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INITIAL-BOUNDARY VALUE PROBLEMS
TO THE TIME-NONLOCAL DIFFUSION EQUATION

Abstract

This article investigates a fractional diffusion equation involving Caputo fractional derivative
and Riemann-Liouville fractional integral. The equation is supplemented by initial and boundary
conditions in the domain defined by the interval by space 0 < x < 1 and interval by time
0 << t << T.The fractional operators are defined rigorously, utilizing the Caputo fractional derivative
of order [# and the Riemann-Liouville fractional integral of order &, where 0 <Z @@ << [ = 1.The
main results include the presentation of well-known properties associated with fractional operators
and the establishment of the unique solution to the given problem. The key findings are summarized
through a theorem that provides the explicit form of the solution. The solution is expressed as a
series involving the two-parameter Mittag-Leffler function and orthonormal eigenfunctions of the
Sturm-Liouville operator. The uniqueness of the solution is proven, ensuring that the problem has
a single, well-defined solution under specific conditions on the initial function. Furthermore, the
article introduces and proves estimates related to the Mittag-Leffler function, providing bounds
crucial for the convergence analysis. The convergence of the series is investigated, and conditions
for the solution to belong to a specific function space are established. The uniqueness of the solution
is demonstrated, emphasizing its singularity within the given problem. Finally, the continuity of the
solution in the specified domain is confirmed through the uniform convergence of the series.

Key words: fractional derivative, integral equation, the method of separation variables, time-
nonlocal diffusion equation.
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Introduction

Over the course of millennia, fractional partial differential equations (FPDEs) have evolved into
essential tools for representing complex systems and anomalous phenomena [1]-[3]. A comprehensive
exploration of the applications of these equations across disciplines such as chemistry, technology,
and physics is presented in the book [4]. Notably, the book discusses the utilization of fractional
derivatives to modify the classical diffusion equation, resulting in the equation of fractional diffusion
in time. Additionally, [5] investigates initial-boundary value problems for the diffusion equation with
variable coefficients, considering both Dirichlet and Neumann conditions.

In [6], Luchko extends the maximum principle to the generalized diffusion equation involving a
fractional time derivative. This extension is applied to establish uniqueness and existence results for
the initial-boundary value problem associated with the fractional diffusion equation.

The work in [7] focuses on exploring the generalized solution for the initial-boundary value
problem of the diffusion equation with fractional time. Fractional calculus has emerged as a powerful
tool for modeling and analyzing complex phenomena in various scientific disciplines. In this article,
we delve into the realm of fractional partial differential equations, specifically exploring a novel
equation involving Caputo fractional derivative and Riemann-Liouville fractional integral.

The equation, defined over the domain Q = {(x,1):0 << x < 1,0 <t < T},
accompanied by carefully crafted initial and boundary conditions. Motivated by the intricate nature
of fractional operators, we introduce the Caputo fractional derivative of order § and the Riemann-
Liouville fractional integral of order @. These operators play a pivotal role in formulating and
solving the fractional partial differential equation under consideration. To establish the groundwork,
we present fundamental properties associated with these fractional operators, drawing upon existing
literature [9, 10, 11, 12, 13, 14].

In summary, this article navigates through the complexities of fractional calculus, unraveling
the unique features and behaviors of the presented partial differential equation. The insights gained
here pave the way for a deeper comprehension of fractional operators and their applications in
mathematical modeling.

In this article we consider the following equation

a? .
(Dfﬂ) (1) -z UgxwW)(x) =0,nQ={(x,1):0<x <10 <t<T} (LD
with initial and boundary conditions

u(x,0) = @(x) onx € [0,1], (1.2)

u(0,t) =u(1,t) =0,0=t =T, (1.3)

where 0 << @ <¢ f = 1 and the function ¢ is continuous. The operator D, '8 stands for the Caputo
fractional derivative of order ﬁ c ([] 1) is defined by

(Déiru) (x,t) = I [6‘ u(x, t)] ,8).” (t—s)" 'G—u(x s)ds
and the operator fg_,_ is the Riemann-Liouville fractional integral of order ¢ > 0, defined as

o 1 ‘ a—1
(IGHuw(x t) = @J; (t —s)* "u(x,s)ds,t € (0,T].
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The case when, instead of the operator [ g 4 the time-degenerate diffusive coefficient ¢ P with
B > —aq is used, studied for the one-dimensional linear time-fractional diffusion equation in [9]

(D8 u) () = tPuee(x,t) = 0in (x,1) € R X (0,0).

