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Abstract
In quantum information theory, understanding the complexity of entangled states within the context of SLOCC 

(stochastic local operations and classical communications) involving d qubits (or qudits) is essential for advancing 
our knowledge of quantum systems. This complexity is often analyzed by classifying the states via local symmetry 
groups. The resulting classes can be distinguished using invariant polynomials, which serve as a measure of 
entanglement. This paper introduces a novel method for obtaining invariant polynomials of the smallest degrees, 
which significantly enhances the efficiency of characterizing SLOCC classes of entangled quantum states. Our 
method not only simplifies the process of identifying these classes but also provides a robust tool for analyzing the 
entanglement properties of complex quantum systems. As a practical application, we demonstrate the derivation of 
minimal degree invariants in specific cases, illustrating the effectiveness of our approach in real-world scenarios. 
This advancement has the potential to streamline various processes in quantum information theory, making it easier 
to understand, classify, and utilize entangled states effectively.
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Introduction

Understanding entanglement is a basic idea in quantum information theory. The main issue is 
figuring out how to measure and sort the entanglement in quantum states [1]. It's seen as an impor-
tant part of quantum information and become an important field of research [3, 4, 5]. Polynomial 
functions that stay the same with stochastic local operations and classical communication (SLOCC) 
changes have been investigated extensively over the past years [2, 3, 7]. These functions are some-
times exploited to measure the entanglement [13].

Stochastic Local Operations and Classical Communication (SLOCC) is a pivotal concept in this 
context, offering a framework for classifying entangled states based on their convertibility through 
local operations and classical communication. This classification is vital because it helps identify 
which quantum states can be transformed into each other using local operations, shedding light on 
the fundamental structure of quantum entanglement and its implications for quantum information 
processing. Within the SLOCC framework, the complexity of entangled states, particularly with 
systems composed of  quantum units (qunits,  states), becomes a critical area of study. The chal-
lenge lies in efficiently categorizing these states to understand their potential for various quantum 
information tasks.

This paper addresses the challenge of classification of entangled states under SLOCC, for odd 
number  of parties each having a single qunit. It introduces an improved method for the 
derivation of invariant polynomials of smallest degrees, which serve as a robust tool for efficiently 
characterizing SLOCC classes of entangled quantum states [2, 3, 13, 14, 15]. This way of derivation 
was shown in [8, 9] and developed in [10]. Using representation theory, particularly Schur-Weyl 
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duality, we obtain the spanning set of homogeneous invariant polynomials of fixed degree over state 
space of  qunits.

The motivational problem of this research can be stated as follows.
Problem 1 (Orbit separation problem). For two entangled states is it possible to transform one to 

another by stochastic local operations?
To address this problem, we reformulate it in the mathematical setting. Quantum states are inter-

preted mathematically as elements of  (repeated d times) scaled to unit norm. 
Under the fixed basis, each state can be associated with -dimenisonal hypermatrix . Sto-
chastic local operations are associated with the elements of the group  
(repeated d times), where each group copy acts independently on the corresponding tensor compo-
nent by left multiplication. Here  is the group of  matrices of a determinant 1. Thus, 
SLOCC classes are exactly the orbits of a group action. 

The polynomial  over the vector space  is -invariant when it is constant on the orbits  
of -action, i.e., . One way to separate tensor orbits (state classes) is to provide dif-
ferent evaluations on some invariant polynomial. Thus, generation of such polynomials is the crucial 
task for QIT. 

Problem 2 (Invariant calculation problem). Given tensor space, compute the smallest tensor 
invariants. 

Our main contribution is that we provide a method to produce polynomials of the smallest pos-
sible degree. This problem is of Computer Science nature, as it requires development of an algorithm 
based on the structure of underlying tensor space. The findings and methods can also be exploited in 
other areas of computer science, where tensors are applied, since they shed light to the symmetries 
of a tensor space with respect to the natural group action. 

In the context of SLOCC (Stochastic Local Operations and Classical Communication), certain 
types of entangled states play significant roles. Here's a brief exposition of the EPR state, GHZ state, 
and W-state in terms of SLOCC:

1.	EPR state is a maximally entangled state between two qubits: 

         			    	   				    (1)

2.	 GHZ State, named after Greenberger-Horne-Zeilinger, is a maximally entangled state, gen-
eralizing EPR state, involving three or more qunits, where all qubits are entangled with each other:

			   			   (2)
      				     
3.	W-State is another type of multipartite entangled state, usually involving three or more qubits:

		  		  (3)

These states are fundamental examples of multipartite entanglement and play crucial roles in 
various aspects of quantum information processing, including quantum communication, cryptogra-
phy, and computation. For instance, in [12] W-state were constructed on a quantum computer.

