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Abstract
In quantum information theory, understanding the complexity of entangled states within the context of SLOCC
(stochastic local operations and classical communications) involving d qubits (or qudits) is essential for advancing
our knowledge of quantum systems. This complexity is often analyzed by classifying the states via local symmetry
groups. The resulting classes can be distinguished using invariant polynomials, which serve as a measure of
entanglement. This paper introduces a novel method for obtaining invariant polynomials of the smallest degrees,
which significantly enhances the efficiency of characterizing SLOCC classes of entangled quantum states. Our
method not only simplifies the process of identifying these classes but also provides a robust tool for analyzing the
entanglement properties of complex quantum systems. As a practical application, we demonstrate the derivation of
minimal degree invariants in specific cases, illustrating the effectiveness of our approach in real-world scenarios.
This advancement has the potential to streamline various processes in quantum information theory, making it easier

to understand, classify, and utilize entangled states effectively.
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Introduction

Understanding entanglement is a basic idea in quantum information theory. The main issue is
figuring out how to measure and sort the entanglement in quantum states [1]. It's seen as an impor-
tant part of quantum information and become an important field of research [3, 4, 5]. Polynomial
functions that stay the same with stochastic local operations and classical communication (SLOCC)
changes have been investigated extensively over the past years [2, 3, 7]. These functions are some-
times exploited to measure the entanglement [13].

Stochastic Local Operations and Classical Communication (SLOCC) is a pivotal concept in this
context, offering a framework for classifying entangled states based on their convertibility through
local operations and classical communication. This classification is vital because it helps identify
which quantum states can be transformed into each other using local operations, shedding light on
the fundamental structure of quantum entanglement and its implications for quantum information
processing. Within the SLOCC framework, the complexity of entangled states, particularly with
systems composed of d quantum units (qunits, I states), becomes a critical area of study. The chal-
lenge lies in efficiently categorizing these states to understand their potential for various quantum
information tasks.

This paper addresses the challenge of classification of entangled states under SLOCC, for odd
number d = 3 of parties each having a single qunit. It introduces an improved method for the
derivation of invariant polynomials of smallest degrees, which serve as a robust tool for efficiently
characterizing SLOCC classes of entangled quantum states [2, 3, 13, 14, 15]. This way of derivation
was shown in [8, 9] and developed in [10]. Using representation theory, particularly Schur-Weyl
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duality, we obtain the spanning set of homogeneous invariant polynomials of fixed degree over state
space of d qunits.

The motivational problem of this research can be stated as follows.

Problem 1 (Orbit separation problem). For two entangled states is it possible to transform one to
another by stochastic local operations?

To address this problem, we reformulate it in the mathematical setting. Quantum states are inter-
preted mathematically as elements of V.= (1" & -+ @ O™ (repeated d times) scalad ta nnit norm.,
Under the fixed basis, each state can be associated with d-dimenisonal hypermatrix { 1 g J. Sto-
chastic local operations are associated with the elements of the group G = SL(n) X --- X SL(n)
(repeated d times), where each group copy acts independently on the corresponding tensor compo-
nent by left multiplication. Here SL(1) is the group of N X N matrices of a determinant 1. Thus,
SLOCC classes are exactly the orbits of a group action.

The polynomial P over the vector space V is G-invariant when it is constant on the orbits
of G-action, i.e. ., P(gv) = P(v). One way to separate tensor orbits (state classes) is to provide dif-
ferent evaluatlons on some invariant polynomial. Thus, generation of such polynomials is the crucial
task for QIT.

Problem 2 (Invariant calculation problem). Given tensor space, compute the smallest tensor
invariants.

Our main contribution is that we provide a method to produce polynomials of the smallest pos-
sible degree. This problem is of Computer Science nature, as it requires development of an algorithm
based on the structure of underlying tensor space. The findings and methods can also be exploited in
other areas of computer science, where tensors are applied, since they shed light to the symmetries
of a tensor space with respect to the natural group action.

In the context of SLOCC (Stochastic Local Operations and Classical Communication), certain
types of entangled states play significant roles. Here's a brief exposition of the EPR state, GHZ state,
and W-state in terms of SLOCC:

1. EPR state is a maximally entangled state between two qubits:

1
EPR = 7 (1)

2. GHZ State, named after Greenberger-Horne-Zeilinger, is a maximally entangled state, gen-
eralizing EPR state, involving three or more qunits, where all qubits are entangled with each other:

GHZgn+1 = ,—(|U .0) + -+ |n..n)). )
3. W-State is another type of multipartite entangled state, usually involving three or more qubits:
1
Wq = (110...0) + [01...0) + -+ + |00 ... 1)). 3)

These states are fundamental examples of multipartite entanglement and play crucial roles in
various aspects of quantum information processing, including quantum communication, cryptogra-
phy, and computation. For instance, in [12] W-state were constructed on a quantum computer.

