — 1) (log log (¢ — 1) + 1)

Another approach to estimate € (@) is to use Taylor’s approximation. In this case, we have the

following corollaries:
Corollary 3. Let @ = 2 be an integer. Then, the Hausdorff dimension of Fy satisfies

1 —1+./1+4log (a—1)
di F, < —+
"ufa = 5 4 log (a — 1)

Corollary 4. Let ¢ = 2 be an integer. Then, the Hausdorff dimension of F,, satisfies

20+54 log(a—1)

where p = 3log? (a—1) and q = 27l0g* (a—1) ~

As a by-product, we obtain another proof of Good’s result that the dimension of the set of diver-
gent partial quotients is one-half.
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Main Provisions

Define the Hausdorft dimension:

Definition 1. Recall that a §-cover of a set F is a countable (or finite) collection of sets {U; }
with diameters ) < |U;| = & that cover F. Suppose that F € R™and s = 0. Foreach & = 0,
we define

Hs*(F) =inf {32, |U;|°: {U;}isa 6 — cover of F}

We call H® (F) = %T%H 8 (F ) the S-dimensional Hausdorff measure of F.

Definition 2. Let % (F) be a Hausdorff measure, then Hausdorff dimension of a set F is

dimy F =inf {s=0: H(F) =0} =sup{s > 0: H*(F) = oo}

For any continued fraction [@1, @y, @3, *++ ] we define the convergents Pn/ @nby

Pn
P [alr Qp, sz, , a‘n]:
n
where Pns @nare in lowest terms, so that they are coprime positive integers. In fractal geometry to
compute the dimension of the given set one often needs to find a minimal number of intervals needed
to cover the given set and the lengths of these intervals. The following lemma gives us these building
blocks.
Lemma 1. For any natural numbers 7t @1, @2, ***, Qnwe et Iy(ag,as, -, ay) the following

set Iﬂ(alfagf'”fa‘ﬂ} = {x € [U 1] |{11(X} = {11,{12(?5} = Qap, ra‘n(x) = an}

Pn Pntp PntPn1 P
Un(ay, @y, ) = G2 2 o (2 )

The lemma is well-known and for the proof we refer to [20].
Lemma 2. For any natural numbers 1, @4, @9, ***, @4, the intervals have the following length

estimate

|fn(:(11,{12, :a‘n}l = (alflz vy )_2'

pﬂ—l Pn |pﬂ 19n — PTLQTL—ll

|J'r ({11,(12,' ra‘n)l_l __l_
" (4 + (¢ P (4 q'ﬂ(q'ﬂ —’_q-ﬂ—”lj

Since Prn—19n — Pnn-1 = ( 1) see e.g. [21], we have

” (QIJQZJ !aﬂ}l -
" O (qﬂ + O —1 }
We now obtain the growth rate of 4 using the fact that the convergents can be constructed using
difference equations [21]:
In = Anln-1+ qn—2 = nGn-1 = (A 1Gn-2 + Gn-3) =
Aplp—1qn—2 = .- = Aplp_1...a

As a result, we have the following length estimate

1 1 1
I (1 1 e == g g )
| Ti.( 1,42 ’ an) | An(@ntdn_1) E’Qn)z (a a?"'a‘”)z
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Materials and methods
In this section we prove our results stated in the introduction.
Proof of Theorem 1. From the definition of Hausdorff dimension we deduce that if there exists
s such that H(E,) = 0, then dimpy (F,) = s. Since Hg*(F,) is an infimum of sums, we see
that for any family of 5-covers {U ,;6} of F, it holds
H*(E,) = limHg*(E,) < lim¥,; |U;°|°.
550 . 5

F, © U Iﬂ(alraﬂr Tt a‘ﬂ.}f
= ..
where the union is taken over all possible ?ﬁte%er tuples @1, Ay, "+, Ay, = «.This is a countable

setand {I,,(aq,ap,, ay)} provides a cover for Fy . Hence for a suitable & it follows that

HSS(FQ) = Zal,...,ani_ba ”n(alra}?r ra‘ﬂ.}ls = Zal,...,aﬂza(ala?' _%}—25 =
e k)"

For the sum to converge, we need § > 1 /2. We may recognize the sum as the lower Riemann

sum for an integral- . e S . ) N
(Zk:a k )= (Jra,_l x “dx)" = ((25_1-}(05_1)23—1) ,

We note that as T increases, the sizes of the intervals [ (aq,a,,'*, a, ) decreases to zero,
hence & decreases to zero. Thus, to obtain that H*(F,) = 0 we need to take S that depends on &
such that (25 — 1) (a — 1)?*71 > 1. For such S we then have dimy (F,) = 5. Making a
change of variable € (@) = 25 — 1 we see that once € (@) (@ — 1}6(‘1) > 1 we have

dimy (Fy) <s=>+e(a).