We shall describe the theoretical background hidden behind the generation of smallest invariant 
polynomials, provide the basis of smallest degree polynomial invariants in case of 5 qubits and 5 
qutrits.

Literature review

Invariant polynomials are critical tools in the classification of quantum states, particularly within 
the framework of quantum computing and quantum information theory. By leveraging these poly-
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nomials, one can efficiently characterize and measure the complexity of entangled states under local 
operations and classical communications (SLOCC). This review explores the foundational theories, 
practical applications, and computational techniques associated with invariant polynomials, empha-
sizing their significance in quantum computing.

The foundational work by Dür, Vidal, and Cirac [1] demonstrated the distinct ways three qubits 
can be entangled, laying the groundwork for understanding polynomial invariants in quantum sys-
tems. Their findings revealed the existence of two inequivalent classes of entangled states, which are 
distinguished by different sets of polynomial invariants. This seminal work emphasized the role of 
local symmetry groups in classifying entangled states, which has become a cornerstone in the study 
of quantum information theory.

Building on this foundation, Luque and Thibon [2, 3] expanded the scope of polynomial invari-
ants to systems with four and five qubits. See also [14]. Their research provided explicit descrip-
tions and closed formulas for these invariants, facilitating the classification of more complex quan-
tum states. By deriving minimal degree invariants, they enabled more efficient characterization of 
SLOCC classes, thereby advancing the practical applications of these mathematical tools in quantum 
computing.

Hillery, Bužek, and Berthiaume [6] explored the application of polynomial invariants in quan-
tum secret sharing, demonstrating how these invariants can be used to secure quantum communica-
tion protocols. Their work highlighted the practical relevance of invariant polynomials in real-world 
quantum information tasks, showcasing the versatility of these mathematical constructs.

In [21] a novel method was proposed for the canonicalization of Riemann tensor polynomials 
by employing a block distance invariant approach. This technique simplifies the process of reducing 
monoterm tensor polynomials to their canonical forms, providing an efficient computational frame-
work for handling tensor polynomials in algebraic computations.

Hrushovski et al. [25] investigated the strongest algebraic program invariants, providing a new 
approach to understanding algebraic invariants in the context of program verification. Their findings 
offer robust tools for the analysis and verification of polynomial dynamical systems.

In [26] advanced visualization techniques for tensor fields were developed using fiber surfaces of 
invariant spaces. This method enhances the visualization and interpretation of complex tensor fields, 
offering practical applications in scientific visualization and data analysis.

Miyake [7] further extended the classification of multipartite entangled states by employing 
multidimensional determinants, which are closely related to polynomial invariants. This approach 
allowed for a more nuanced understanding of entanglement in higher-dimensional quantum systems, 
bridging the gap between abstract mathematical theory and practical quantum computing applica-
tions.

The identification of fundamental invariants by Bürgisser and Ikenmeyer [8] marked a signifi-
cant advancement in the field, as they explored the role of these invariants in orbit closures within 
algebraic geometry. Their research provided deeper insights into the structure of polynomial invari-
ants, enhancing the theoretical framework for their application in quantum computing.

In a related study, Bürgisser et al. [9] investigated scaling algorithms and the null-cone problem 
from the perspective of invariant theory. Their work demonstrated the computational efficiency of 
these algorithms in determining invariant polynomials, offering practical tools for quantum informa-
tion scientists to employ in their research.

Leifer, Linden, and Winter [5] presented a novel approach to measuring polynomial invariants 
of multiparty quantum states. They developed networks that estimate these invariants under local 
unitary transformations and SLOCC, providing a practical method for experimental physicists to 
measure entanglement. This work bridged the gap between theoretical constructs and experimental 
applications, making polynomial invariants more accessible for practical use.

Grassl, Rötteler, and Beth [8] focused on computing local invariants of qubit systems, dem-
onstrating how these invariants can be used to test local equivalence of quantum systems. Their 
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research provided concrete examples and computational techniques for deriving invariant polynomi-
als, contributing valuable tools for the quantum computing community.