We shall describe the theoretical background hidden behind the generation of smallest invariant
polynomials, provide the basis of smallest degree polynomial invariants in case of 5 qubits and 5
qutrits.

Literature review

Invariant polynomials are critical tools in the classification of quantum states, particularly within
the framework of quantum computing and quantum information theory. By leveraging these poly-
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nomials, one can efficiently characterize and measure the complexity of entangled states under local
operations and classical communications (SLOCC). This review explores the foundational theories,
practical applications, and computational techniques associated with invariant polynomials, empha-
sizing their significance in quantum computing.

The foundational work by Diir, Vidal, and Cirac [1] demonstrated the distinct ways three qubits
can be entangled, laying the groundwork for understanding polynomial invariants in quantum sys-
tems. Their findings revealed the existence of two inequivalent classes of entangled states, which are
distinguished by different sets of polynomial invariants. This seminal work emphasized the role of
local symmetry groups in classifying entangled states, which has become a cornerstone in the study
of quantum information theory.

Building on this foundation, Luque and Thibon [2, 3] expanded the scope of polynomial invari-
ants to systems with four and five qubits. See also [14]. Their research provided explicit descrip-
tions and closed formulas for these invariants, facilitating the classification of more complex quan-
tum states. By deriving minimal degree invariants, they enabled more efficient characterization of
SLOCC classes, thereby advancing the practical applications of these mathematical tools in quantum
computing.

Hillery, Buzek, and Berthiaume [6] explored the application of polynomial invariants in quan-
tum secret sharing, demonstrating how these invariants can be used to secure quantum communica-
tion protocols. Their work highlighted the practical relevance of invariant polynomials in real-world
quantum information tasks, showcasing the versatility of these mathematical constructs.

In [21] a novel method was proposed for the canonicalization of Riemann tensor polynomials
by employing a block distance invariant approach. This technique simplifies the process of reducing
monoterm tensor polynomials to their canonical forms, providing an efficient computational frame-
work for handling tensor polynomials in algebraic computations.

Hrushovski et al. [25] investigated the strongest algebraic program invariants, providing a new
approach to understanding algebraic invariants in the context of program verification. Their findings
offer robust tools for the analysis and verification of polynomial dynamical systems.

In [26] advanced visualization techniques for tensor fields were developed using fiber surfaces of
invariant spaces. This method enhances the visualization and interpretation of complex tensor fields,
offering practical applications in scientific visualization and data analysis.

Miyake [7] further extended the classification of multipartite entangled states by employing
multidimensional determinants, which are closely related to polynomial invariants. This approach
allowed for a more nuanced understanding of entanglement in higher-dimensional quantum systems,
bridging the gap between abstract mathematical theory and practical quantum computing applica-
tions.

The identification of fundamental invariants by Biirgisser and Ikenmeyer [8] marked a signifi-
cant advancement in the field, as they explored the role of these invariants in orbit closures within
algebraic geometry. Their research provided deeper insights into the structure of polynomial invari-
ants, enhancing the theoretical framework for their application in quantum computing.

In a related study, Biirgisser et al. [9] investigated scaling algorithms and the null-cone problem
from the perspective of invariant theory. Their work demonstrated the computational efficiency of
these algorithms in determining invariant polynomials, offering practical tools for quantum informa-
tion scientists to employ in their research.

Leifer, Linden, and Winter [5] presented a novel approach to measuring polynomial invariants
of multiparty quantum states. They developed networks that estimate these invariants under local
unitary transformations and SLOCC, providing a practical method for experimental physicists to
measure entanglement. This work bridged the gap between theoretical constructs and experimental
applications, making polynomial invariants more accessible for practical use.

Grassl, Rotteler, and Beth [8] focused on computing local invariants of qubit systems, dem-
onstrating how these invariants can be used to test local equivalence of quantum systems. Their
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research provided concrete examples and computational techniques for deriving invariant polynomi-
als, contributing valuable tools for the quantum computing community.

In [19] the author provides a fixed parameter tractable algorithm to compute quantum invariants
of links presented by planar diagrams, including the Reshetikhin-Turaev invariants derived from
simple Lie algebras. While in [20] the neural networks and machine learning techniques were used
to compute invariant polynomials.