We do not turn in proving the corollaries.

Proof of Corollary 2. To prove the statement, we utilize the Newton-Raphson method. The New-
ton-Raphson method, a powerful tool for solving nonlinear equations, has been the subject of various
studies [22]. Consider the function f(x) = x(a — 1)* — 1. In view of Theorem 1 we need to
approximate the root of the function f (x) from above. The graph of the function for several values
of & is depicted in Figure 1 (p. 30).

__loglog (a—1)

For X log (a—1)

=log,,_,log (a — 1) we see that

log log (x—1)

Fl) =299 4 1) eg@s — 1 =loglog (a —1) — 1.

log (a—1)
Since loglog 16 ~ 1.01978, it follows that for @ = 17 we have

loglog (a —1) —1 > 0. In particular, if we initiate the Newton—Raphson method with

log log (a—1)
log (a—1)

X-intercept due to convexity. We note that the derivative of the function is

fl(x)=(1+xlog (a —1))(a— 1™~

the initial value Xy = , then in any iteration we remain on the right-hand side of the
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Figure 1. The graph of f (x) for various values of &.

In one iteration of the Newton—Raphson method we get
_ Jxo) _ . xXo(a—1)*0-1
Frixe) 70 (a-1)%0(xplog(a—1)+1),
logl —1))2%+1
e(a) = (log log (a—1))
log(a—1)(log log (a—1)+1),

e(@):=x; = xp

ProofofCorollary 3. Our goal is to estimate € (@) from above such that€ (@) (a — 1) €@ - 1,

1
o0 X

To this end, we use Taylor approximation. We know that €* has Taylor expansion e* = n=0"

Writing (& — 1)* = e™* log(a@=1) we see that the Taylor expansion for x(a — 1)* is given by
oo o0

(o — 1) = XZ (x log (a— 1" _ Z log (a — 1an“+l.

n! n!
n—N wn—iNn

Considering 2nd order approximation we see that

x(a —1)* = x +log (a — 1)x? + 0(x).
From this it follows thatifx +log (@ — 1)x2 = 1,thenx(a —1)* =1+ 0(x*) > 1

which gives an upper estimate. Solving the quadratic equation

log (@ —1)x2+x—-1=0

we get E({I} = x = “1ty1+4log (a— 1}_ Now, applying Theorem 1 yields the desired esti-

21 —1
mate. og (a-1)

121



HERALD OF THE KAZAKH-BRITISH
No. 2(69) 2024 TECHNICAL UNIVERSITY

Proof of Corollary 4. Arguing as in the proof of Corollary 4, but this time considering 3rd order
Taylor approximation we see that the positive solution to

2
log® (a—1) ,
X
2
within the interval (0,1) gives a good estimate for € (@). Let us analyze the function

x +log (a — 1)x? + =1

2 (q—
f(x) =Wx3 +log (a — Dx? +x—1

3 log(a—1
g ( )xz

Taking derivative, we get f'(x) = + 2 log (a — 1)x + 1. From Arith-

metic mean — Geometric mean inequality we get

3 Iog2 (a—1) 3 Iog2 (a—1)
5 x2+1 =2 > x2 > 2log (a — 1)|x]|.

It follows that f'(x) = 0 on the real line so that the function is strictly increasing. Since any
cubic function has at least one root, we deduce that the function f(x) has exactly one real root. Also,
since f(0) < 0 < f(1) we conclude that for any positive integer @ = 2 the unique real root
must be on the interval (0,1). It can be found using Cardano's formulas

_ 20+54log(a—1)
27log*(a—1)

where P =

3log?(a—1) an

Results and Discussion

In this section we compare our results to that of Good. To this end, we provide various graphi-
cal illustrations. In Figure 2, we compared the Hausdorff dimension estimates for F,, for various @
ranging from 2 to 500 using different methods, namely 1st order Newton-Raphson, 2nd order Taylor
expansion, and 3rd order Taylor expansion, against Good’s upper bounds. Second order Taylor, as
depicted in the graph, shows that it consistently remains above all other curves, indicating an over-
estimation of the Hausdorff dimension. Our remaining two estimation methods, 1st order Newton-
Raphson and 3rd order Taylor expansion, on the other hand, stays lower than Good, suggesting an
improved result. The best upper estimate for the Haus%grgﬂ; od‘;nagllsliﬁ)n among these methods turns
out to be Ist order Newton-Raphson with initial value ———————=. We note that clearly one can
improve both Taylor and Newton-Raphson, however the dilrﬁglgg?on formulas get very complicated.
These findings provide valuable insights into the performance and accuracy of different methods for
estimating the Hausdorff dimension.
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Figure 2. Dimension upper estimates of F, for varying @
Conclusion

The exploration of continued fractions and their connection to fractal geometry has yielded
significant advancements in mathematical theory and practical applications. Through this paper, we
have extended Good's seminal work on continued fractions and exceptional sets, focusing particu-
larly on level sets constructed by imposing lower bounds on partial quotients.