The authors have found an explicit solution by using the Kilbas-Saigo function. Moreover, the
convergence, the existence and uniqueness of the solution of the problem are confirmed.

Solving such problems may involve using techniques like Laplace transforms, Fourier transforms,
or other integral transforms to handle the nonlocal term. The well-known traits associated with
fractional operators are presented below [15, 16, 17, 18].

Main provisions. Material and methods

The main purpose of this article is to present the key conclusions related to the classical solution.
A central theorem provides an explicit expression for the solution, revealing a series representation
involving the two-parameter Mittag-Leffler function. The uniqueness of the solution is rigorously
proven, contingent upon specific conditions governing the initial function.

Furthermore, we introduce and prove estimates for the Mittag-Leffler function, crucial for
understanding its behavior and ensuring convergence. The convergence of the series solution
is scrutinized, and conditions for the solution to reside in a particular function space are derived.
Emphasis is placed on the singularity of the solution within the given problem.

In the subsequent sections, we delve into the proof of continuity for the solution in the specified
domain, demonstrating its uniform convergence. These results contribute significantly to the broader
understanding of fractional partial differential equations and shed light on the intricacies associated
with the involved operators [19,20]1.

Lemma 1.1. [3,P.95]If0 < B < 1forT € AC[0,T]or T € C'(0,T), then

. [(pd.T) @] =) - T(0)

holds true.
Lemma 1.2. [3,P. 101]Let T € C[0,T].1fa + f = 1, then

15 1gEm O] = (152°1) 0.

Next, we have an estimate of the two-parameter Mittag-Leffler function E, g (—2).
Lemma 1.3. [8, P. 9] For every A = 0 one has the optimal bounds

C
s -
|Ez g (—At )|£1+|,11;$|£C’t20’b20’

A8 |Epp(—2t%)|=C, 0<E <2, BEC

Results and discussion

This section summarizes the key findings of this article.

Theorem 2.1. Let @(x) € C[0,1], ¢"(x) € L,(0,1), then the unique solution of problem
(1.1) — (1.3) is the function u(x,t) € C (), which has the form

u(x,0)=> @ X, (NE, ;5 (~41“") @.1)
k=1
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where

qak—\/_f @(x)sin(kmx)

and Eg ,5’( —Z) is the two- -parameter Mittag-Leffler function.
Proof. In view of the method separation of variables, any solution of problem (1.1)-(1.3) can be
represented as

u(x,r)=ixk(xm(t>, (x.0) € (0,1)x(0,7), 02

and the function @ (x) given in the following form

P =Y 0K, (D), xeO.D),

where @ defined by
1
0% =VZ | 90X,
0

By substituting (2.2) into the equations (1.1)-(1.3), we have a separate problem for the variable ©

(D5, Te) (6) + 4 UETI(® = 0, £ > 0 2.3)

and respect to X
Xp (%) + A X (x) = 0, (2.4)
Xp(0) =X, (1) = 0. 2.5)

It is well-known the orthonormal eigenfunctions and related elgenvalues of the Dirichlet problem
(2.4)-(2.5) are given by X, (x) = sin(kmx) and A, = (km)?, respectively.

Applying I ‘8 to equation (2.3), we have

18, [(pf.1) 0 + 2t TO®] = 0
Using Lemma 1.1 and Lemma 1.2 we obtain the following equation

+

L (167 T ) (8) + Tie(£) = Tye(0), £ > 0.
The integral equation has a unique solution (se [3], P.231)

Tie(t) = Te(0)Egup 1 (— At “*F). (2.6)
Consequently, we obtain the solution the problem (1.1)-(1.2)

u(x,t) = igoka (x)Ea%l(—lkt“*ﬂ ), (x,t)€(0,1)x(0,7). 2.7)
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Next, we consider the function (2.7), where
0<a<pf =1,¢.=(¢ X)), Xe(x) =2sin JA x> A} = (kn)2~