In [22, 23] the counting of O(N) tensor invariants were examined, offering significant insights
into the combinatorial aspects of tensor models. Their work elucidates the structure of tensor invari-
ants, contributing to the broader understanding of tensor algebra and its applications in theoretical
physics.

In general, most tensor problems are NP-hard as were shown in [27], another example refers
to [24], so it is hopeless to expect, that tensor related problems could be solved fast.

The study of invariant polynomials is indispensable for classifying and measuring entangled
quantum states in the context of quantum computing. By providing a robust mathematical frame-
work, these invariants facilitate the efficient characterization of SLOCC classes and offer practi-
cal tools for quantum information processing. The development of minimal degree invariants and
advanced computational techniques continues to enhance the applicability of these methods in both
theoretical and experimental quantum computing research.

Main provisions

A. Tensors and invariants

We denote [n] = {0,...,n — 1} Let V = (I]n}@'d be the space of tensors (state space).
Elements of Y written in a fixed basis correspond to hypermatrices Xip---;iu indexed by
(iy, ..., ig) € [ny] X ... X [ng] and we shall usually identify tensors in V with corresponding
hypermatrices.

The group G = SL(n) Xd paturally acts on the space of tensors V. = (O n}®d by

(81, 8a)V1® .QVg=g1V1 ® ... ® 8qVq 4)

for g; € SL(n),v; € O™ and extended multilinearly. Let PInv4(n) be the ring of G-invari-
ant polynomials that inputs elements of V. It is known [2, 3] that the degree of any polynomial in
PInv4(n) is a multiple of n. By PInv,(n,k) we denote the homogeneous degree nk part of
PInv4(n), which provide the grade decomposition:

PInvg(n) == PInv4(n, k). (5)

The dimensions of the grades are counted by rectangular generalized Kronecker coefficients
gq(n,k):= g(n xKk,...,n X k) (repeated d times). The (generalized) Kronecker coefficients
are structural constants of tensor products of irreducible symmetric group representations. It is the
major problem to give a combinatorial interpretation for these numbers; this problem sometimes
referred to as last open problem in algebraic combinatorics. Decision problem of positivity of Kro-
necker coefficients is known to lie in NP class.

In [10], the authors studied dimension sequences via Kronecker coefficients. it was obtained the
lower bound for smallest K for which dim PInv4(n,Kk) > 0. Denote

8 4(n) = min{k | dim PInv4(n,k) > 0}. (6)
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It is known, that SF d (n) = 1 for even d and there is a unique polynomial invariant of that de-
gree called Cayley’s first hyperdeterminant [15, 16]. For odd d situation is completely different. The
following theorem sheds light to odd d case.

1

[ na-1 ] = ald (n) < n.d we have the bounds: .

In particular, the lower bound is sharp in cases n < 29 14nd 3971 < p < 4471

By computing the Kronecker coefficients we know the dimensions of the grades by
g4 (n,k) = dim PInv d (n, k). See the figures in the Results section for dimension sequences.

Our aim is to describe the minimal possible invariants. For that we require a few combinatorial
definitions.

B. Magic sets and its signature function

We refer to elements of the box [K] d 25 cells. A slice of [K] d is a subset of all cells with fixed i
-th coordinate (called direction) for some i € [d]. A diagonal of the box [K] d is a subset of size k
with no two cells lying in the same slice.

A magic set is a subset of [K] 4 Which has an equal number of elements in every slice of (k] d,
and this number is called magnitude. We can represent a magic set T as a magic hypermatrix with 1
at cells corresponding to elements of T and 0 elsewhere. Magic hypermatrix is a natural generaliza-
tion of (0,1)-magic squares. Denote the set of all magic sets in [K] 4 of magnitude N1 as B4 (n, K).

Each magic set T in [k]d of magnitude n and cardinality m = nk can be represented as
d X m table with entries in [1] as follows: iterate over cell I = (ig, e, ig) of [k]‘:l in lexico-
graphical order and add column I to the table whenever Til,...,ic1 = 1. We refer to resulting table as
magic table T. For instance, ford = 3 and k = 3 assume Tyq9 = 1, Tog1 = 1, Ty70 = 1 and

T;11 = 1 and zero elsewhere, then the corresponding table is:

0011
T=1{0011]. ®)
0101

We identify magic sets and corresponding tables. Note, that if T € B, (n, k) then correspond-
ing magic table is of size d X nKk and each row consist of letters from [K] each appearing n times.
Since Til,---,id € {0,1} the columns of magic table do not repeat.