Our main result, Theorem 1 and its corollaries, provide new bounds on the Hausdorft dimen-
sion of these level sets, improving upon Good's earlier findings. In our corollaries, we offer practi-
cal estimation methods for the Hausdorff dimension of these sets. Utilizing approaches such as the
Newton-Raphson method and Taylor series approximation, we provide insights into the behavior of
these level sets under different constraints and parameters. By establishing conditions under which
these level sets exhibit specific dimensional properties, we deepen our understanding of the intricate
relationship between continued fractions and fractal geometry. Additionally, our graphical analysis
comparing our estimations with Good's upper bounds highlights the effectiveness of our methods in
providing accurate dimension estimates.

Overall, our obtained results contribute to the ongoing research in this field, shedding light on
the complex structures inherent in continued fractions and their implications for fractal geometry.
Further investigations into the properties of level sets with lower bounds present avenues for fu-
ture exploration and refinement of dimension estimation techniques. Besides, similar numerical ap-
proaches can be utilized to better approximate the Hausdorff dimension of the level sets from below.
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Y3JIKCI3 BOJIIEKTEPIEIT ®PAKTAJ bl TEOMETPHUS
JKOHE JEHTEWJI )KUBIHIAP

AHaarna

Y3mikci3 OelnmekTep HaTypad caHAap Ti30eri peTiHAae HaKThl CaHAapHIbIH Oipereil OeHHECiH TyciHyre Ke-
MekTeceni. ['yATBIH y3IiKci3 OeNmeKTep Typasbl HETi3ri JKYMBICH (paKTalIsl TEOMETPUsS MCH €pPeKIIe KHIBIH-
JIapJIbIH opi Kapai 3epTTeinyine TYpTKi Oospl. bysr Makanaia TOMEHTT IEKTEpPMEH HIEKTey apKbUIbI allbIHFaH JICHI el
JKUBIHAAphIHA Oaca Haszap aymapy apKbUIbl ['VATBIH HOTIDKENepi OfaH opi kerummipinreH. KapamaibiM Tocimmep
apKBUTBI 013 TEOPHAIIBIK O1TIM MEH TOXKipHuOerik Oarayay 9iCTepiH KolaaHa OTHIPHII, OJapAsIH Xaycaopd emmemi
YIIiH KaHa IHIeKapanapbiH opHaTambi3. COHbIMEH Karap 013 Y3IiKCi3 OemIeKTep MEH (paKTalJIbIK FeOMETPHS
apaceIHIAFBl OaiJIaHBIC Typajbl TYCIHITIMI3AI TepEHIETETiH OaamMa IoJeIep MEH OHBIH CalIapblH YCHIHAMBI3.
Y3naikci3 OemmiexTep HAKTHI CaHAApABl HATypasl caHaap Ti30eri peTiHAe epHEKTEYIiH epeKIe TOCUTIH YChIHAMIbI,
OyJ1 ©3 KeseriHae OChl CaHJap/blH HEri3ri KYpBUIBIMBIH JKaKChIpaK TYCiHyre Kemekreceni. ['yIThIH y3IiKci3
OenekTeperi ipreni 3eprIeylepiHe CYHeHiN, OChl MaTeMaTHKAJbIK KOHCTPYKLMSUIAD apachbIHAAFbl KbI3BIKTHI
OaitmaHbICTapABl 3ePTTEH OTBIPHII, OYJI MaKaja (GppakTaaIblK TEOMETPHS MCH epeKIIe KUbIHAAD caalapblHa TEPeH
K03 xyripreai. bi3aiH 6acTbl Ha3apbIMBI3 Y3/IKCI3 OOJIIEKTEp i TOMEHT] NIEKTEPMEH LIEKTEY apKbUIbl KYPbUIFaH
JIeHIel SKUBIHIAPBIHBIH XaycIopd eJIIeMiH 3epTTey. DIeMeHTap d1icTeMenepi KOJIaHbl, 013 oJlapAbIH reoMeT-
PHSUTBIK KAaCHETTEpi Typajbl TYCIHITIMI3I KCHEHTE OTHIPHIN, ACHTeH >KUBIHAAPBIHBIH Xaycaopd ejmeMiHe KaHa
TEOPHUSUIBIK IIeKapajiap/ibl YChIHAMbI3. TeOpHUsUIBIK JKETICTIKTEp MEH IMPaKTHKAJIBIK oMICTep/l OipiKTipe OTBIPHIII,
OyJ1 3epTTey TEPEH TEOPHSUIBIK OLTIM MEH Y3IIKCi3 OOJIIeKTep KOHE OJapAblH TeOMETPUSUIBIK KACHETTEPiH TYCIHY
YLIIH IPaKTHKAJIBIK KOJIAaHOaIapbl KAMTAaMachl3 €Ty apKbUIbI MaTeMaTHKaFa YJIec KOcabl.