In [19] the author provides a fixed parameter tractable algorithm to compute quantum invariants 
of links presented by planar diagrams, including the Reshetikhin-Turaev invariants derived from 
simple Lie algebras. While in [20] the neural networks and machine learning techniques were used 
to compute invariant polynomials. 

In [22, 23] the counting of O(N) tensor invariants were examined, offering significant insights 
into the combinatorial aspects of tensor models. Their work elucidates the structure of tensor invari-
ants, contributing to the broader understanding of tensor algebra and its applications in theoretical 
physics.

In general, most tensor problems are NP-hard as were shown in [27], another example refers  
to [24], so it is hopeless to expect, that tensor related problems could be solved fast. 

The study of invariant polynomials is indispensable for classifying and measuring entangled 
quantum states in the context of quantum computing. By providing a robust mathematical frame-
work, these invariants facilitate the efficient characterization of SLOCC classes and offer practi-
cal tools for quantum information processing. The development of minimal degree invariants and 
advanced computational techniques continues to enhance the applicability of these methods in both 
theoretical and experimental quantum computing research.

Main provisions

A.	Tensors and invariants
We denote . Let  be the space of tensors (state space). 

Elements of  written in a fixed basis correspond to hypermatrices  indexed by 
 and we shall usually identify tensors in  with corresponding 

hypermatrices.
The group  naturally acts on the space of tensors  by

   		     (4)

for  and extended multilinearly. Let  be the ring of -invari-
ant polynomials that inputs elements of . It is known [2, 3] that the degree of any polynomial in 

 is a multiple of . By  we denote the homogeneous degree  part of 
, which provide the grade decomposition:

                   			   (5)

The dimensions of the grades are counted by rectangular generalized Kronecker coefficients 
 (repeated  times). The (generalized) Kronecker coefficients 

are structural constants of tensor products of irreducible symmetric group representations. It is the 
major problem to give a combinatorial interpretation for these numbers; this problem sometimes 
referred to as last open problem in algebraic combinatorics. Decision problem of positivity of Kro-
necker coefficients is known to lie in NP class. 

In [10], the authors studied dimension sequences via Kronecker coefficients. it was obtained the 
lower bound for smallest  for which . Denote

              .			  (6)
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It is known, that  for even  and there is a unique polynomial invariant of that de-
gree called Cayley’s first hyperdeterminant [15, 16]. For odd  situation is completely different. The 
following theorem sheds light to odd  case.

Theorem 2 ([10]). For odd d we have the bounds:
	                   			        (7)

In particular, the lower bound is sharp in cases and .
By computing the Kronecker coefficients we know the dimensions of the grades by 

. See the figures in the Results section for dimension sequences.
Our aim is to describe the minimal possible invariants. For that we require a few combinatorial 

definitions. 
B.	 Magic sets and its signature function
We refer to elements of the box  as cells. A slice of  is a subset of all cells with fixed 

-th coordinate (called direction) for some . A diagonal of the box  is a subset of size  
with no two cells lying in the same slice. 

A magic set is a subset of  which has an equal number of elements in every slice of , 
and this number is called magnitude. We can represent a magic set  as a magic hypermatrix with 1 
at cells corresponding to elements of  and 0 elsewhere. Magic hypermatrix is a natural generaliza-
tion of (0,1)-magic squares. Denote the set of all magic sets in  of magnitude  as .

Each magic set  in  of magnitude  and cardinality  can be represented as 
 table with entries in  as follows: iterate over cell  of  in lexico-

graphical order and add column  to the table whenever . We refer to resulting table as 
magic table . For instance, for  and  assume , ,  and 

 and zero elsewhere, then the corresponding table is:

													           
					     		  . 					     (8)

We identify magic sets and corresponding tables. Note, that if  then correspond-
ing magic table is of size  and each row consist of letters from  each appearing  times. 
Since  the columns of magic table do not repeat. 

For each magic set let us introduce a ‘filter’ for (noncommutative) monomials involved 	
in polynomials of  of degree . For the map  denote monomial 

. The map  can also be regarded as  table with -th column being  
with each row containing letters from  each appearing  times. 