For each magic set let us introduce a ‘filter’ for (noncommutative) monomials involved
in polynomials of PInvg(n) of degree nk. For the map G: [nk] — [n]d denote monomial
X; = szkl KG(i)' The map @ can also be regarded as d X nk table with i-th column being &(i)
with each row containing letters from [H] each appearing k times.

For the magic table T € By(n,K), define the sign function sgnt(c) € {—1,0,1} as fol-
lows: overlay table O on table T and consider all symbols of table G that lie in the same row and have
the same underlying symbol from T, denote resulting sequence @ = (&g, ...,ay, ), if a results into
permutation then multiply the result by the sign of this permutation; otherwise set SgnT(G} = 0.
In other words, sgn.+ (@) is the result of overlaying of ¢ on T where we expect each block of equal
letters within the same row of T be covered by permutation and the product of all signatures of result-
ing permutations is exactly the quantity sgn(o).

C. Spanning set of invariant polynomials

For a magicset T € B d (n, k) define the polynomial

Ar = zc:[nk]—:[n]d sgnr(o) [T X (i) 9)
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where sum runs over all possible such maps G. In turns out, that these polynomials are enough to
span PInv4(n,k).

Proposition 3 ([9, 10]). Polynomials {&T} are invariant, for T running over B4(n, k), and lin-
early spans the space PInv4(n, k).

We note that the polynomials {&T} may and will be linearly dependent. Also, the size of
B4(n, k) is still much larger than the dimension of PInv4(n,k), but in the next chapter we pro-
vide several optimizations on search of B4 (n, k) by means of representation theory.

Materials and methods

In this section we provide the pipeline of generating the spanning set of PInvg (n,k). By
Proposition 2 we know that the set {A. | T € By(n,k)} linearly spans PINv4(n,K) . But the

size of the set grows exponentially fast, the rough upper bound would be B4 (n, k) =< (k )

The following fact helps to enhance the search of smaller spanning set. We call a word
w = (Wy, ...w,) € [K]™ lattice if for each i = 1, ..., m the number of occurences of ] in
the word (W, ..., W;) is at least as the number of occurrences of j + 1 in (Wy, ..., W;) for each
ji=1,.. k- Let B:l' (n,k) € B4 (n, k) be the subset of magic sets called lattice magic sets, if
each row of a corresponding magic table is a lattice word.

Proposition 4 [10]. The set {A1} where T ranges in By (n,Kk) is the spanning set of
PInv,y(n,k).

Theorem 5. The set {A} where T ranges in B&L (n, k) is the spanning set of PInv 4(n, k).

This combining with Proposition 3 provides an enhanced method of generating such polynomial
invariants. Theorem 5 in practice allows to dramatically reduce the size of search space of T from
B4(n,k) to B&L (n, K). This can be done with simple backtracking algorithm.

Results and discussion
In this section basis for the space of invariant polynomials of minimal degree is obtained. Us-
ing Sage [18] several dimension sequences are presented. As we can see from the date, there is the

unique invariant of degree 4 for 3 qubits:

Table 1 — Dimension sequences of polynomial invariants of degree NK for 3 qunits

k\n 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
2 1 1 1 1 0 0 0 0
3 1 0 1 1 1 1 0 1
4 1 1 2 5 6 13 14 18
5 1 0 1 4 21 158 1456 9854

the celebrated 2 X 2 X 2 hyperdeterminant. This invariant was first obtained by Cayley, since then
referred to as Cayley’s second hyperdeterminant [16]. Almost 150 years later, this invariant was gen-
eralized by Gelfand-Kapranov-Zelevinsky [17].
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The following table characterizes degree sequences for degree 4 invariants of d qunits for vari-
ous I1.

Table 2 — Dimension sequences of polynomial of degree 2N for D qunits G, (N, 2) = pIM PINV, (N, 2)

n\d 3 5 7

0 1 1 1

1 1 1 1

2 1 5 21

3 1 11 161

4 1 35 3341

5 0 52 64799

6 0 112 1407329

7 0 130 27536390

8 0 166 482181504

9 0 130 7403718609

10 0 112 99468725538

11 0 52 1168191022248

12 0 35 12009002387858
13 0 11 108266717444858
14 0 5 857991447205123
15 0 1 5991301282600760
16 0 1 36953889463653995

The following table characterizes degree sequences for degree 6 invariants of d qunits for vari-
ous .