Tipek ce3aep: y3mikci3 OenmiekTep, caHmap TCOPHICHL, Xaycaopd eimmemi, ppakTangap, CaHIBIK KYBIKTaY,
Heroton-Padcon oxici, Teitmop KaTapsl.
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TFEOMETPUSA ®PAKTAJIOB U MHOKECTBA
YPOBHEM B HEITHBIX APOBAX

AHHOTAUMS

Hennsle apo0u MmpeiaraloT YHUKAIbHOE MPECTaBICHUE IEHCTBUTENBHBIX YHCET B BHJE MOCIIEA0BATENb-
HOCTHU HaTypasibHBIX uncesl. OcHOBoMoaraoIias pabora ['yna o nenHbIX qpo0sX MOJ0KKUIA HAYaIo0 AaTbHCHIITM
UCCIICIOBAHUAM (PPAKTAIILHOW TCOMETPUHU U MCKIIFOUUTEIIHLHBIX MHOXKECTB. JTa CTAThs PacIIUpsieT BHIBOIBI ['yna,
COCpEIOTOYHB BHUMAHHE HA MHOXKCCTBAX YPOBHS, MOCTPOCHHBIX IyTEM OTPAHUYCHUS YACTHUHBIX IPOOCH HIK-
HUMH TpaHuiiaMu. VICrosnb3ysi aieMeHTapHbIe MOAXO0/bl, Mbl YCTAHABIMBACM HOBBIC TPAHUIIBI UX XayCA0p(POBO
Pa3MEepHOCTH, MPEAOCTABIISISE TEOPETUUECKUE 3HAHUSI M MPAKTUYECKUE METO/IbI OlleHKH. KpoMe Toro, Mbl mpejia-
TracM aJIbTCPHATUBHBIC JOKA3aTCIIbCTBA U CIICACTBUA, KOTOPHIC lely6.H${IOT Halli¢ MOHMMAaHNUE B3aMMOCBA3HU MCKIY
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LEMHBIME JPO0sSME U (ppakTaibHOM reomerpuei. Llenupie 1podu MpeaCcTaBisIFOT 0COObIi CIT0CO0 BhIpAKECHUS JCii-
CTBHUTEJILHBIX YHCEJl B BUJIE MTOCIICI0BATEILHOCTH HATYPaJIbHBIX YMCEIl, YTO TO3BOJISIET JIyUIlle OHSITH OCHOBHYIO
CTPYKTYpy 3TuX uuces. OCHOBBIBASCh Ha (PYHIaMCHTAIBHBIX HCCIICAOBAaHUSX ['yna B 00JacTH IEMHBIX IPOOCH,
9Ta CTaThsl yIIyOJsieTcsl B 00MacTh ()paKTaabHOW FeOMETPUH U UCKITIOUUTEILHBIX MHOXKECTB, UCCIEysT HHTEepPEC-
HBIE CBSI3M MEKJIY 3THMH MaTeMaTHUeCKUMU KOHCTPYKIMsMU. Haille BHUMaHie COCPEIOTOYCHO Ha MCCIIEIOBAHUN
xaycop(poBol pasMepHOCTH MHOXKECTB YPOBHSI, 00Pa30BaHHbBIX MTyTEM OTPaHHUYCHHUS] YACTUYHBIX IPOOeH HUKHH-
MU rpaHunamu. Vcrnomnb3yst a1neMeHTapHble METOIOJIOT MU, MBI IIPECTAaBIISIEeM HOBBIC TEOPETHUECKHE MPAHUIIbI Xa-
ycaopdoBoii pasMepHOCTH ATUX MHOXECTB YPOBHEH, oboraiasi Halle NOHMMaHUE X TeOMETPHYECKUX CBOMCTB.
Couerast TeopeTHYECKNE TOCTHKEHHS M IIPAKTUYECKUE METOJIBI, 3TO MCCIIEA0BaHNE BHOCHT BKJIaJl B MaTEMaTHKY,
MPEOCTABIISAS KaK ITyOOKHE TEOPETHUSCKHIE 3HAHKS, TaK U NPAKTUYCCKUE MPUIIOKEHHS U TOHUMAHUSI IISTTHBIX
Ipobeit 1 UX TeOMETPUIECKUX CBONCTB.

KiroueBble ciioBa: IemHble IpoOH, TEOpUs 4YUCET, pa3MepHOCTh Xaycmopda, (pakTaibl, UYHCICHHOE
npudmmkenue, metoq Hetorona-Padcona, psx Teitnopa.
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