For the magic table , define the sign function  as fol-
lows: overlay table  on table  and consider all symbols of table  that lie in the same row and have 
the same underlying symbol from , denote resulting sequence , if  results into 
permutation then multiply the result by the sign of this permutation; otherwise set . 
In other words,  is the result of overlaying of  on  where we expect each block of equal 
letters within the same row of  be covered by permutation and the product of all signatures of result-
ing permutations is exactly the quantity .

С. Spanning set of invariant polynomials
For a magic set  define the polynomial

        		       (9)
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where sum runs over all possible such maps . In turns out, that these polynomials are enough to 
span .

Proposition 3 ([9, 10]). Polynomials  are invariant, for  running over , and lin-
early spans the space .

We note that the polynomials  may and will be linearly dependent. Also, the size of 
 is still much larger than the dimension of  , but in the next chapter we pro-

vide several optimizations on search of  by means of representation theory. 

Materials and methods

In this section we provide the pipeline of generating the spanning set of . By 
Proposition 2 we know that the set   linearly spans . But the 
size of the set grows exponentially fast, the rough upper bound would be .

The following fact helps to enhance the search of smaller spanning set. We call a word 
lattice if for each  the number of occurences of  in 

the word  is at least as the number of occurrences of  in  for each 
. Let  be the subset of magic sets called lattice magic sets, if 

each row of a corresponding magic table is a lattice word.
Proposition 4 [10]. The set  where  ranges in  is the spanning set of 

.
Theorem 5. The set  where  ranges in  is the spanning set of .
This combining with Proposition 3 provides an enhanced method of generating such polynomial 

invariants. Theorem 5 in practice allows to dramatically reduce the size of search space of  from 
 to . This can be done with simple backtracking algorithm. 

Results and discussion

In this section basis for the space of invariant polynomials of minimal degree is obtained. Us-
ing Sage [18] several dimension sequences are presented. As we can see from the date, there is the 
unique invariant of degree 4 for 3 qubits:

Table 1 – Dimension sequences of polynomial invariants of degree  for 3 qunits

k\n 1 2 3 4 5 6 7 8
1 1 0 0 0 0 0 0 0
2 1 1 1 1 0 0 0 0
3 1 0 1 1 1 1 0 1
4 1 1 2 5 6 13 14 18
5 1 0 1 4 21 158 1456 9854

the celebrated  hyperdeterminant. This invariant was first obtained by Cayley, since then 
referred to as Cayley’s second hyperdeterminant [16]. Almost 150 years later, this invariant was gen-
eralized by Gelfand-Kapranov-Zelevinsky [17]. 
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The following table characterizes degree sequences for degree 4 invariants of  qunits for vari-
ous . 

Table 2 – Dimension sequences of polynomial of degree  for  qunits 

n\d 3 5 7
0 1 1 1
1 1 1 1
2 1 5 21
3 1 11 161
4 1 35 3341
5 0 52 64799
6 0 112 1407329
7 0 130 27536390
8 0 166 482181504
9 0 130 7403718609
10 0 112 99468725538
11 0 52 1168191022248
12 0 35 12009002387858
13 0 11 108266717444858
14 0 5 857991447205123
15 0 1 5991301282600760
16 0 1 36953889463653995

The following table characterizes degree sequences for degree 6 invariants of  qunits for vari-
ous .

Table 3 – Dimension sequences of polynomial of degree  for  qunits, 

n\d 3 5 7
0 1 1 1
1 1 1 1
2 0 1 70
3 1 385 636177
4 1 44430 9379255543
5 1 5942330 215546990657498
6 1 781763535 6136455833113627910
7 0 93642949102 191473697724924688999920
8 1 9856162505065 6100591257296003780834337810
9 1 894587378523908 190121112332748795911599731191284

D. 3 qubits
Let , , . As mentioned earlier there is a unique invariant polynomial of 

degree 4 which is  hyperdeterminant. Associated magic table is the following:

                 				            (10)
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E. 5 qubits
Let , , . There are 15 magic tables in the set  that span the space 

of invariant polynomials of degree . There are two possible lattice words in that case:  and 
. Since, we restrict magic tables to have columns sorted the first row of magic set is always 
. Therefore, rest  rows may have any of two rows and there are  possible tables, 

but one with repeating columns. 
All  invariant polynomials are non-zero, but the dimension of , 

therefore they are linearly dependent. Simple Gauss algorithm shows that polynomials with the fol-
lowing tables form the basis:

     			   
   				  

(11)

Each polynomial  is of degree 4 and has 192 terms. In contrast, geometric hyperdeterminant 
 is of degree 128 and has more that  terms.