At this stage, we should prove that u(x,t) € C (L) for
Q={(x,t):0 <x<1,0 <t < T} For this, we have to show the uniform convergence of
series (2.7) in a closed domain (). Now, let us estimate the coefficients @. By definition

1 .
0 = (@.X) = V2 [, p(0)sin(kmx)dx 28
Integrating by parts the integral (2.8), we obtain

1
e

cos(kmx)
km

x=1

V2cos(kmx)
=) —

1
+ SJ‘ @' (x)cos(kmx)dx.
0

x=0
If the conditions @(0) = (1) = 0 are holds true, then it yields that

_ 1 (1
Pr =0, (29)
where the function cpil) defined by
q.}}El) = j'(}l V2¢'(x) cos(kmx) dx. (2.10)

In view of (2.9) and Lemma 1.3, also from the inequality | X} (X)| = C, we get

- -
u(x.0| < CYlo|=CY. —|oi"].
k=1 k=1 k

. . el
Therefore, we investigate the convergence of the series Z;| gDIEI)| .

k=1

Using the Cauchy-Schwarz inequality, we have

> ot <

k=1

Moreover, we also know that the system ¥} (x) = {\/E cos(kmx)};._, is orthonormal in
space L, (0,1) and for any function g (x) € L,(0,1) the Bessel inequality holds

0o 1
Y lexl? <l o) 17,= [ 9*()dx
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where

1
o = (@, V) = \’EJ’ @(x) cos(kmx) dx.
0

So, if 1 5
p(x) € L,(0,1) & f @< (x)dx < oo,

0
then

2
Yieq l@pl™ < oo
i.e. the series converges. 1)
r
Further, if @ (X) Esz(U;l), then for coefficients @, ~ of equality (2.10) using Bessel's
inequality, we conclude Z_ w(l) .
k
>l

Thus, if cpf(x) € L,(0,1), then the number series Zw:l|§0,?)| converges, when the next
conditions hold true ak
@(x) € C[0,1], @' (x) € L,[0,1], @(0) = @(1) = 0. 2.11)

Consequently, the series (2.8) converges uniformly in the closed region .

Therefore, the sum of this series, i.e. the function wu(x, ) of equality (2.1) belongs to class
C(Q).

Now let us show that the solution is unique. Assume that U (X, ) and Uy (X, 1) are two
solutions to the problem (1.1)-(1.3). We choose u(x,t) = u; (x,t) — uy(x, t) so that u(x, t)
satisfies the equation and the initial and boundary conditions (1.2)-(1.3). Consider the following
identity 1
T (t) = |, u(x,t)sin(kmx)dx, k €N, t = 0. (2.12)

Noting (2.3), we apply the operator [) g Lo the left side of the equation (2.12)

(5. 1) (0 = f 1 (D§,u) (x, t)sin(kmx)dx
0

1

= —(kn}zlf,ﬂf u(x, t)sin(kmx)dx
0

= —(km)?(I4, T)(t), k EN, t = 0.

As aresult of (1.2) and (1.3) we have

() = |

In view of (2.6) we deduce that
Te(t) = Te(0)Eqsp 1 (4t *F) =0

Since T (0) = 0, whichmeans U (X, t) = 0.Henceu; (X, t) = uy(x,t),and the problem

1 1

u(x, 0)sin(knx)dx = f @(x)sin(kmx)dx = 0.
0

(1.1)-(1.3) has a unique solution.
By applying the operators [} é: and [ g... to the identity (2.7), we get
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(Dyu)(x,t)= D [Z@kX (NE,, 5, (=4t "]

MS T_.‘MS

P X (X)DLLE, 5, (=A™ )] (2.13)

0, X, (X)At°E (=2t

a+pf,a+1

=
I

and
(Lg.u)(x,1) = [Z@kX (DE,, 5, (=24t 7")]

(oo}

- Z¢ka (x)[(()z+[Ea+ﬂ,1 (_ﬂvktwrﬂ)] (2'14)

k=1

— N B
= _Z PX (OE, 5,0 (=4 L5")
5 k=l
By using the operator pYe) to the (2.14), we deduce that

2

( “u)(x,t) = Z(pk 5 X (NE,, 5 (=227

= z(ka (OALE atp, an (&4 fHﬂ)

k=1
Next, we show that D‘B € C(Q)and I§y € C(Q).