Table 3 — Dimension sequences of polynomial of degree 3N for D qunits, Gp, (N, 3) = DIM PINV, (N, 3)

n\d 3 5 7

0 1 1 1

1 1 1 1

2 0 1 70

3 1 385 636177

4 1 44430 9379255543

5 1 5942330 215546990657498

6 1 781763535 6136455833113627910

7 0 93642949102 191473697724924688999920

8 1 9856162505065 6100591257296003780834337810

9 1 894587378523908 190121112332748795911599731191284
D. 3 qubits
Letd = 3, n = 2, k = 2. As mentioned earlier there is a unique invariant polynomial of

degree 4 which is 2 X 2 X 2 hyperdeterminant. Associated magic table is the following:

0011
TZXZXZ =10011 (10)
0101
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E. 5 qubits
Letd = 5,n = 2,k = 2.There are 15 magic tables in the set B5+ (2,2) that span the space

of invariant polynomials of degree 4. There are two possible lattice words in that case: 0011 and
0101, Since, we restrict magic tables to have columns sorted the first row of magic set is always
001 1. Therefore, rest 4 rows may have any of two rows and there are 2% = 16 possible tables,
but one with repeating columns.

All 15 invariant polynomials are non-zero, but the dimension of dim PInvs(2,2) = 5,
therefore they are linearly dependent. Simple Gauss algorithm shows that polynomials with the fol-
lowing tables form the basis:

0011 0011 0011
0011 0011 0011
T,=|o0011|, ,=|o0011| T7s=1|0011]
0011 0101 0101
0101 0011 0101
0011 0011
0011 0011
T,=|o0101|, 7Ts=]o0101
0011 0101
0101 0011 (n

Each polynomial 4 T; is of degree 4 and has 192 terms. In contrast, geometric hyperdeterminant
detyyoxaxax2 is of degree 128 and has more that 1 0° terms.

F. 5 qutrits

Letd = 5,n = 3,k = 2. There are 239 magic tables, but only single invariant of degree 6.
Thus, it is enough to find any non-zero polynomial. We ensure that the following magic table produce
non-zero invariant polynomial:

001122
010122 (12)
T =| 001212
010212
012012

In particular, the coefficient at

XGUUGUXGUUIIXOllﬁﬁxlﬁlﬂlxllﬁlﬂxlllll (13)
of Ap(X) is equal to 1.
Conclusion

The problem of classification of SLOCC classes is hard. Not only because of the complicated
nature of entanglement phenomena, but for practical reasons as well: the size of computational
problem grows exponentially as the number of parties, or the number of possible particle states
grow. This creates a need for fast and efficient methods to be developed. This paper addresses this
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problem and proposes the method for derivation of a basis of homogeneous invariant polynomials of
tensors. The present paper offers an efficient algorithm to produce invariant polynomials of tensors.
The results also provide contextual understanding of a tensors with respect to symmetries, which
is essential in computer science, since most of the methods of higher order machine learning or
statistics expect tensors to be symmetric with respect to some of the coordinates.

Information on funding
This research was supported by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP14869221).
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KBAHTTBIK ECEINITEYJIEPI'E KOJIJAHBIJIATBIH
NHBAPUAHTTBI KOIIMYIIEJIEP

AHgarna

KauTThik akmapar teopusichigga SLOCC (CTOXaCTHKAIBIK JKEPTUTIKTI ONepanusuiap KOHE KITaCCUKAIBIK
Oaitnanbic) koHTekciHae d KyOuTTep (HeMece KyJUTTep) apKbUIbI IIHMEIEHICKEH KYWIEepIiH KYPACIUITiH TYCiHY
KBAaHTTHIK JKYHeNep Typaibl OiTiMiMi3/I aTFa >KBUDKBITY YIIIH MaHBI3IbL. BYJT KypAeTUTiK KUl )KePTiTiKTI CHMMETPHS
TOTITApbl apPKBUTBI KYHIIEp/i JKIKTey apKbpUIbI TainaHaael. HoTiokeciHae amblHFaH CHIHBINTAPABI IIMEICHICTIKTIH
eJieMi 00JIaThIH MHBAPUAHTTHIK IOJIMHOM/IAP apKbLIbl )KbIpaTyFa 0onaabl. bysr Makanaia mmeleHiCKeH KBaHTThIK
kyinepain SLOCC chIHBINTaphlH CHNATTAYJbIH THIMAUINCIH alTapibIKTail apTThIpaThlH €H Killi Jopexedi
WHBAPUAHTTHIK TMOJMHOMAAPIBI ANYIBIH JXKaHa OMici YCHIHBUIFAH. Bi3miH oficiMi3 OYJI CBHIHBINTAPIbl AHBIKTAY
YPIiCiH JKSHUTACTIN KaHa KOiMali, COHBIMEH KaTap Kyp/elli KBaHTTHIK KYHWEeIepIiH [IHeICHIC KACHETTEPiH TalayFa
apHaJIFaH CEHIMJ Kypajibl YChIHAJbI. ApHAlibl jKaFAaiyiapaa MUHUMAJIBl A9PEKe MHBAPUAHTTAPBIH LIBIFAPHII,
013/11H TOCITIMI3AIH HaKTHI CLIEHAPHUIIEpeT] THIMIUTITIH YCHIHYABI TOXKipOue Ky3iHae KonganaMbl3. by xeTicTik
KBaHTTBIK aKapaT TEOPHSCHIHAAFBI TYPJi YPAICTEPIIl KEHUIJCTY dJeyeTiHe We, IIMEJCHICKeH Kyiuepi TYCiHy,
KIKTEY JKOHE THIMJII Naliiajany OHaMbIpaK KoHe THIMIIPEK Ooabl.