F. 5 qutrits
Let , , . There are 239 magic tables, but only single invariant of degree 6. 

Thus, it is enough to find any non-zero polynomial. We ensure that the following magic table produce 
non-zero invariant polynomial:

				    	 (12)

In particular, the coefficient at

  				    (13)

of  is equal to 1.

Conclusion

The problem of classification of SLOCC classes is hard. Not only because of the complicated 
nature of entanglement phenomena, but for practical reasons as well: the size of computational 
problem grows exponentially as the number of parties, or the number of possible particle states 
grow. This creates a need for fast and efficient methods to be developed. This paper addresses this 
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problem and proposes the method for derivation of a basis of homogeneous invariant polynomials of 
tensors. The present paper offers an efficient algorithm to produce invariant polynomials of tensors. 
The results also provide contextual understanding of a tensors with respect to symmetries, which 
is essential in computer science, since most of the methods of higher order machine learning or 
statistics expect tensors to be symmetric with respect to some of the coordinates. 
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КВАНТТЫҚ ЕСЕПТЕУЛЕРГЕ ҚОЛДАНЫЛАТЫН 
ИНВАРИАНТТЫ КӨПМҮШЕЛЕР

Аңдатпа
Кванттық ақпарат теориясында SLOCC (стохастикалық жергілікті операциялар және классикалық 

байланыс) контексінде d кубиттер (немесе кудиттер) арқылы шиеленіскен күйлердің күрделілігін түсіну 
кванттық жүйелер туралы білімімізді алға жылжыту үшін маңызды. Бұл күрделілік жиі жергілікті симметрия 
топтары арқылы күйлерді жіктеу арқылы талданады. Нәтижесінде алынған сыныптарды шиеленістіктің 
өлшемі болатын инварианттық полиномдар арқылы ажыратуға болады. Бұл мақалада шиеленіскен кванттық 
күйлердің SLOCC сыныптарын сипаттаудың тиімділігін айтарлықтай арттыратын ең кіші дәрежелі 
инварианттық полиномдарды алудың жаңа әдісі ұсынылған. Біздің әдісіміз бұл сыныптарды анықтау 
үрдісін жеңілдетіп қана қоймай, сонымен қатар күрделі кванттық жүйелердің шиеленіс қасиеттерін талдауға 
арналған сенімді құралды ұсынады. Арнайы жағдайларда минималды дәреже инварианттарын шығарып, 
біздің тәсіліміздің нақты сценарийлердегі тиімділігін ұсынуды тәжірбие жүзінде қолданамыз. Бұл жетістік 
кванттық ақпарат теориясындағы түрлі үрдістерді жеңілдету әлеуетіне ие, шиеленіскен күйлерді түсіну, 
жіктеу және тиімді пайдалану оңайырақ және тиімдірек болады.

Тірек сөздер: инвариантты көпмүшелер, кванттық түйісу, SLOCC.
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ИНВАРИАНТНЫЕ МНОГОЧЛЕНЫ С ПРИМЕНЕНИЕМ 
К КВАНТОВЫМ ВЫЧИСЛЕНИЯМ

Аннотация
В теории квантовой информации понимание сложности запутанных состояний в контексте SLOCC 

(стохастические локальные операции и классическая коммуникация) с d кубитами (или кудитами) является 
важным для продвижения наших знаний о квантовых системах. Эта сложность часто анализируется пу-
тем классификации состояний через локальные группы симметрии. Полученные классы можно различить 
с помощью инвариантных многочленов, которые служат мерой запутанности. В данной статье представлен 
новый метод получения инвариантных многочленов наименьших степеней, что значительно повышает эф-
фективность характеристики классов SLOCC запутанных квантовых состояний. Наш метод не только упро-
щает процесс идентификации этих классов, но и предоставляет надежный инструмент для анализа свойств 
запутанности сложных квантовых систем. В качестве практического применения мы демонстрируем вывод 
инвариантов минимальной степени в специальных случаях, иллюстрируя эффективность нашего подхода 
в реальных сценариях. Это достижение имеет потенциал для упрощения различных процессов в теории 
квантовой информации, делая понимание, классификацию и использование запутанных состояний более 
легкими и эффективными.

Ключевые слова: инвариантные полиномы, квантовая запутанность, SLOCC.

 