Let & be an arbitrary, sufficiently small positive number. Then forall 0 < § << t, from Lemma
1.3, we get

[pfucx, )| = Z @K CONL B v (At ™)

= Z ﬁoka(x}t_ﬁ’lkta_'-ﬁEa+,€,a+l(_"lkta+ﬁ)
Z [

[Ig u(x, t)| = Z X (Ot “Egy g gi1 (— — A t*F)

If\

and

= Z ﬁoka(x}t_ﬁ‘lkta+ﬁEa+ﬁ,a+l(_“:lkta+ﬁ)

=C ZQDH
k=
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o0

If the conditions (2.11) hold true, the series Z|¢k| converges, and then the series (2.13) and

k=1

(2.14) representing the function Dé}l Lu(x, t) and % (I 8‘ " u)(x, t) converges uniformly in any
closed subdomain ) 5 of the domain ). Therefore, due to the arbitrariness of the number &, we have
DE,u € C(Q) and I¢,u € C(A).

Conclusion

In this paper, the main results include the presentation of well-known properties associated with
fractional operators and the establishment of a classical solution to this problem. The key conclusions
are summarized using a theorem that provides an explicit form of the solution. The solution is expressed
as a series including the two-parameter Mittag-Leffler function and orthonormal eigenfunctions of
the Sturm-Liouville operator. The uniqueness of the solution is proved, which guarantees that the
problem has a unique solution.
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VYAKBIT BOUBIHIIA BEMJIOKAJIJAbBI TUDDY3US
TEHJAEYI YIIIH BACTANKBI-WETTIK ECEI

AnjiaTna

Bbyn makanana KarryTo MareIHachIHIarsl OeJIIEK PETTI TybIHIB MeH Puman-JInyBUiLIT MarbIHACBIHAFB! OOl
IIeK PETTI HHTETPaAdy OIepaTopiapbl KaTbICKaH Oemek petTi auddy3us TeHaeyi KapacThIpeiiaasl. TeHaey KeHic-
Tik Ooifprama 0<x<1 KeciHZiciH/e koHe yakKbIT OoiibrHIa 0<t<T KeciHmiciHAe aHBIKTAaJFaH alfMarbIHIa 0acTaIKb
JKOHE IIeKaPaJIbIK IIAPTTapMEH TONBIKThIpbUIFaH. beuntiek oneparopiap 0<a<B<1 apkpLibl, srau B perti KarmyToHbIH
OeJilIeK PeTTi TYBIHABICHI XoHe o peTTi Puman-JInyBuiun Gesiek peTTi MHTerpalibl apKblIbl aHbIKTa 3 bl Herisri
HOTHXKeNep — OeJIIeK orepaTopyiapMeH OalIaHbICThI OSNTil KaCHeTTepAl YChIHY MEH KaJFbI3 MEeNIIMHIH OOJyBI.
Herisri TyXpIpbIMIap menrimMHiH aiKbIH (JOPMAchIH KaMTaMachl3 €TETiH TeopeMa apKbuIbl xkajmbutanrad. [llemnrim
eki mapametpii Mutrar-Jlepdnep pyakimsaceH xone LITypm-JInyBrimt onepaTropsIHEIH OPTOHOPMAIIIBI MEHIITIKTI
(yHKOMSUTApBIH KAMTUTBHIH Kartap Typiae kepcetinemi. IllemiMHIH XKUHAKTBUIBIFB JONETACHAl, OYJI ecenTiH
Oacrankel (GyHKIMs YIIiH Oenriii Oip jkarmaiiiapaa skajaFbl3, HAKTHI aHBIKTAFaH INCIIiMI OOJYbIH KaMTaMachl3
ereni. COHbIMEH Karap Makajiaja )KUHAKThUIBIKTHI Tajay yuiiH, Mutrar-Jledduep pyHKIMsCbIMEH OaiiaHbICThI
MaHBI3IBI OaFaiayiap CHri3iin, ponenneHeni. KatapaplH sKUHAKTBUIBIFBI 3ePTTEINCAl )KOHE MICHIIMHIH Oenriti 0ip
(yHKIIMOHAIBI KEHICTIKKE JKaTy IapTTapbl Oenriieneni. byt ecentin meHOepiHie OHBIH epeKIIeIiriH KOpCceTeTiH
JKaIFBI3 MIemIiM Kepcetiyeni. KepcerinreHn aiiMakTarbl MEMIIMHIH Y3IIKCI3/iri KaTapablH OipKenKi >KHHAKTH 00-
JYBIMEH JTOJETICHI].