Tipek ce31ep: MHBapHMAHTTHI KOIIMyIIeNep, KBaHTTHIK Tyiicy, SLOCC.
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NMHBAPUAHTHBIE MHOT'OYJIEHBI C IPUMEHEHUWUEM
K KBAHTOBbBIM BBIYNCJTEHUAM

AHHOTALUA

B Teopun xBaHTOBOH WH(pOPMALNU MOHWMAaHHUE CIOKHOCTH 3aIyTaHHBIX COCTOSHHUHA B KoHTekcTe SLOCC
(croxacTuueckue JOKalIbHbIE ONEpaly U KJacchuueckas KOMMyHHUKanus) ¢ d KyOutamu (WM KyJuTaMu) sIBISIETCS
B)KHBIM JUIS MTPOJBIDKCHUS HAIINX 3HAHUH O KBAHTOBBIX CHUCTEMaxX. JTa CIOKHOCTh YacTO aHAIU3UPYeTCs Iy-
TeM KJ1acCH(UKALMKM COCTOSTHUH Yepe3 JIOKAIbHBIC TPYIIBl cHMMETpuH. [loiydeHHbIe KI1acChl MOYKHO Pa3iIMYUTh
C MOMOIbIO HHBAPHAHTHBIX MHOTOWICHOB, KOTOPBIC CITy»KaT MEPOil 3allyTaHHOCTH. B TaHHOH cTaThe NpeACTaBIcH
HOBBIIl METOJ MIOJTyYEeHHsT MHBAPHAHTHBIX MHOTOYWICHOB HAUMEHBIINX CTEIIEHEH, YTO 3HAYUTEJIHFHO MOBBIIIAET d()-
(hexTuBHOCTH XapakTepucTuku kaaccoB SLOCC 3amyTaHHBIX KBAaHTOBBIX COCTOSHUI. Harr MeTos He TOJIBKO yIpo-
macT npouecc I/I)IeHTI/I(bI/IKaHI/II/I OTHUX KJIAaCCOB, HO M MPEAOCTABIIACT Hal[e)KHBIﬁ HHCTPYMCHT JI aHaJIn3a CBOICTB
3aIlyTaHHOCTH CJIOKHBIX KBAHTOBBIX CUCTEM. B KauecTBe MpaKTHYeCKOTro ITPUMEHEHHS MBI IEMOHCTPUPYEM BBIBOJT
WHBapHAaHTOB MUHMMAJIbHOM CTENEHU B CIEHHUAIBHBIX CIIydasX, WILTIOCTpUpPYs 3()(EKTHBHOCTh HAIIETO MOX0/a
B peallbHBIX CLICHAPHUAX. DTO JOCTHKCHHE MMEET MMOTCHIMAI JUIS YIPOIICHUS Pa3IMYHBIX MPOLECCOB B TCOPUH
KBaHTOBOH MH(OpMaIWY, Aesasi MOHUMaHUe, KIAacCH()UKAILIMIO ¥ HUCIIOIb30BAaHNE 3allyTaHHBIX COCTOSHUN Ooiee
JIETKUMU U 3P PEKTUBHBIMH.

KuiroueBble cjioBa: MHBapUaHTHBIE TOJMHOMBI, KBAaHTOBAs 3anyTaHHOCTh, SLOCC.
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