Tipex ce3aep: OenmIeKk TyBIHABI, HHTETPAIABIK TEHICY, afHBIMAIBIIAPABI &KBIPATy SIICi, YaKbIT OOMBIHIIA
oeiinokanasl Auddys3ust TeHaeyi.
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HAYAJIbHO-KPAEBBIE 3AJAYN JUISL YPABHEHWSI
HEJIOKAJIBHOU IO BPEMEHU JU®DY3IUU

AHHOTALUSA
B a70if cTaThe mccaenyeTcs ypaBHeHne ApoOHON muddy3nu, BKIOUaromee Jpo0Hyo mpon3BonHyo KamyTo
U IpoOHbIN nHTerpan Pumana-JInyBumis. YpaBHeHHE JOMOTHEHO HAYAJIBHBIMHU U TPAHUYHBIMHU yCIOBHUSAMH B 00-
JacTu, onpeaenseMoi naTepBasioM 0<x<l mo mpocTpaHcTBeHHOI nepeMeHHoN u 0<t<T mo BpeMeHHO mnepeMeH-
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HOH. J/[poOHBIe orepaTopsl ONpeeseHbl CTPOTro, UCTIOJb3Ys IPOOHYI0 MPOor3BOAHYI0 KaryTo nopsiaka 3 u 1poOHbIit
unrerpan Pumana-JInysusuis nopszaka o, rae 0<o<fB<1. OcHOBHbIE pe3ynbTaThbl BKIIOYAIOT [IPEICTAaBICHUE XOPO-
110 U3BECTHBIX CBOMCTB, CBA3aHHBIX C APOOHBIMH OIIEpaTOpPaMH, U YCTAHOBJICHO EIMHCTBEHHOE PELICHHE TaHHOU
3agaun. KirtoyeBbie BBIBOIBI 0OOOIICHBI ¢ MIOMOIIBIO TEOPEMBI, KOTOpas 00eCHeUnBaeT IBHYIO (OPMY pCIICHHUS.
Pemenue BeipaxkaeTcst B BUAE PAa, BKIIOYAIOIIETO ABYXIIapaMeTpuiecKyto GpyHkuo Murrara-Jleddiepa u op-
TOHOPMHPOBaHHBIE coOcTBeHHbIE QyHKIMU oneparopa Lltypma-JInyBuis. JlokazaHa eAMHCTBEHHOCTD PELICHHUS,
rapaHTHpYIOIIas, 4To 3a/ia4a UMEET eJMHCTBEHHOE, YETKO OINPEACICHHOE PEellICHNE TP ONPE/ISIICHHBIX YCIOBUIX
Jutst icxonHoi (yHKmu. Kpome Toro, B cTarbe BBOJSTCS M TOKA3bIBAIOTCS OLICHKH, CBSI3aHHbIE ¢ QyHKIMEH Mut-
tara-Jledduepa, mpenocTapisist OIIEHKH, HMEIONIHE pelIaloiiee 3HaYeHNe sl aHalin3a cxoauMocth. Vcenenyercs
CXOJMMOCTD psiJia M YCTAHABINBAIOTCS YCIOBHS MPUHAIICKHOCTH PELICHHS ONPEACICHHOMY (DYHKIHOHAIEHOMY
MIPOCTPAHCTBY. JleMOHCTPUPYETCst SAMHCTBEHHOE PeIICHNE, NOIYSPKUBAIOIIEe €ro HEOOBIYHOCTh B PAMKAX JIAHHON
3amaun. HempepbIBHOCTD pemeHys B yKa3aHHON 00acTH IIOATBEPIKAACTCS PABHOMEPHOH CXOAUMOCTBIO Psiia.

KaioueBble cioBa: npoOHasi MPOW3BOAHAS, MHTETPAIBLHOE YpaBHEHHE, METOJ PAa3/eiCHUS] MEepeMEHHBIX,
ypaBHeHue anuddy3un 6eiiiokana o BpeMeHH.
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